田永笑, 周盛凡
·數(shù)學·
非自治三分量可逆Gray-Scott系統(tǒng)的拉回指數(shù)吸引子*1
田永笑, 周盛凡
(浙江師范大學數(shù)理與信息工程學院,浙江金華321004)
主要研究用于模擬2個可逆化學反應的非自治三分量可逆Gray-Scott系統(tǒng)的初邊值問題的拉回指數(shù)吸引子的存在性問題.當非自治外力項在局部可積函數(shù)空間里平移有界時,首先介紹了該系統(tǒng)的解的存在唯一性;其次證明了該系統(tǒng)的解在相空間與稍高正則空間中的最終一致有界性;然后證明了系統(tǒng)的解在一簇正不變閉子集上滿足Lipschitz連續(xù)性,同時對兩解之差進行“尾估計”;最后利用拉回指數(shù)吸引子存在性判據(jù),得到了該系統(tǒng)拉回指數(shù)吸引子的存在性,并且得到拉回指數(shù)吸引子分形維數(shù)的上界及吸引有界集的指數(shù)率估計式.
非自治;拉回指數(shù)吸引子;可逆的Gray-Scott系統(tǒng);分形維數(shù)
考慮非自治三分量可逆的Gray-Scott系統(tǒng)的初邊值問題:
式(1)中:u(x,t),v(x,t),ω(x,t)是Ω×(τ,+∞)上的實值函數(shù);τ∈R;Ω?Rn(n≤3)是具有光滑邊界?Ω的有界區(qū)域;d1,d2,d3,F(xiàn),k是正數(shù);G和N是非負數(shù);fi(·,t)∈L2loc(R;L2(Ω))是平移有界的,i= 1,2,3,即
三分量可逆的Gray-Scott系統(tǒng)(1)最初由Mahara等[1]提出,用于模擬2個可逆化學或生化反應問題,后由You[2]經(jīng)無量綱化得到.對于自治的三分量可逆的Gray-Scott系統(tǒng),即非自治項fi(i=1,2,3)與時間t無關,You在文獻[2]和文獻[3]中分別證明了它的整體吸引子的存在性及其魯棒性.對于非自治系統(tǒng)(1),Gu等證明了其一致吸引子的存在性[4]和拉回吸引子的存在性[5].整體吸引子、一致吸引子和拉回吸引子吸引軌道或有界集的速度有時可能很慢且其維數(shù)不一定有界,這給實際應用及模擬帶來困難.為此,對于非自治系統(tǒng),有關學者[6-12]提出了拉回指數(shù)吸引子的概念并已應用于實際系統(tǒng).拉回指數(shù)吸引子是一簇正不變的具有有限維數(shù)的緊集且指數(shù)吸引相空間的所有有界集,同時包含相應的拉回吸引子.到目前為止,關于系統(tǒng)(1)的拉回指數(shù)吸引子尚無任何結(jié)果.本文利用文獻[7]的方法,證明系統(tǒng)(1)存在拉回指數(shù)吸引子,并由此可知文獻[2-5]中的整體吸引子和拉回吸引子都有有限的維數(shù)且最終一致指數(shù)吸引相空間的有界集,從而推廣了已有的結(jié)果.
令
用‖·‖和〈·,·〉表示H或L2(Ω)的范數(shù)和內(nèi)積,‖·‖Lp(p≠2)表示Lp(Ω)或[Lp(Ω)]3的范數(shù).取‖▽ξ‖作為‖ξ‖E或‖ξ‖H10(Ω)范數(shù),|·|表示Lebesgue測度或絕對值.
由Lumer-Phillips定理可知,線性算子
生成Hilbert空間H上的解析半群.通過嵌入定理和H?lder不等式知,
是局部Lipschitz連續(xù)的映射,其中φ=(u,v,ω)T.
定理1對任意給定的τ∈R和初值φ(τ)=(u(τ),v(τ),ω(τ))T∈H,問題(1)存在唯一弱解φ(t)=φ(t,τ;φτ)=(u(t),v(t),ω(t))T,滿足φ(τ,τ;φτ)=φτ,φ(·,τ;φτ)∈C([τ,∞);H)∩L2loc([τ,∞);E)和φ(t,τ;φτ)關于φτ∈H連續(xù),并且映射簇U(t,τ):φτ=(u(τ),v(τ),ω(τ))T∈H|→φ(t,τ;φτ)=(u(t,τ),v(t,τ),ω(t,τ))T∈H,t≥τ,τ∈R,構成H上一個連續(xù)算子過程{U(t,τ)}t≥τ.
證明證明類似于文獻[4]中的引理2.1,故略.
首先證明系統(tǒng)(1)的解的最終一致有界性,即有下面引理:
引理1過程{U(t,τ)}t≥τ在H中存在一致有界閉的吸收球B0=B(0,r0)={φ∈H:‖φ‖≤r0}?H(r0與τ,t無關),即對于τ∈R及任意的有界子集B?H,存在TB≥0,使得當t≥TB時,U(t+τ,τ)B?B0.
取內(nèi)積〈式(3),Gu(t)〉,〈式(4),v(t)〉,〈式(5),GW(t)〉,相加并整理得
在[τ,t+τ]上對式(6)應用Gronwall不等式,由式(2)得
其次考慮系統(tǒng)(1)的解的最終正則性,有下面引理:
引理2存在正數(shù)r1>0及,使得對任意φτ∈B0,當t≥TB0+1時,有‖U(t+τ,τ)φτ‖E≤r1.
證明取內(nèi)積〈式(1),(-Δu,-Δv,-Δω)T〉得
根據(jù)Sobolev嵌入不等式知,存在正數(shù)b3,使得對于所有φ∈E,有‖φ‖L4≤b3‖φ‖E=b3‖▽φ‖.于是,對t≥TB0,由式(8)得
由式(6)知,對t≥TB0,有
對任意的t∈R,令
式(12)中,B0是引理1中的一致吸收球.令B1={φ∈E:‖φ‖E≤r1},則
現(xiàn)在考慮算子過程{U(t,τ)}t≥τ在{Y(τ)}τ∈R上的Lipschitz連續(xù)性.對每一個τ∈R和φjτ∈Y (τ),j=1,2,令
則
式(14)中,
誰都知道老虎有吃人的兇殘本性,然而不受任何約束或限制的權力,與老虎比較而言,可謂“有過之而無不及”。權力究竟為何物?盡管人們有許多不同的理解或釋義,但誰都知道它是一種“力”,一種不同尋常的“力”。同其他“力”(自然力)相比較,權力的獨特之處突出表現(xiàn)在兩個方面:一是作用領域的廣泛性,二是能量膨脹的自發(fā)性。
由式(13)和引理2知,對t≥τ,有φ1(t),φ2(t)∈Y(τ).由式(11)得
引理3存在一個正值函數(shù)L(t),使得對于每一個τ∈R,有
證明用y(t)與式(14)作內(nèi)積(·,·)H,有
由Sobolev嵌入不等式知,存在正數(shù)b4,使得‖φ‖L6≤b4‖φ‖E=b4‖▽φ‖對任意φ∈E都成立,從而
于是
易見,D(-Δ)=H2(Ω)∩H01(Ω),并且算子-Δ具有正的特征值{λm}m∈N:
記{em}m∈N?D(-Δ)是算子-Δ關于特征值{λm}m∈N的特征向量,滿足-Δem=λmem,m∈N,則{em}m∈N是L2(Ω)及的一組正交基.記
則
令正交投影
引理4對任意的τ∈R,φ1τ,φ2τ∈Y(τ),存在正數(shù)T*>0)和一個N-維的正交投影P3N:H→[∑N(Ω)]3(N∈Z),使得
證明在H中讓式(14)和y3n=Q3ny作內(nèi)積,得
式(23)的右邊項為
則
在[τ,τ+t](t≥0)對式(26)應用Gronwall不等式得
由式(20)知,存在T*>0及
則
引理4證畢.
證明對任意的τ∈R及初值φτ∈Y(τ),由式(9)得
在[τ,t](t∈[τ,τ+1])上對其積分,有
再對方程(1)在[τ,t](t∈[τ,τ+1])上積分,得
則
引理5證畢.
根據(jù)定理1、引理1—引理5及文獻[7]中的定理1,有下面主要結(jié)果:
定理2由系統(tǒng)(1)的解確定的過程{U(t,τ)}t≥τ在H中有一個拉回指數(shù)吸引子{A(t)}t∈R,具有以下性質(zhì):對任意的τ∈R,
1)K(τ)?A(τ)?Y(τ)?B0;
本文主要證明了當依賴時間的外力項在局部可積函數(shù)空間里平移有界時,非自治三分量可逆Gray-Scott系統(tǒng)的解過程存在拉回指數(shù)吸引子,并且得到拉回指數(shù)吸引子的分形維數(shù)的上界及吸引有界集的指數(shù)率估計式.這些結(jié)果可以給可逆Gray-Scott系統(tǒng)在生化反應中的實際應用帶來新的思路.
[1]Mahara H,Suematsu N J,Yamaguchi T,et al.Three-variable reversible Gray-Scottmodel[J].JChem Phys,2004,121(18):8968-8972.
[2]You Yuncheng.Dynamics of three-component reversible Gray-Scottmodel[J].Disc Contin Dynam Systems,2010,14(1):1671-1688.
[3]You Yuncheng.Robustness of global attractors for reversible Gray-Scott systems[J].JDyn Diff Equat,2012,24(3):495-520.
[4]Gu Anhui,Zhou Shengfan,Wang Zhaojuan.Uniform attractor of nonautonomous three-component reversible Gray-Scott system[J].Appl Math Comput,2013,219(16):8718-8729.
[5]Gu Anhui.Pullback-attractor of nonautonomous three-component reversible Gray-Scott system on unbounded domains[J].Abstr Appl Anal,2013,2013:719063.
[6]Langa JA,Miranville A,Real J.Pullback exponential attractors[J].Discret Contin Dynam Syst,2010,26(4):1329-1357.
[7]Zhou Shengfan,Han Xiaoying.Pullback exponential attractors for nonautonomous Lattice systems[J].JDyn Diff Equat,2012,24(3):601-631.
[8]Yan Xingjie,QiWei.Pullback exponential attractors for nonautonomous reaction-diffusion equations[J].Internat JBifur Chaos Appl SciEngrg,2015,25(5):35-41.
[9]Li Yongjun,Wang Suyun,Zhao Tinggang.The existence of pullback exponential attractors for nonautonomous dynamical system and applications to nonautonomous reaction diffusion equations[J].JAppl Anal Comput,2015,5(3):35-57.
[10]Carvalho A N,Sonner S.Pullback exponential attractors for evolution processes in Banach spaces:properties and applications[J].Commun Pure Appl Anal,2014,13(3):1141-1165.
[11]Carvalho A N,Sonner S.Pullback exponential attractors for evolution processes in Banach spaces:theoretical results[J].Commun Pure Appl Anal,2013,12(6):3047-3071.
[12]Czaja R,Efendiev M.Pullback exponential attractors for nonautonomous equations Part II:Applications to reaction-diffusion systems[J].J Math Anal Appl,2011,381(2):766-780.
(責任編輯陶立方)
Pullback exponential attractors for the non-autonomous three-com ponent reversible Gray-Scott system
TIAN Yongxiao, ZHOU Shengfan
(College of Mathematics,Physicsand Information Engineering,Zhejiang Normal University,Jinhua 321004,China)
Itwas studied the existence of pullback exponential attractor for the nonautonomous three-components reversible Gray-Scott system which was used to simulate two reversible chemical reactions.When the time-depending external forceswere assumed to be translation bounded in the space of locally integrable functions,the existence and uniqueness of solutions for the system could be obtained.The ultimately uniform boundedness of solutions in the state space and amore regular space could be proved also.The Lipschitz continuity of solutions in a family of positive invariant closed subsets could be proved and a"tail estimate"on the difference between two solutions could bemade.The existence of pullback exponential attractor for the system was established by using a criterion concerning the existence of a pullback exponential attractor,moreover,an upper bound of the fractal dimension of this attractor and an estimation of exponentially attracting any bounded setwere also presented.
non-autonomous;pullback exponential attractor;reversible Gray-Scott system;fractal dimension
O175.25
A
1001-5051(2016)02-0121-08
10.16218/j.issn.1001-5051.2016.02.001
*收文日期:2015-09-05;2015-10-17
國家自然科學基金資助項目(11471290)
田永笑(1991-),男,安徽蕪湖人,碩士研究生.研究方向:微分方程與動力系統(tǒng).
周盛凡.E-mail:sfzhou@zjun.cn