亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        次領頭階低能常數(shù)的改進*

        2016-08-26 02:22:56蔣紹周蔣杰臣
        廣西科學 2016年3期
        關鍵詞:領頭夸克常數(shù)

        蔣紹周,蔣杰臣

        (廣西大學物理學院,廣西大學-國家天文臺天體物理和空間科學研究中心,廣西南寧 530004)

        ?

        次領頭階低能常數(shù)的改進*

        蔣紹周,蔣杰臣

        (廣西大學物理學院,廣西大學-國家天文臺天體物理和空間科學研究中心,廣西南寧530004)

        【目的】通過合適的處理,減少低能贗標介子手征微擾理論中出現(xiàn)的輸入?yún)?shù),得到符合實驗的低能常數(shù)理論值,提高理論的預言性?!痉椒ā繉⒁延蟹椒ㄖ谐霈F(xiàn)的Schwinger-proper time方法引入的Λ趨于無窮,并通過在介子質量770 MeV處對領頭階的低能常數(shù)進行重整化。借助Schwinger-Dyson方程,得到所有的次領頭階低能常數(shù)?!窘Y果】通過參數(shù)的調節(jié),以及低能常數(shù)和耦合常數(shù)參數(shù)的關系,找到一組符合實驗的參數(shù)值;減少Λ和F0兩個輸入?yún)?shù)可以得到三味和兩味的低能常數(shù)?!窘Y論】減少Λ和F0兩個輸入?yún)?shù)處理低能常數(shù)的方法是可行的。兩味的低能常數(shù)對耦合常數(shù)中參數(shù)的依賴比較大,而三味的對其依賴相對較小。

        手征微擾理論耦合常數(shù)低能常數(shù)

        0 引言

        【研究意義】量子電動力學的計算值和實驗值符合得很好,主要原因在于其可以通過耦合常數(shù)(α≈1/137)做展開,進行微擾計算[1]。但是,對于量子色動力學(QCD)來說,微擾理論不再適用,一般需要進行非微擾計算。非微擾現(xiàn)象的原因在于QCD的耦合常數(shù)隨著動量的減小而增大,因此,對于低能QCD的相互作用,不能采用原來比較成熟的微擾論來處理。手征微擾理論是一種有效處理低能贗標介子相互作用的方法[2-4],但該理論中起重要作用的低能常數(shù)還未能通過解析的辦法得到。目前一種常用的求解方式是借助耦合常數(shù),將耦合常數(shù)和夸克自能聯(lián)系起來[5-6],進而求解出低能常數(shù),且該方法已經取得了一些進展[7]。【前人研究進展】目前,低能常數(shù)與夸克自能、夸克自能與耦合常數(shù)的關系都已有一定精度下的理論結果[5-7]。文獻[7]較精確地計算到次次領頭階低能常數(shù);文獻[8]研究耦合常數(shù)對次領頭階低能常數(shù)的影響;更有Maris-Tandy模型和Qin-Chang模型[9-10]不需要額外輸入?yún)?shù),就能計算出低能耦合常數(shù)?!颈狙芯壳腥朦c】已有的低能常數(shù)求解方法需要輸入的參數(shù)相對較多,除耦合常數(shù)之外,還需要Schwinger-proper time方法引入的截斷參數(shù)Λ和領頭階的低能常數(shù)F0。因此,理論的預言性不是很強。為提高理論的預言性,本研究取消Λ和F0兩個輸入?yún)?shù),僅保留耦合常數(shù)作為輸入?!緮M解決的關鍵問題】利用Maris-Tandy模型和Qin-Chang模型的耦合常數(shù),通過Schwinger-Dyson(SD)方程求出夸克自能,并計算出所有次領頭階低能常數(shù)。在輸入?yún)?shù)減少之后,已有的耦合常數(shù)并不適用于現(xiàn)在問題,需對已有的耦合常數(shù)參數(shù)進行適當修改,以期其與實驗值相符。

        1 夸克自能的求解

        對于以前的耦合常數(shù)形式,主要以分段函數(shù)的形式為主[11],該形式連接點的二階導數(shù)不連續(xù),會對低能常數(shù)的全微分關系產生影響,并且還包含待定參數(shù)ΛQCD。文獻[8]采用的耦合常數(shù)同樣存在待定常數(shù),計算時需要調節(jié)待定常數(shù),理論預言性低。因此我們采用下面兩種有比較確定形式的耦合常數(shù)進行討論[9-10]:

        (1)

        (2)

        利用上面的耦合常數(shù)就可以通過SD方程求出夸克自能Σ(p2)。經過大NC展開,做梯形近似和角近似之后的SD方程為[5]

        (3)

        (4)

        其中,γ=9NC/2(33-2Nf)。方程(3)沒有解析解,但是可以通過數(shù)值方法求出,而(4)式可以檢驗數(shù)值求解夸克自能的正確性。

        2 低能常數(shù)的計算

        (5)

        表1兩種不同耦合常數(shù)得到的低能常數(shù)

        Table 1LECs obtained from the two kinds of the coupling constants

        耦合常數(shù)Couplingconstants低能常數(shù)Lowenergyconstantsl1l2l3l4l5l6αs1(p2)-4.737.70-0.684.0822.1221.86αs2(p2)-6.998.82-0.704.0826.3426.33文獻[3]Reference[3]-2.3±3.76.0±1.32.9±2.44.3±0.913.9±1.316.5±1.1文獻[12]Reference[12]-0.4±0.64.3±0.12.9±2.44.4±0.212.24±0.2116.0±0.5±0.7

        表2調節(jié)耦合常數(shù)αs1(p2)得到的低能常數(shù)

        Table 2LECs obtained by adjusting the coupling constant αs1(p2)

        序號No.ΛQCD(MeV)ω(GeV)(Dω)1/3(GeV)l1l2l3l4l5l6-<ψψ>1/3r(MeV)11500.400.72-4.747.70-1.094.1122.2421.88526.4822000.400.72-4.747.70-1.144.1322.1921.87394.4333000.400.72-4.737.70-1.264.1822.0721.83261.8744000.400.72-4.717.69-1.424.2621.9221.76194.6655000.400.72-4.697.68-1.674.3721.7521.69152.9166000.400.72-4.667.67-2.014.5721.5621.60122.3272340.310.72-9.6910.12-1.184.0631.8331.76277.8682340.350.72-7.298.95-1.194.0927.0826.93305.0192340.400.72-4.747.70-1.184.1522.1521.86336.76102340.450.72-2.616.67-1.124.2118.1417.71365.73112340.500.72-0.865.85-1.024.2914.9314.42391.43122340.600.721.524.82-0.614.5110.4110.35429.94132340.400.401.194.96-0.294.3610.8410.84284.11142340.400.70-4.407.54-1.154.1521.5021.20335.04152340.400.75-5.237.94-1.214.1423.1022.82339.15162340.400.80-6.018.32-1.274.1324.6224.38342.73172340.400.85-6.768.68-1.314.1226.0825.87345.88182340.400.90-7.469.03-1.364.1127.4727.29348.67

        表3調節(jié)耦合常數(shù)αs2(p2)得到的低能常數(shù)

        Table 3 LECs obtained by adjusting the coupling constant αs2(p2)

        序號No.ΛQCD(MeV)ω(GeV)(Dω)1/3(GeV)l1l2l3l4l5l6-<ψψ>1/3r(MeV)12300.400.72-6.998.82-1.044.1426.3526.34305.8322500.400.72-6.988.82-1.064.1526.3126.31281.3833000.400.72-6.968.81-1.114.1726.2126.25234.4043600.400.72-6.938.79-1.184.2026.1026.18200.6254000.400.72-6.908.78-1.264.2425.9926.11175.0062340.400.72-6.998.82-1.054.1426.3526.33300.6172340.450.72-5.127.91-1.014.1922.6522.63324.2082340.500.72-3.557.16-0.954.2419.5919.58345.1092340.550.72-2.246.54-0.854.3017.0417.09363.12102340.600.72-1.166.05-0.724.3614.9315.08378.00112340.700.720.445.35-0.344.4711.7612.33396.98122340.400.201.744.881.404.259.0510.51162.02132340.400.30-0.035.550.134.2712.5613.08220.52142340.400.40-1.906.39-0.414.2316.2516.44253.09152340.400.50-3.677.22-0.704.1919.7319.79273.70162340.400.60-5.277.99-0.894.1622.9122.92288.09172340.400.70-6.728.69-1.024.1425.8025.79298.78

        可見,只有表3中的第13組參數(shù)得到的低能常數(shù)符合文獻[3,12]所給出的結果,該組參數(shù)得到的夸克凝聚結果也大致與文獻[13-14]給出-(250 MeV)3相符。對大部分的參數(shù)來說,參數(shù)的調整對夸克凝聚能量的影響都不是很大,其結果都在-(250 MeV)3左右。

        類似地,我們可以得到三味夸克的結果。一般來說,需要重新調整耦合常數(shù)相應的參數(shù)來求解三味的夸克自能。但是,在實際的數(shù)值計算中發(fā)現(xiàn),這些參數(shù)對三味的低能常數(shù)的影響并不大。另外,四味的結果包含的c夸克較重,和手征微擾論適用的低能范圍差距較遠,因此我們不考慮四味夸克的結果。由表4可見,三味的低能常數(shù)和其他通過實驗得到的結果[4,12]基本符合。因此,本研究采取的處理是合理的。

        表4Nf=3,(Dω)1/3=0.3 GeV時對應的低能常數(shù)

        Table 4LECs in Nf=3,(Dω)1/3=0.3 GeV

        項目Item低能常數(shù)Lowenergyconstants103L1103L2103L3103L4103L5103L6103L7103L8103L9103L10結果Result0.561.13-2.9501.360-0.531.335.10-4.83文獻[4]Reference[4]0.9±0.31.7±0.7-4.4±2.50±0.52.2±0.50.0±0.3-0.4±0.151.1±0.37.4±0.7-6.0±0.7文獻[12]Reference[12]0.53±0.060.81±0.04-3.07±0.20≡0.31.01±0.060.14±0.05-0.34±0.090.47±0.105.93±0.43-3.8±0.4

        3 結論

        [1]PESKIN M E,SCHROEDER D V.An Introduction to Quantum Field Theory[M].[S.l.]:Westview Press,1995.

        [2]WEINBERG S.Phenomenological lagrangians[J].Physica A,1979,96:327-340.

        [3]GASSER J,LEUTWYLER H.Chiral perturbation theory to one loop[J].Annals of Physic,1984,158:142-210.

        [4]GASSER J,LEUTWYLER H.Chiral perturbation theory: Expansions in the mass of the strange quark[J].Nuclear Physics B,1985,250:465-516.

        [5]YANG H,WANG Q,KUANG Y P,et al.Calculation of the chiral lagrangian coefficients from the underlying theory of QCD: A simple approach[J].Physical Review D,2002,66:014019.

        [6]YANG H,WANG Q,LU Q.Chiral lagrangian from gauge invariant,nonlocal,dynamical quark model[J].Physics Letters B,2002,532:240-248.

        [7]JIANG S Z,WEI Z L,CHEN Q S,et al.Computation of the O(p6) order low-energy constants: An update[J].Physical Review D,2015,92:025014.

        [8]陳清森,蔣紹周.低能跑動耦合常數(shù)形式對低能常數(shù)的影響研究[J].廣西科學,2015,22(1):109-112.

        CHEN Q S,JIANG S Z.The form of the low-energy coupling constant and its influence on the low-energy constants[J].Guangxi Sciences,2015,22(1):109-112.

        [9]MARIS P,TANDY P.Bethe-Salpeter study of vector meson masses and decay constants[J].Physical Review C,1999,60:055214.

        [10]QIN S X,CHANG L,LIU Y X,et al.Interaction model for the gap equation[J].Physical Review C,2011,84: 042202.

        [11]AOKI K I,BANDO M,KUGO T.Calculating the decay constant fπ[J].Progress of Theoretical Physics,1990,84(4):683-701.

        [12]BIJNENS J,ECKER G.Mesonic low-energy constants[J].Annual Review of Nuclear and Particle Science,2014,64:149-174.

        [13]BURGER F,LUBICZ V,MüLLER-PREUSSKER M,et al.Quark mass and chiral condensate from the Wilson twisted mass lattice quark propagator[J].Physical Review D,2013,87:034514.

        [14]BERNARD V,DESCOTES-GENON S,TOUCAS G.

        Topological susceptibility on the lattice and the three-flavour quark condensate[J].Journal of High Energy Physics,2012(6):051.DOI: 10.1007/JHEP06(2012)051.

        (責任編輯:米慧芝)

        Improvement of the Next Leading Order Low-energy Constants

        JIANG Shaozhou,JIANG Jiechen

        (Department of Physics,GXU-NAOC Center for Astrophysics and Space Sciences,Guangxi University,Nanning,Guangxi,530004,China)

        【Objective】There is not an effective way to calculate the low-energy constants (LECs) for the pseudoscalar meson chiral perturbation theory.There are too many input parameters,which reduce the predictability of the theory.Reducing the input parameters in the calculation was carried out through the appropriate treatment,in order to get a set of theoretical values that are consistent with the experiments.【Methods】The Schwinger-proper time method was introduced into the Λ to infinity,and a leading order of the LECs was renormalized in the meson mass at 770 MeV.All the next leading order LECs can be obtained through Schwinger-Dyson equation.【Results】A set of parameters that match the experiments was obtained through measuring parameters and comparing the relationships between the LECs and coupling constants.Finally the input parameters Λ and F0were reduced in the three-flavor and two-flavor quark.【Conclusion】The new method that treats LECs by reducing the input parameters is feasible.Two-flavor LECs are sensitive to the coupling constants,but three-flavor LECs are not.

        chiral perturbation theory,coupling constants,low-energy constants

        2016-05-13

        2016-06-20

        蔣紹周(1982-),男,博士,副教授,碩士生導師,主要從事粒子物理理論方向的研究。

        O412.3

        A

        1005-9164(2016)03-0202-04

        *國家自然科學基金項目(11565004)資助。

        廣西科學Guangxi Sciences 2016,23(3):202~205

        網絡優(yōu)先數(shù)字出版時間:2016-07-13【DOI】10.13656/j.cnki.gxkx.20160713.007

        網絡優(yōu)先數(shù)字出版地址:http://www.cnki.net/kcms/detail/45.1206.G3.20160713.0857.014.html

        猜你喜歡
        領頭夸克常數(shù)
        大型強子對撞機發(fā)現(xiàn)3 種新奇異粒子
        關于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級數(shù)的系數(shù)
        核子的內稟海夸克模型波函數(shù)的研究
        組織志 四任班子“接力史”——干部始終“釘”在領頭蹚路
        當代陜西(2018年12期)2018-08-04 05:49:10
        兩大團隊同時預測四夸克重粒子存在
        利用BS方程研究由兩個粲夸克構成的雙夸克的第一激發(fā)態(tài)
        幾個常數(shù)項級數(shù)的和
        萬有引力常數(shù)的測量
        領頭鴻雁的力量
        領頭辦好種養(yǎng)業(yè) 致富路上顯身手
        中國火炬(2014年4期)2014-07-24 14:22:19
        蜜桃一区二区三区在线视频| 色妺妺在线视频| 亚洲偷自拍另类图片二区| 性感人妻av在线播放| 久久精品国产亚洲av成人文字| 国产精品国三级国产av| 国产亚洲美女精品久久久| 国产精品久久这里只有精品| 日本亚洲视频免费在线看| 四虎国产成人永久精品免费| 国产成人精品成人a在线观看| 亚洲精品国产老熟女久久| 亚洲av成人波多野一区二区| 国产精品女同久久久久电影院| 日韩成人极品在线内射3p蜜臀| 日本a在线免费观看| 中文无字幕一本码专区| 亚洲精品乱码久久久久蜜桃| 久久久精品欧美一区二区免费| 啪啪网站免费观看| 蜜桃传媒免费在线观看| 不卡一卡二卡三乱码免费网站| 欧美精品一区二区性色a+v| 午夜视频福利一区二区三区 | 97精品国产97久久久久久免费| 奇米狠狠色| 偷柏自拍亚洲综合在线| 亚洲av熟女少妇久久| 天天做天天爱天天爽综合网| 国产欧美日韩不卡一区二区三区| 麻豆视频黄片在线免费观看 | 2021国内精品久久久久精免费| 在线视频精品少白免费观看| 国内精品久久久久影院优| 黄色成人网站免费无码av| 经典女同一区二区三区| 亚洲天堂av中文字幕在线观看| 丝袜av乱码字幕三级人妻| 特黄大片又粗又大又暴| 毛片免费在线播放| 国产精品很黄很色很爽的网站|