馮是全,胡以懷,金浩(上海海事大學商船學院,上海200120)
燃料重整制氫技術研究進展
馮是全,胡以懷,金浩
(上海海事大學商船學院,上海200120)
對燃料制氫技術的各種制氫方法和典型設備進行綜述,明確隨車燃料重整制氫技術的應用前景,并指出各種燃料重整方法的局限性.對蒸汽重整、部分氧化、自熱重整、裂解、等離子裂解等技術進行歸納分析,針對隨車燃料重整提出基于尾氣的分類方法.
氫氣;燃料;重整;車載;制氫
氫能是一種清潔的能源,氫在自然界中廣泛存在.水、生物質(zhì)、石油、天然氣等物質(zhì)中都含有氫,氫氣具有優(yōu)良的燃燒特性[1-6].與傳統(tǒng)化石燃料相比,氫氣具有很多方面的優(yōu)勢:氫氣相比傳統(tǒng)燃料幾乎沒有廢氣排放;氫氣是一種可再生資源;氫氣有很廣泛的獲得渠道,如天然氣、煤炭、生物質(zhì)、風能、太陽能等.如果將天然氣、煤炭等燃料先轉換為氫氣,所產(chǎn)生的二氧化碳可以在制氫過程中去除,從而減少二氧化碳的排放.余熱制氫技術利用發(fā)動機余熱使醇類燃料發(fā)生重整反應,余熱重整制氫一方面回收了發(fā)動機余熱,提供了發(fā)動機的熱效率;另一方面,制取的重整氣因為富含氫氣,可以通過重整氣提高發(fā)動機的燃燒效率.Houseman等[7]將汽油和水混合,經(jīng)過催化重整制備富氫氣體.Cohn等[8-9]進行了等離子隨車重整制氫的相關研究.Li等[10]在汽油機上進行了隨車乙醇重整的實驗研究.徐元利等[11]進行了發(fā)動機廢氣余熱催化甲醇的相關實驗.Song等[12]進行了二甲醚隨車重整的相關研究.隨車重整燃料制氫主要采用技術可以分為3大類:1)發(fā)動機廢氣不參與重整反應也不提供重整反應所需熱量,燃料重整制氫設備獨立進行工作;2)發(fā)動機廢氣不參與重整反應,但提供重整所需熱量;3)發(fā)動機部分廢氣和重整燃料一起進行重整反應.隨車重整技術對于重整氣有小型化的要求,本文主要分析各種可能被隨車重整制氫所采用的技術.
1.1 蒸汽重整
很多燃料可以用來進行蒸汽重整,如甲醇、乙醇、甲烷等[13-17].目前,甲烷蒸汽重整技術是最為成熟的制氫技術,已經(jīng)成熟地用于工業(yè)化生產(chǎn),在美國有超過90%的氫氣來自甲烷蒸汽重整.甲烷蒸汽重整的基本原理是:將甲烷和水蒸汽按照一定比例混合,通入催化重整器,重整壓力為3~25個大氣壓,溫度為700~850℃,甲烷水蒸汽重整反應為CH4+H2O→CO+3H2(ΔH=+206.16kJ·mol-1).水汽轉換反應CO+H2O→CO2+3H2(ΔH=-41.14kJ·mol-1),水汽變換反應可以去除重整氣中的CO,并將其轉換為氫氣,水汽變換反應的發(fā)生溫度大約為600℃.
總體來說,甲烷蒸汽重整為吸熱反應,需要外部提高熱源.甲烷蒸汽重整有一種較為實用的結構,即氫氣篩選膜重整反應器[18-19],該重整器的結構,如圖1所示.該反應器整合了甲烷蒸汽重整、水汽變換反應、氫氣提純這3個工序,甲烷蒸汽在重整的時候,產(chǎn)生的氫氣通過氫氣篩選膜過濾出來,促使重整反應更強烈地往產(chǎn)生氫氣的方向反應.
相比管式重整器,平板重整器具有更加緊湊的設計結構[20-27],重整器內(nèi)換熱更充分、流體的流動更平穩(wěn),比表面積更大.因此,平板式重整器更加適合小型重整制氫設備,其結構如圖2所示.平板重整器具有類似三明治的結構,加熱燃料在流動過程中進入空氣層,空氣層中含有燃燒催化劑,燃料與空氣混合并在燃燒催化劑的作用下燃燒,燃燒所產(chǎn)生的熱量通過隔板傳遞給重整層,加熱燃料的流動方向和重整燃料的流動方向相反.
圖1 氫氣篩選膜重整器結構圖Fig.1 Membrane reactor for methane stem reforming
圖2 平板重整器Fig.2 Plate type reactor
甲醇蒸汽重整與甲烷蒸汽重整相比,在很多方面具有優(yōu)勢[28-30].甲醇是液體,方便儲存和運輸,甲醇的重整溫度在250~350℃,反應溫度適中,且作為化工產(chǎn)品,現(xiàn)階段其產(chǎn)量大、價格低.對于很多發(fā)動機,甲醇已經(jīng)作為燃料供給發(fā)動機使用.利用甲醇進行重整,重整產(chǎn)生的氫氣改善發(fā)動機的性能.很多汽車公司也已經(jīng)開展了隨車重整制氫方面的工作,如尼桑、豐田和克萊斯勒公司等[11-16].
1.2 部分氧化
甲烷部分氧化的化學反應為CH4+(1/2)O2→CO+2H2(ΔH=-36kJ·mol-1).該反應為放熱反應,無需外部供熱.由于反應放出大量熱量,部分氧化反應無需使用催化劑,利用該方法獲得氫氣一般需要3步工序,即部分氧化反應、水汽變換反應、氫氣提純.現(xiàn)在也有很多大型設備利用部分氧化原理制氫,所用的原料除了甲烷外,還有乙醇、甲醇、汽油等,還包括各種使用價值較低的廢油等.
相比于燃料蒸汽重整反應器,部分氧化重整器由于無需外部供熱,可以設計得更為緊湊.由于該反應是放熱反應,產(chǎn)生大量熱量,使得反應器的溫度很高,一般可以達到1 000℃以上,為了降低溫度減少能源浪費,可以采用催化劑.另外,該反應的尾氣溫度較高,需采用復雜的設施來回收余熱,這些因素都進一步增加部分氧化反應制氫的成本[31-38].含有膜結構的部分氧化反應器,如圖3所示.部分氧化反應器采用氫氣篩選膜,可以有效提高甲烷的轉換率,采用吹掃氣和催化劑,可以降低反應溫度.
圖3 氧化反應器Fig.3 Oxidation reactor
1.3 自熱重整
自熱重整結合部分氧化重整和蒸汽重整,反應器結構和部分氧化反應器的結構類似,只是在進料中加入水,自熱重整原理可以適用于甲烷和很多液體類燃料[39-49].自熱重整利用部分氧化所產(chǎn)生的熱量進行蒸汽重整反應,合理調(diào)節(jié)燃料、空氣和水的比例,可以讓自熱重整的反應持續(xù)進行.與蒸汽重整比較,自熱重整無需外部熱源加熱,可以使反應器的結構簡單化;與部分氧化比較,自熱重整由于含水,使得尾氣中的煙塵大大降低.
圖4 氨裂解反應器Fig.4 Ammonia cracking reactor
1.4 氨裂解
圖4為氨裂解的裝置.我國氨產(chǎn)量大,價格較為便宜,大部分氨都被用來生成化肥,氨的運輸和儲存條件相對氫氣安全很多,氨經(jīng)過裂解可以產(chǎn)生氫氣.因此,氨成為制氫的較好原料.氨裂解制氫的方程為2NH3→N2+3H2(ΔH=46.2kJ·mol-1).該反應是吸熱反應,需要外部供熱,隨著溫度升高,反應速率變快,較合適的反應溫度在700℃左右.由于無需水汽變換反應,氨裂解設備相比燃料蒸汽重整設備,可設計得更加緊湊.氨裂解在燃料電池中具有特別優(yōu)勢,因為產(chǎn)生的氮氣是惰性氣體不參加反應,不需要提純氫氣,使得費用大大降低,對于需要提純的設備,可以利用合理的膜結構分離氮氣和氫氣[50-51].
1.5 甲烷裂解
甲烷在高溫(850~1 200℃)、催化劑輔助下發(fā)生裂解,其裂解反應方程為CH4→C+2H2(ΔH=75 kJ·mol-1).該反應是吸熱反應.如果甲烷同時作為裂解原料和提供熱源燃料,需要有10%左右的甲烷燃燒來保證反應進行,然而該反應產(chǎn)生的碳會使催化劑中毒,該裝置現(xiàn)在還處于試驗研究階段[52-55].
1.6 等離子重整器
圖5為等離子重整反應器.它可以利用甲烷、柴油等燃料制氫[56-59],且反應器的體積可以做得很小,制氫效率很高,利用甲烷蒸汽作為原料可以實現(xiàn)95%的原料利用率,等離子重整器具有所產(chǎn)生的電弧具有很高的能量,一般可以達到3 000~10 000℃.因此,反應物的反應速度很快,無需再加入催化劑.
1.7 微通道反應器
微通道反應器的典型結構,如圖6所示.微通道反應器是利用特殊加工工藝生產(chǎn)出來的微型催化反應裝置[60-61].該反應器供流體流通的通道一般小于500μm,反應器由多層結構單元疊加而成,每個結構單元的表面均有催化劑,該結構使得流體更容易在催化劑的作用下發(fā)生反應,流動穩(wěn)定,熱傳導較好.因此,微通道反應器能有效加快反應速度.微通道反應器較傳統(tǒng)反應器,尺寸大為縮小.因此,該反應器可以較好地適用有體積限制的場合,如燃料電池和隨車重整等.
圖5 等離子反應器Fig.5 Plasma reactor
圖6 微通道反應器結構示意圖Fig.6 Micro channel reactor
燃料制氫技術有很廣的應用,隨車重整燃料制氫可以很好地促進發(fā)動機性能提高,甲烷蒸汽重整、甲醇蒸汽重整、自熱重整、氨裂解、甲烷裂解等各項技術都有各自的優(yōu)缺點,部分氧化和自熱重整在燃料重整階段較為簡單,但是后續(xù)的凈化較為困難.
管式重整器、板式重整器、微通道重整器、膜技術、等離子重整技術等各項技術的進步推動著重整器設計的發(fā)展,對于隨車重整燃料制氫,板式重整器、膜技術、等離子重整技術等都非常適合小型化的要求.隨著催化劑研究的發(fā)展和反應器結構設計的發(fā)展,隨車重整燃料制氫技術也會有更進一步的發(fā)展.
在汽油、柴油等燃料中摻加富氫氣體可以有效提高發(fā)動機性能,但是氫氣的運輸和儲存都較為困難.隨車重整制氫技術可以較好地符合摻氫燃燒的要求,隨著環(huán)保法規(guī)的要求越來越嚴格,已經(jīng)有越來越多的發(fā)動機廠商在研究隨車重整制氫技術,對各種隨車重整技術的研究也將會成為未來發(fā)動機節(jié)能減排技術的一個重要內(nèi)容.
[1] AL-MUFACHI N A,REES N V,STEINBERGER-WILKENS R.Hydrogen selective membranes:A review of palladium-based dense metal membranes[J].Renewable and Sustainable Energy Reviews,2015,47(3):540-551.
[2] CHAUBEY R,SAHU S,JAMES O O,et al.A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources[J].Renewable and Sustainable Energy Reviews,2013,23(23):443-462.
[3] DINCER I,ACAR C.Review and evaluation of hydrogen production methods for better sustainability[J].International Journal of Hydrogen Energy,2015,40(34):11094-11111.
[4] DITTMEYER R,GRUNWALDT J D,PASHKOVA A.A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide[J].Catalysis Today,2015,248(1):149-159.
[5] DODDS P E,STAFFELL L,HAWKES A D,et al.Hydrogen and fuel cell technologies for heating:A review[J].International Journal of Hydrogen Energy,2015,40(5):2065-2083.
[6] XU Xinhai,LI Peiwen,SHEN Yuesong.Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells:A review[J].Applied Energy,2013,108(8):202-217.
[7] HOUSEMAN J,CERINI D J.On-board hydrogen generator of a partial hydrogen injection internal combustion engine[J].Westcoast Meeting,1974,76(7):1-16.
[8] COHN D R,RABINOVICH A,TITUS C H,et al.Near-term possibilities for extremely low emission vehicles using onboard plasmatron generation of hydrogen[J].International Journal of Hydrogen Energy,1997,22(7):715-723.
[9] COHN D R,RABINOVICH A,TITUS C H.Onboard plasmatron generation of hydrogen for extremely low emission vehicles with internal combustion engines[J].International Journal of Vehicle Design,1996,17(5/6):550-561.
[10] LI Gesheng,ZHANG Zunhua,YOU Fubing,et al.A novel strategy for hydrous-ethanol utilization:Demonstration of a spark-ignition engine fueled with hydrogen-rich fuel from an onboard ethanol/steam reformer[J].International Journal of Hydrogen Energy,2013,38(14):5936-5948.
[11] 徐元利,姚春德,李旭聰.廢氣余熱制富氫氣體對發(fā)動機性能的影響[J].汽車安全與節(jié)能學報,2011,2(2):175-180.
[12] SONG Lingjun,LI Xinghu,ZHENG Tianlei.Onboard hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming[J].International Journal of Hydrogen Energy,2008,33(19):5060-5065.
[13] TABRIZI F F,MOUSAVI S A H S,ATASHI H.Thermodynamic analysis of steam reforming of methane with statistical approaches[J].Energy Conversion and Management,2015,103(1):1065-1077.
[14] KIM N Y,YANG E H,LIM S S,et al.Hydrogen production by steam reforming of methane over mixed Ni/MgAl+CrFe3O4catalysts[J].International Journal of Hydrogen Energy,2015,40(35):11848-11854.
[15] SAITO M,KONIMA J,IWAI H,et al.The limiting process in steam methane reforming with gas diffusion into a porous catalytic wall in a flow reactor[J].International Journal of Hydrogen Energy,2015,40(29):8844-8855.
[16] MARCOBERARDINO G D,SOSIO F,MANZOLINI G,et al.Fixed bed membrane reactor for hydrogen production from steam methane reforming:Experimental and modeling approach[J].International Journal of Hydrogen Energy,2015,40(24):7559-7567.
[17] LEE C H,MUN S,LEE K B.Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production[J].Journal of Power Sources,2015,281(1):158-163.
[18] BUTCHER H,QUENZEL C J E,BREZINER L,et al.Design of an annular microchannel reactor(AMR)for hy-drogen and/or syngas production via methane steam reforming[J].International Journal of Hydrogen Energy,2014,39(31):18046-18057.
[19] KUZETSOV V V,VITOVSKY O V,GASENKO O A.Methane steam reforming in an annular microchannel with Rh/Al2O3catalyst[J].Journal of Engineering Thermophysics,2009,18(3):187-196.
[20] HSUEH C Y,CHU H S,YAN W M,et al.Transport phenomena and performance of a plate methanol steam micro reformer with serpentine flow field design[J].Applied Energy,2010,87(10):3137-3147.
[21] ZHOU Lu,GUO Yu,YAGI M,et al.Investigation of a novel porous anodic alumina plate for methane steam reforming:Hydrothermal stability,electrical heating possibility and reforming reactivity[J].International Journal of Hydrogen Energy,2009,34(2):844-858.
[22] SORIA M A,TOSTI S,MENDES A,et al.Enhancing the low temperature water-gas shift reaction through a hybrid sorption-enhanced membrane reactor for high-purity hydrogen production[J].Fuel,2015,159(1):854-863.
[23] LIM H.Hydrogen selectivity and permeance effect on the water gas shift reaction(WGSR)in a membrane reactor [J].Korean Journal of Chemical Engineering,2015,32(8):1522-1527.
[24] GHASEMZADEH K,MORRONE P,BABALOU A A,et al.A simulation study on methanol steam reforming in the silica membrane reactor for hydrogen production[J].International Journal of Hydrogen Energy,2015,40(10):3909-3918.
[25] AVILA A M,YU Z,F(xiàn)AZLI S,et al.Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation[J].Microporous and Mesoporous Materials,2014,191(190):301-308.
[26] YU Jiang,TAN Mingyang,PAUL K T,et al.Hydrogen production from biomass-derived syngas using a membrane reactor based process[J].Industrial and Engineering Chemistry Research,2014,53(2):819-827.
[27] LI Gang,KANEZASHI M,TSURU T.Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production[J].Catalysis Communications,2011,15(1):60-63.
[28] SA S,SOUSA J M,MENDES A.Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen[J].Catalysis Today,2010,156(3/4):254-260.
[29] RAKIB M A,GRACE J R,LIM C J,et al.Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production[J].International Journal of Hydrogen Energy,2010,35(12):6276-6290.
[30] ZHENG Hang,SULLIVAN C O,MEREDDY R,et al.Experimental and theoretical investigation of diffusion processes in a membrane anaerobic reactor for bio-h(huán)ydrogen production[J].International Journal of Hydrogen Energy,2010,35(11):5301-5311.
[31] CHEN W H,SHEN C T,LIN B J,et al.Hydrogen production from methanol partial oxidation over Pt/Al2O3catalyst with low Pt content[J].Energy,2015,88:399-407.
[32] CIMINO S,MANCINO G,LISI L.Ethane catalytic partial oxidation to ethylene with sulphur and hydrogen addition over Rh and Pt honeycombs[J].Catalysis Today,2014,228(3):131-137.
[33] CAROTEUTO G,KUMAR A,MILLER J,et al.Hydrogen production by ethanol decomposition and partial oxidation over copper/copper-chromite based catalysts prepared by combustion synthesis[J].Catalysis Today,2013,203 (4):163-175.
[34] DASHLIBORUM A M,F(xiàn)ATEMI S,NAJAFABADI A T.Hydrogen production through partial oxidation of methane in a new reactor configuration[J].International Journal of Hydrogen Energy,2013,38(4):1901-1909.
[35] WANG Weiping,XI Jinyu,WANG Zhifei,et al.Partial oxidation of ethanol to hydrogen over Ni-Fe catalysts[J].Acta Physico-Chimica Sinica,2002,18(5):426-431.
[36] SMET C R H,CROON M H J M,BERGER R J,et al.Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas:Application to production of methanol and hydrogen-for-fuel-cells[J].Chemical Engineering Science,2001,56(16):4849-4861.
[37] XI Jingyu,LU Gongxuan,WANG Zhifei.Partial oxidation of methanol to hydrogen over Cu/Zn and Cu/Zn/Ni catalysts[J].Acta Physico Chimica Sinica,2001,17(7):655-658.
[38] GALLI S,BERNINI E,MANGIONE M,et al.Experimental plant for hydrogen production via natural gas catalytic partial oxidation[J].Hydrogen Energy Progress,2000,33(19):461-466.
[39] BOGOGNONI F,TOSTI S.Pd-Ag multi-membranes module for hydrogen production by methane auto-thermal reforming[J].International Journal of Hydrogen Energy,2012,37(2):1444-1453.
[40] CAVALLARO S,CHIODO V,VITA A,et al.Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3catalyst[J].Journal of Power Sources,2003,123(1):10-16.
[41] CASTRO J D,TINOCO R R,BOUALLOU C.Hydrogen production from natural gas:Auto-thermal reforming and CO(2)Capture[J].Chemical Engineering Transactions,2010,21(8):163-168.
[42] HUANG Lihong,CHEN Rongrong,CHU De,et al.Hydrogen production through auto-thermal reforming of bioethanol over Co-based catalysts:Effect of iron in Co/Al2O3catalysts[J].International Journal of Hydrogen Energy,2010,35(3):1138-1146.
[43] KOHN M P,CASTALDI M J,F(xiàn)ARRAUTO R J.Auto-thermal and dry reforming of landfill gas over a Rh/gamma Al2O3monolith catalyst[J].Applied Catalysis B-Environmental,2010,94(1/2):125-133.
[44] KOLB G,KELLER S,TIEMANN D,et al.Design and operation of a compact microchannel 5kW(el,net)methanol steam reformer with novel Pt/In2O3catalyst for fuel cell applications[J].Chemical Engineering Journal,2012,207(5):388-402.
[45] PARK G G,SEO D J,PARK S H,et al.Development of microchannel methanol steam reformer[J].Chemical Engineering Journal,2004,101(1/2/3):87-92.
[46] 董新法,李永峰,林維明.CuZnZrAlO催化劑上甲醇蒸汽重整反應動力學[J].華南理工大學學報(自然科學版),2007,35(6):54-58.
[47] 聶利.基于鋁合金的微型甲醇重整器結構設計研究[D].哈爾濱:哈爾濱工業(yè)大學,2014:1-10.
[48] 王桂芝.甲醇蒸汽重整制氫技術及經(jīng)濟性探討[J].化學工業(yè),2007,25(4):36-39.
[49] 張新榮,史鵬飛.甲醇水蒸汽重整制氫的研究進展[J].電池,2002,32(2):107-109.
[50] CHUIUTA S,EVERSON R C,NEOMAGUS H W J P,et al.Experimental performance evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation[J].International Journal of Hydrogen Energy,2014,39 (14):7225-7235.
[51] CHIUTA S,EVERSON R C,NEOMAGUS H W J P,et al.A modelling evaluation of an ammonia fuelled microchannel reformer for hydrogen generation[J].International Journal of Hydrogen Energy,2014,39(22):11390-11402.
[52] 靳立軍,王焦飛,鄭宇.炭催化甲烷裂解制氫研究進展[J].化工進展,2014,33(12):3125-3132.
[53] 李斗星.鎳基和鐵基催化劑上甲烷催化裂解反應的研究[D].天津:天津大學,2009:1-10.
[54] 劉少文.流化床中甲烷裂解制氫過程研究[D].天津:天津大學,2007:1-10.
[55] 張志,唐濤,陸光達.甲烷催化裂解制氫技術研究進展[J].化學研究與應用,2007(1):1-9.
[56] ZHOU Haishan,HIROOKA Y,ASHIKAWA N,et al.Gas and plasma-driven hydrogen permeation through a reduced activation ferritic steel alloy F82H[J].Journal of Nuclear Materials,2014,455(1/2/3):470-474.
[57] CHOI K K,KEE J,KWON D J,et al.Effect of hydrogen plasma on electroless-plating Ni-B films and its Cu diffusion barrier property[J].Journal of Nanoscience and Nanotechnology,2014,14(12):9599-9605.
[58] BUNDALESKA N,TSYGANOV D,TATAROVA E,et al.Steam reforming of ethanol into hydrogen-rich gas using microwave Ar/water“tornado”-type plasma[J].International Journal of Hydrogen Energy,2014,39(11):5663-5670.
[59] METTENBORGER A,SINGH T,SINGH A P,et al.Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production[J].International Journal of Hydrogen Energy,2014,39(10):4828-4835.
[60] MAXIMINI M,ENGELHARDT P,GROTE M,et al.Further development of a microchannel steam reformer for diesel fuel[J].International Journal of Hydrogen Energy,2012,37(13):10125-10134.
[61] CAGLAR O,DEMIRHAN C D,AVCI A K.Modeling and design of a microchannel reformer for efficient conversion of glycerol to hydrogen[J].International Journal of Hydrogen Energy,2015,40(24):7579-7585.
(責任編輯:陳志賢 英文審校:熊興泉)
Progress of the Reformation of Fuel to Produce Hydrogen
FENG Shiquan,HU Yihuai,JINHao
(Merchant Marine College,Shanghai Maritime University,Shanghai 200120,China)
This paper reviewed hydrogen production methods and typical equipment of fuel reforming technology,analyzed the application prospect of onboard hydrogen generation technology with fuel reformation,and pointed out the limitation of onboard hydrogen generation technology.The methods of steam reforming,partial oxidation,auto thermal reforming,decomposition and plasma were analyzed,and the classification method based on tail gas was proposed.
hydrogen;fuel;reforming progress;onboard;hydrogen generation
TK 91
A
1000-5013(2016)04-0395-06
10.11830/ISSN.1000-5013.201604001
2016-03-15
胡以懷(1964-),男,教授,博士,主要從事船舶動力裝置及新能源的研究.E-mail:yhhu@shmtu.edu.cn.
上海市科委科研基金資助項目(08210511800);上海海事大學研究生創(chuàng)新基金資助項目(2015YCX079)