彭志鋒,高冬生,劉紅英,楊 霞,趙 軍,王新衛(wèi),李永濤,陳 陸,常洪濤,王川慶
(河南農(nóng)業(yè)大學禽病研究所,鄭州 450002)
?
鴨源雞桿菌整合子及其與耐藥性的相關(guān)性分析
彭志鋒#,高冬生#,劉紅英,楊霞,趙軍,王新衛(wèi),李永濤,陳陸,常洪濤,王川慶*
(河南農(nóng)業(yè)大學禽病研究所,鄭州 450002)
為了解鴨源雞桿菌的整合子及其與耐藥性之間的關(guān)系,運用PCR方法檢測鴨源雞桿菌分離株攜帶1、2、3類整合子的情況,采用K-B法測定61株鴨源雞桿菌對13種抗菌藥的敏感性,并分析其整合子與耐藥性的關(guān)聯(lián)性。結(jié)果顯示,所有參試菌株對克林霉素、諾氟沙星、鏈霉素有耐藥性的菌株比例均不低于88.52 %(54/61)。19株鴨源雞桿菌攜帶1類整合子,陽性率為31.15%,且此類菌株的耐藥種數(shù)均≥3;在耐藥種數(shù)≥5的菌株中,整合子陽性菌的比例(78.95%)顯著高于整合子陰性菌的比例(28.57%,P<0.01)。本試驗首次研究了鴨源雞桿菌中整合子的分布情況。參試菌株僅攜帶1類整合子,且普遍存在多重耐藥性;1類整合子可能在鴨源雞桿菌多重耐藥性的形成中發(fā)揮一定作用。
鴨源雞桿菌;整合子;耐藥性
雞桿菌屬是巴氏桿菌科中相對較新的屬[1],該屬包括數(shù)個種[2]。然而似乎只有溶血性鴨源雞桿菌(Gallibacteriumanatis,G.anatis)在家禽中普遍流行,其感染往往造成蛋雞的輸卵管炎和腹膜炎[3-4]。隨著細菌耐藥性的不斷增加,導致抗生素臨床治療效果不佳。研究顯示巴氏桿菌科細菌存在普遍的耐藥性[5-6],而鴨源雞桿菌耐藥性的報道尚不多見[7-8]。
細菌整合子是具有捕獲和表達外源基因功能的遺傳單位,在常見病原菌中普遍存在,且與多重耐藥性關(guān)系密切[9-11]。包括鴨源雞桿菌在內(nèi)的巴氏桿菌科細菌整合子的研究鮮有報道[12]。為了解鴨源雞桿菌的耐藥性、整合子分布情況以及兩者的關(guān)系,作者首次檢測61株鴨源雞桿菌分離株的整合子,以及對13種抗菌藥的敏感性,并分析鴨源雞桿菌整合子與耐藥性之間的相關(guān)性,旨在了解鴨源雞桿菌的耐藥機制,并為臨床篩選有效抗生素提供依據(jù)。
1.1菌株
61株鴨源雞桿菌來源于河南、陜西、山西、山東四省患腹膜炎、輸卵管炎的蛋雞,由本實驗室分離、保存[13];質(zhì)控菌ATCC27090和ATCC25922購自廣東微生物菌種保藏中心。
1.2試劑
藥物紙片標準品購自杭州天和藥物技術(shù)開發(fā)公司,包括青霉素(P)、氨芐西林(AM);諾氟沙星(NOR)、環(huán)丙沙星(CIP)、左氧氟沙星(LVF);克林霉素(CM);鏈霉素(S)、妥布霉素(TM)、卡那霉素(KAN)、慶大霉素(GM);四環(huán)素(TE);頭孢噻呋(CEF)和利福平(RA)共13種(7類)抗菌藥物;PCR擴增試劑購自寶生物工程(大連)有限公司。
1.3引物
檢測1、2和3類整合酶基因的特異性引物參考以往的報道[14],預(yù)期擴增產(chǎn)物的大小分別為553、789和600 bp。引物由生工生物工程(上海)股份有限公司合成。
1.41、2和3類整合酶基因的PCR檢測
煮沸法提取細菌DNA。按文獻[14]所述分別進行三類整合酶基因的擴增,擴增產(chǎn)物用1.0%瓊脂糖凝膠電泳,凝膠成像系統(tǒng)拍照分析。
1.5藥物敏感性試驗
采用K-B法測定61株鴨源雞桿菌對13種抗菌藥物的敏感性。由于還沒有針對鴨源雞桿菌的操作標準和判定標準,因此本研究參照NCCLS(2013)中巴氏桿菌的標準進行操作和結(jié)果判斷。
1.6DNA序列分析
PCR擴增的整合酶基因片段測序后通過GenBank中Genome BLAST進行基因同源性分析。
1.7統(tǒng)計學分析
分析鴨源雞桿菌整合子與耐藥性的關(guān)系,并用SPSS 18.0軟件進行統(tǒng)計學分析。
2.1整合子檢出情況
僅部分菌株含有1類整合酶基因;所有菌株未發(fā)現(xiàn)2和3類整合子。
1類整合酶基因PCR產(chǎn)物片段大小與預(yù)期相符(圖1)。經(jīng)測序和同源性分析,與GenBank中1類整合酶基因相似性接近或等于100%。61株鴨源雞桿菌中僅19株擴增出1類整合酶基因,陽性率為31.15%。所有參試菌株的2和3類整合酶基因檢測均為陰性。
2.261株鴨源雞桿菌的耐藥表型
K-B法檢測結(jié)果表明參試菌株均表現(xiàn)多重耐藥,未見對所有菌株敏感的藥物;61株鴨源雞桿菌對下列藥物有耐藥性的菌株比例均在80%以上:克林霉素(CM,93.44%)、諾氟沙星(NOR,93.44%)、鏈霉素(S,88.52%)、環(huán)丙沙星(CIP,83.61%)、卡那霉素(KNA,80.33%);而對慶大霉素(GM,18.03%)、頭孢噻呋(CEF,22.95%)和利福平(RA,11.47%)的耐藥率均低于23%(圖2)。
2.3鴨源雞桿菌1類整合子與耐藥性的關(guān)系
對每類受試藥物逐一繪制參試鴨源雞桿菌的耐藥譜,所分別統(tǒng)計的1類整合子陽性和陰性菌株耐藥譜分布情況見圖3。結(jié)果顯示61株鴨源雞桿菌普遍存在耐藥性;1類整合子陽性菌株的耐藥種數(shù)為3~7,其中78.95%(14/19)的菌株耐藥5~7種。1類整合子陰性菌株的耐藥種數(shù)為1~6,其中僅28.57%(12/42)菌株耐藥5~6種,遠低于整合子陽性菌株的比例,兩者差異極顯著(P<0.01)。在耐藥種數(shù)≥5的菌株中,整合子陽性菌株所占比例遠高于整合子陰性菌株(圖3)。耐藥種數(shù)≥4的鴨源雞桿菌共43株(70.5%),其中整合子陽性菌7株。耐藥種數(shù)≤3的鴨源雞桿菌共18株(29.5%),其中整合子陽性菌株2株。隨著整合子陽性菌株比例的降低,參試菌株的耐藥種數(shù)也相應(yīng)減少,其差異極顯著(P<0.01)。
M.DL2000 DNA相對分子質(zhì)量標準;+.陽性對照;-.陰性對照;1~61.鴨源雞桿菌1類整合酶基因PCR產(chǎn)物M.DL2000 DNA marker;+.Positive control;-.Negative control;1-61.PCR products of intI1 gene of G.anatis isolates圖1 61株鴨源雞桿菌1類整合酶基因PCR擴增產(chǎn)物電泳Fig.1 The results of PCR amplification of intI1gene of 61 G.anatis isolates
AM.氨芐西林;CIP.環(huán)丙沙星;CM.克林霉素;P.青霉素;NOR.諾氟沙星;KAN.卡那霉素;GM.慶大霉素;S.鏈霉素;TM.妥布霉素;TE.四環(huán)素;LVF.左氧氟沙星;CEF.頭孢噻呋;RA.利福平AM.Ampicillin;CIP.Ciprofloxacin;CM.Clindamycin;P.Penicillin;NOR.Norfloxacin;KAN.Kanamycin;GM.Gentamicin;S.Streptomycin;TM.Tobramycin;TE.Tetracycline;LVF.Levofloxacin;CEF.Cephalothin;RA.Rifampicin圖2 61株鴨源雞桿菌耐藥率分析Fig.2 Drug resistance rate of G.anatis strains(n=61)
虛線框顯示耐藥種數(shù)≥5時,1類整合子陽性菌(n=19)的耐藥菌株比例均大于整合子陰性菌(n=42)The dotted box indicated when the number of antibiotic category≥5,Drug resistance rates of class 1 integron positive strains (n=19) are greater than that of class 1 integron negative strains (n=42),respectively圖3 鴨源雞桿菌多重耐藥及其1類整合子分布Fig.3 Multidrug resistance and class 1 integron distribution of G.anatis isolates
除了頭孢噻呋和利福平以外,61株鴨源雞桿菌對其他11種抗菌藥物的耐藥性菌株比例均為1類整合子陽性菌株高于陰性菌株,但只有對環(huán)丙沙星和左氧氟沙星的耐藥性,1類整合子陽性和陰性鴨源雞桿菌的差異顯著(P<0.01)(表1)。
表161株鴨源雞桿菌耐藥性與1類整合子的關(guān)系
Table 1Association between antibiotic resistance and class 1 integron in 61G.anatisstrains
抗菌藥物Antibacterialagents耐藥菌株比例/%Rateofresistancestrains整合子陽性菌株Integronpositivestrains整合子陰性菌株IntegronnegativestrainsP值Pvalue環(huán)丙沙星CIP100(19)76.19(32)<0.05諾氟沙星NOR100(19)90.48(38)>0.05左氧氟沙星LVF78.95(15)9.52(4)<0.01卡那霉素KAN94.74(18)73.81(31)>0.05慶大霉素GM26.32(5)14.29(6)>0.05鏈霉素S94.74(18)85.71(36)>0.05妥布霉素TM47.37(9)33.33(14)>0.05氨芐西林AM84.21(16)64.29(27)>0.05青霉素P89.47(17)73.81(31)>0.05頭孢噻呋CEF15.79(3)26.19(11)>0.05利福平RA10.53(2)11.90(5)>0.05克林霉素CM100(19)90.48(38)>0.05四環(huán)素TE78.95(15)54.76(23)>0.05
整合子陽性菌株總數(shù)為19,整合子陰性菌株總數(shù)為42
The amounts of integron positive strains and integron negative strains are 19 and 42,respectively
3.1隨著抗生素的大量使用,細菌耐藥性造成細菌感染的治療越來越復雜。本研究中,作者選取了禽類生產(chǎn)中經(jīng)常用到的13種抗菌藥物,并檢測了61株鴨源雞桿菌對其耐藥情況,而且首次鑒定了整合子在鴨源雞桿菌中的分布情況,并分析了其與多重耐藥性的關(guān)系。本研究參試菌株普遍存在多重耐藥性,以往的研究中也有類似結(jié)果[7-8]。鴨源雞桿菌對克林霉素、諾氟沙星、環(huán)丙沙星和卡那霉素的多重耐藥性提示,使用這些藥物治療該菌引起的雞輸卵管炎、腹膜炎可能不會收到預(yù)期效果。高耐藥率可能與臨床大量使用這些藥物有直接關(guān)系[15];因此建議使用耐藥率較低的慶大霉素和頭孢噻呋等藥物防治該病,同時勿過量使用抗生素,以減緩細菌耐藥性的產(chǎn)生[16]。本文參試菌株耐藥譜與巴氏桿菌科其他細菌的情況不盡相同[17-18],這可能與不同地區(qū)的用藥習慣不同有關(guān)。本研究為防治該病的臨床合理用藥提供了科學依據(jù)。
3.2整合子是具有捕獲和表達外源基因功能的遺傳單位,存在于細菌質(zhì)?;蛉旧w上,通過自身編碼的整合酶來獲取外源基因并使之表達[19]。整合子捕獲、整合和表達耐藥盒,引起耐藥基因在同種或不同菌屬間傳播,從而使細菌耐藥性得以廣泛擴散[20-21]。革蘭陰性菌中研究比較多的是1、2、3類整合子,其中以1類整合子最為常見[10,22-23]。目前,有關(guān)巴氏桿菌科細菌整合子的信息極少,本研究首次報道了整合子在鴨源雞桿菌中的分布,并分析了其與多重耐藥的關(guān)系。結(jié)果表明,所有參試菌株均不存在2、3類整合子,31.15%的菌株含有1類整合子。由于參試菌株數(shù)量限制,需要進一步檢測更多菌株,才能確定2、3類整合子在鴨源雞桿菌中的存在狀態(tài)。
綜合本研究的各項數(shù)據(jù)可以看出,整合子與鴨源雞桿菌的多重耐藥有一定的關(guān)系。整合子陽性菌的耐藥種數(shù)為3~7,且耐藥5~7種的菌株比例為78.95%(14/19);整合子陰性菌的耐藥種數(shù)為1~6,且耐藥5~6種的菌株僅28.57%(12/42),兩者差異極顯著(P<0.01);耐藥種數(shù)為5、6和7時,整合子陽性菌株的耐藥率均高于整合子陰性菌株(圖3)。特別是在耐藥種數(shù)為5的所有菌株中,其整合子陽性菌株比例明顯高于陰性菌株比例且具有統(tǒng)計學意義,提示整合子可能與鴨源雞桿菌多重耐藥存在一定的關(guān)聯(lián)性。這與某些學者對其他細菌的研究結(jié)果一致[10,24-25]。
3.361株鴨源雞桿菌對11種抗菌藥物的耐藥率,均為整合子陽性菌株高于陰性菌株,但只有對環(huán)丙沙星和左氧氟沙星的耐藥性差異具有統(tǒng)計學意義(P<0.01),這表明鴨源雞桿菌對環(huán)丙沙星和左氧氟沙星的抗性可能與整合子的出現(xiàn)直接相關(guān);對其他9種抗菌藥的耐藥率差異不顯著(P>0.05),暗示參試細菌對此9種抗菌藥的耐藥表型差異與整合子無直接相關(guān)性。出現(xiàn)這一結(jié)果可能因為耐藥表型差異不完全是由整合子主導的,而是由其他未檢測的耐藥因素共同作用的結(jié)果[7-8]。整合子與細菌多重耐藥性的確切關(guān)系有待后續(xù)鑒定耐藥基因后,統(tǒng)計分析其與耐藥表型的相關(guān)性來確定。
河南、陜西、山西、山東鴨源雞桿菌分離株攜帶1類整合子;鴨源雞桿菌普遍存在多重耐藥性,且1類整合子可能在其多重耐藥性的形成中發(fā)揮一定作用。
[1]CHRISTENSEN H,BISGAARD M,BOJESEN A M,et al.Genetic relationships among avian isolates classified asPasteurellahaemolytica,‘Actinobacillussalpingitidis’ orPasteurellaanatiswith proposal ofGallibacteriumanatisgen.nov.,comb.nov.and description of additional genomospecies withinGallibacteriumgen.nov[J].IntJSystEvolMicrobiol,2003,53(Pt 1):275-287.
[2]BISGAARD M,KORCZAK B M,BUSSE H J,et al.Classification of the taxon 2 and taxon 3 complex of Bisgaard withinGallibacteriumand description ofGallibacteriummelopsittacisp.nov.,Gallibacteriumtrehalosifermentanssp.nov.andGallibacteriumsalpingitidissp.nov[J].IntJSystEvolMicrobiol,2009,59(Pt 4):735-744.
[3]PAUDEL S,LIEBHART D,HESS M,et al.Pathogenesis of Gallibacterium anatis in a natural infection model fulfils Koch’s postulates:1.Folliculitis and drop in egg production are the predominant effects in specific pathogen free layers[J].AvianPathol,2014,43(5):443-449.
[4]王川慶,陳陸,楊霞,等.蛋雞群卡氏桿菌感染情況的初步研究[J].河南農(nóng)業(yè)科學,2008(3):97-100,103.
WANG C Q,CHEN L,YANG X,et al.A premilinary study ofGallibacteriumanatisinfection in laying hens[J].JournalofHenanAgriculaturalSciences,2008(3):97-100,103.(in Chinese)
[5]GLASS-KAASTRA S K,PEARL D L,REID-SMITH R J,et al.Antimicrobial susceptibility ofEscherichiacoliF4,Pasteurellamultocida,andStreptococcussuisisolates from a diagnostic veterinary laboratory and recommendations for a surveillance system[J].CanVetJ,2014,55(4):341-348.
[6]YAKUBU D,MOSHOOD R,PAUL A,et al.Phenotypic characteristics ofPasteurellamultocidaisolated from commercial chickens affected by fowl cholera in Jos,Nigeria[J].JWorld’sPoultRes,2015,5(3):58-62.
[7]BOJESEN A M,VAZQUEZ M E,BAGER R J,et al.Antimicrobial susceptibility and tetracycline resistance determinant genotyping ofGallibacteriumanatis[J].VetMicrobiol,2011,148(1):105-110.
[8]郭倫濤,王川慶,楊霞,等.卡氏桿菌對磺胺甲噁唑及鏈霉素的耐藥性與耐藥基因關(guān)系的初步研究[J].中國家禽,2009,31(18):22-24.
GUO L T,WANG C Q,YANG X,et al.Study of relation between drug resistance against sulfamethoxazole and streptomycin inGallibacteriumand resistant genes[J].ChinaPoultry, 2009,31(18):22-24.(in Chinese)
[9]XU Y,LUO Q Q,ZHOU M G.Identification and characterization of integron-mediated antibiotic resistance in the phytopathogenXanthomonasoryzaepv.oryzae[J].PLoSOne,2013,8(2):e55962.
[11]OOSTERIK L H,PEETERS L,MUTUKU I,et al.Susceptibility of avian pathogenicEscherichiacolifrom laying hens in Belgium to antibiotics and disinfectants and integron prevalence[J].AvianDis,2014,58(2):271-278.
[12]KEHRENBERG C,SCHWARZ S.Trimethoprim resistance in a porcinePasteurellaaerogenesisolate is based on a dfrA1 gene cassette located in a partially truncated class 2 integron[J].JAntimicrobChemother,2010,66(2):450-452.
[13]鄭鹿平.我國雞群雞桿菌的首次分離鑒定及生物學特性初步研究[D].鄭州:河南農(nóng)業(yè)大學,2010.
ZHENG L P.The first isolation and identification ofGallibacteriumanatisfrom fowls in China and preliminary research on its biological characterics[D].Zhengzhou:Henan Agriculral University,2010.(in Chinese)
[14]PLOY M C,DENIS F,COURVALIN P,et al.Molecular characterization of integrons inAcinetobacterbaumannii:description of a hybrid class 2 integron[J].AntimicrobAgentsChemother,2000,44(10):2684-2688.
[15]SINGER R S,WILLIAMS-NGUYEN J.Human health impacts of antibiotic use in agriculture:A push for improved causal inference[J].CurrOpinMicrobiol,2014,19:1-8.
[16]JOHNSON T J,SINGER R S,ISAACSON R E,et al.Invivotransmission of an IncA/C plasmid inEscherichiacolidepends on tetracycline concentration,and acquisition of the plasmid results in a variable cost of fitness[J].ApplEnvironMicrobiol,2015,81(10):3561-3570.
[17]林志敏,林彬彬,程龍飛.禽源多殺性巴氏桿菌耐藥性及其質(zhì)粒多樣性的研究[J].福建農(nóng)業(yè)學報,2015,30(7):648-651.
LIN Z M,LIN B B,CHENG L F.Plasmid diversity and antibiotic resistance of avianPasteruellamultocida[J].FujianJournalofAgriculturalSciences,2015,30(7):648-651.(in Chinaese)
[18]孫申菊.雪山雞多殺性巴氏桿菌的分離鑒定與藥敏試驗[J].畜禽業(yè),2015(4):12-13.
SUN S J.The indification ofPasteurellamultocidaisolated from xueshan chicken and its drug sensitive tes[J].LivestockandPoultryIndustry,2015(4):12-13.(in Chinaese)
[19]HALL R M,STOKES H W.Integrons:novel DNA elements which capture genes by site-specific recombination[J].Genetica,1993,90(2-3):115-132.
[20]GILLINGS M R.Integrons:past,present,and future[J].MicrobiolMolBiolRev,2014,78(2):257-277.
[21]GUERRA B,SOTO S,CAL S,et al.Antimicrobial resistance and spread of class 1 integrons amongSalmonellaserotypes[J].AntimicrobAgentsChemother,2000,44(8):2166-2169.
[22]KANG H Y,JEONG Y S,OH J Y,et al.Characterization of antimicrobial resistance and class 1 integrons found inEscherichiacoliisolates from humans and animals in Korea[J].JAntimicrobChemother,2005,55(5):639-644.
[23]KHAN A A,PONCE E,NAWAZ M S,et al.Identification and characterization of Class 1 integron resistance gene cassettes amongSalmonellastrains isolated from imported seafood[J].ApplEnvironMicrobiol,2009,75(4):1192-1196.
[24]趙紅霞,李培鋒,吳聰明,等.奶牛子宮內(nèi)膜炎大腸桿菌耐藥性及其與整合子關(guān)系的研究[J].畜牧獸醫(yī)學報,2009,40(1):142-144.
ZHAO H X,LI P F,WU C M,et al.Research of drug-resistance ofEscherichiacoliisolated from bovine with endometritis and the relationship between antibiotic resistance and integron[J].ActaVeterinariaetZootechnicaSinica,2009,40(1):142-144.(in Chinaese)
[25]LIU H,WANG H,HUANG M,et al.Analysis of antimicrobial resistance and class 1 integrons among strains from upper respiratory tract of healthy adults[J].JThoracDis,2013,5(2):149-155.
(編輯白永平)
GallibacteriumanatisIntegron and Its Correlation with the Drug Resistance
PENG Zhi-feng#,GAO Dong-sheng#,LIU Hong-ying,YANG Xia,ZHAO Jun,WANG Xin-wei,LI Yong-tao,CHEN Lu,CHANG Hong-tao,WANG Chuan-qing*
(InstituteofPoultryDiseases,HenanAgriculturalUniversity,Zhengzhou450002,China)
The aim of the present study was to confirm existence of the integrons inGallibacteriumanatis(G.anatis)isolates and the role of integrons in multidrug resistance.The integrons class 1,2 and 3 inG.anatisisolates were detected by PCR amplification for the first time.The sensitivity of 61G.anatisstrains was tested against 13 kinds of antibiotics by Kirby-Bauer method.The correlation between multidrug resistance and integrons was analyzed.The results showed that drug resistance rates of allG.anatisisolates to clindamycin,norfloxacin and streptomycin were above 88.52%.No less than three kinds of drugs were resisted for 19G.anatisstrains which carrying class 1 integron.Among strains resisting more than five kinds of drugs,the proportion of the class 1 integron positive (78.95%) was significantly higher than that(28.57%)of class 1 integron negative strains(P<0.01).It was the first time,to our knowledge,that the distribution of intergons inG.anatishad been investigated. Only class 1 integron was found and multidrug resistance was very common inG.anatisisolates in this study.Class 1 integron might play an important role in the formation of multiple drug resistance phenotype ofG.anatisstrains.
Gallibacteriumanatis;antibiotic resistance;integrons
10.11843/j.issn.0366-6964.2016.08.019
2016-01-21
國家自然科學基金(31302090);河南省高??萍紕?chuàng)新團隊與支持計劃資助項目(14IRTSHN015)
彭志鋒(1982-),男,河南周口人,博士生,主要從事動物傳染病發(fā)病機制及防制研究,E-mail:zfpeng2006@126.com;高冬生,男,(1985-),河南新密人,碩士,主要從事動物傳染病發(fā)病機制及防制研究。#彭志鋒和高冬生同為第一作者
王川慶,男,教授,博導, E-mail:wchuanq@163.com
S852.612
A
0366-6964(2016)08-1676-06