亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        施肥對(duì)稻田溫室氣體排放及土壤養(yǎng)分的影響

        2016-08-24 00:35:21郭騰飛梁國(guó)慶劉東海王秀斌孫靜文李雙來(lái)

        郭騰飛, 梁國(guó)慶*, 周 衛(wèi), 劉東海, 王秀斌, 孫靜文, 李雙來(lái), 胡 誠(chéng)

        (1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081; 2 湖北省農(nóng)業(yè)科學(xué)院植保土肥研究所,湖北武漢 430064)

        ?

        施肥對(duì)稻田溫室氣體排放及土壤養(yǎng)分的影響

        郭騰飛1, 梁國(guó)慶1*, 周 衛(wèi)1, 劉東海2, 王秀斌1, 孫靜文1, 李雙來(lái)2, 胡 誠(chéng)2

        (1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081; 2 湖北省農(nóng)業(yè)科學(xué)院植保土肥研究所,湖北武漢 430064)

        施肥; 稻田; 溫室氣體; GWP; GHGI; 產(chǎn)量; 土壤養(yǎng)分

        已有研究表明,合理的施肥措施可以通過(guò)提高土壤碳庫(kù)或減少CH4和N2O排放來(lái)降低溫室氣體的增溫潛勢(shì),稻田可具有較大的溫室效應(yīng)減緩潛力[9]。Zou等[10]研究指出有機(jī)物料的投入會(huì)增加全球增溫潛勢(shì),因此不建議施肥中投入有機(jī)肥,而Zhao等[11]研究表明將秸稈轉(zhuǎn)化為生物碳可以減緩CH4排放,提高產(chǎn)量和土壤肥力。Das等[12]認(rèn)為秸稈還田以及施入家禽糞肥對(duì)比單施化肥增加了溫室氣體增溫潛勢(shì),然而在農(nóng)業(yè)生產(chǎn)中同樣不能忽視有機(jī)肥對(duì)產(chǎn)量和土壤肥力的積極影響[13],本研究針對(duì)長(zhǎng)江中下游典型的稻麥輪作區(qū),在當(dāng)?shù)亓?xí)慣施肥的基礎(chǔ)上設(shè)置減氮和有機(jī)無(wú)機(jī)配施等不同優(yōu)化施肥措施,研究其對(duì)稻季CO2、CH4、N2O的排放及其綜合溫室效應(yīng)和土壤養(yǎng)分狀況的影響,從而為農(nóng)田可持續(xù)生產(chǎn)、溫室氣體減排提供依據(jù)。

        1 材料和方法

        1.1試驗(yàn)地概況

        1.2試驗(yàn)設(shè)計(jì)

        大田試驗(yàn)設(shè)置5個(gè)處理: 1)不施氮肥(CK); 2) 當(dāng)?shù)亓?xí)慣施肥,氮(尿素)施用量為225 kg/hm2(FP); 3)尿素-N 165 kg/hm2(OPT); 4)有機(jī)肥N 33 kg/hm2+尿素-N 132 kg/hm2(OPT+M); 5)秸稈N 33 kg/hm2+尿素-N 132 kg/hm2(OPT+S)。每個(gè)處理3次重復(fù),小區(qū)面積為40 m2,隨機(jī)區(qū)組排列。小區(qū)田埂嵌入水泥磚并用覆膜覆蓋,防止灌水后小區(qū)之間串水串肥。供試磷、鉀肥分別為過(guò)磷酸鈣和氯化鉀,有機(jī)肥為江蘇田娘農(nóng)業(yè)科技有限公司產(chǎn)有機(jī)肥(C/N =21.72),秸稈為上一季收獲麥稈(C/N =86.59)。FP處理磷(P2O5)用量為 75 kg/hm2,其他處理均為 60 kg/hm2; 鉀(K2O)用量均為 90 kg/hm2; FP處理氮肥基肥與分蘗肥比1 ∶1,其余處理均為基肥分蘗肥和穗肥比為4 ∶3 ∶3。磷肥、有機(jī)肥和秸稈全部基施,鉀肥FP處理全部基施,其他處理基肥穗肥各半。田間管理措施同當(dāng)?shù)爻R?guī)管理一致。

        1.3采樣方法及測(cè)定指標(biāo)

        CH4、N2O、CO2排放通量計(jì)算公式如下[16]:

        F=ρ·h·dc/dt·273/(273+T)

        (1)

        其中,F(xiàn)為排放通量[以CH4和N2O計(jì)時(shí)為 mg/(m2·h), 以CO2計(jì)時(shí),為g/(m2·h)]; ρ 為CH4、N2O、CO2在標(biāo)準(zhǔn)狀態(tài)下的密度(kg/m3); h 是采樣箱高度(m); dc/dt 為采樣過(guò)程中采樣箱內(nèi)CH4、N2O、CO2的濃度變化率(ppmv/h); T 為采樣時(shí)箱內(nèi)的平均溫度(℃); 273為氣態(tài)方程常數(shù)。

        1.4數(shù)據(jù)處理與分析

        1)全球增溫潛勢(shì)(GWP)是將各種溫室氣體的季節(jié)排放總量(kg/hm2)的增溫潛勢(shì)換算為CO2當(dāng)量,CH4和N2O在100 年尺度上為CO2的25倍和298倍[17]。計(jì)算公式為:

        TCDE=CDE(CH4)+CDE(N2O)

        (2)

        2)溫室氣體排放強(qiáng)度(GHGI)是CH4和N2O總增溫潛勢(shì)同作物產(chǎn)量的比值,是綜合評(píng)價(jià)各處理的溫室效應(yīng)的指標(biāo)[18]。

        GHGI=TCDE/Y

        (3)

        式中,TCDE為CH4和N2O綜合增溫潛勢(shì)(CO2kg/hm2); Y為該處理單位面積平均產(chǎn)量(t/hm2)。

        所有試驗(yàn)數(shù)據(jù)運(yùn)用Excel 2010進(jìn)行統(tǒng)計(jì),Origin9.0作圖,SAS 9.0進(jìn)行方差分析。

        2 結(jié)果與分析

        2.1稻田CH4、N2O、CO2排放特征

        對(duì)甲烷排放特征分析得出,各處理CH4排放通量變化趨勢(shì)均呈先升高后降低的單峰曲線(xiàn),除FP處理在移栽后第12 d達(dá)到最大峰值外,其余處理均在移栽后的第8 d達(dá)到最大峰值(圖1)。其中CH4平均排放通量大小順序?yàn)镺PT+S>OPT+M> FP> OPT>CK,平均排放通量依次為6.65、5.75、5.69、4.94和4.58 mg/(m2·h)(表1)。就整個(gè)生育期的排放特征而言,不同處理CH4排放均主要集中在水稻生長(zhǎng)前期,在中期復(fù)水后第38 d有小的排放峰值,生長(zhǎng)后期幾乎沒(méi)有CH4排放,這與眾多關(guān)于稻麥輪作農(nóng)田CH4排放規(guī)律的研究結(jié)果一致[19-21]。

        水稻季CO2排放呈現(xiàn)多峰趨勢(shì),主要排放分布在水稻生長(zhǎng)返青期和孕穗期,主要由于水稻移栽前的耕作,使得土壤通氣性良好,有利于CO2的產(chǎn)生和排放[24],而且孕穗期水熱條件良好促進(jìn)了稻田呼吸作用。不同施肥處理下水稻生長(zhǎng)季CO2平均排放順序?yàn)镺PT+S > OPT+M>FP >OPT >CK,這與CH4排放大小順序一致。對(duì)比FP處理,有機(jī)肥及秸稈還田均增強(qiáng)CO2的排放,其中秸稈還田增加最為明顯,表明投入有機(jī)物料增加稻田土壤有機(jī)質(zhì)積累促進(jìn)土壤呼吸[25]。

        圖1 不同施肥處理對(duì)稻田CH4、N2O和CO2排放的影響Fig.1 Effects of different fertilizer treatments on CH4, N2O and CO2 emissions from the paddy field

        2.2稻田溫室氣體排放季節(jié)總量

        稻田是甲烷的主要排放源。由表1可知,不同處理的CH4季節(jié)總排放量順序?yàn)镺PT+S>OPT+M> FP>OPT> CK。與CK相比,四種不同施肥處理的CH4季節(jié)總排放量均顯著提高,無(wú)論化肥還是有機(jī)肥均增加了稻田CH4的排放,其中秸稈還田OPT+S顯著高于其余處理。伴隨秸稈還田,土壤中有機(jī)碳增多,產(chǎn)生CH4前體增加,有效促進(jìn)CH4排放[26]。OPT處理CH4的排放小于FP處理,說(shuō)明稻田CH4排放隨氮肥用量增加而增加。

        稻田N2O的排放量很少,整個(gè)生育期總排放順序?yàn)? FP>OPT+M>OPT> OPT+S >CK。N2O的排放量隨施氮量的增加而增加。不同于增加CH4排放,秸稈還田減少了稻田N2O的排放并且減排效果顯著,這同Vanlauwe等[27]研究結(jié)果一致。然而有機(jī)肥替代比單施化肥增加了稻田N2O排放,這可能與投入土壤有機(jī)物料的C/N比及其腐熟程度有關(guān)[26]。

        另外,不同處理稻田CO2排放大小順序?yàn)镺PT+S>OPT+M> FP>OPT> CK,同CH4趨勢(shì)一致。相比化肥,有機(jī)肥以及秸稈還田提高了CO2排放量。

        表1 不同施肥處理CH4, N2O和CO2平均排放量與排放總量

        注(Note): CK—無(wú)氮肥對(duì)照 No N fertilizer; FP—習(xí)慣施肥Farmer’s customary fertilization; OPT—推薦氮量 Optimum N rate; OPT+M—推薦氮肥+豬糞 OPT plus manure; OPT+S—推薦氮肥+秸稈OPT plus wheat straw return. 同列數(shù)值后不同字母表示差異達(dá)到5%顯著水平Values followed by different letters are significantly different among fertilizer treatments at 5% level.

        2.3稻田溫室氣體的綜合溫室效應(yīng)

        由表2可以看出,在100 a尺度下不同處理的增溫潛勢(shì)大小同其CH4季節(jié)總排放量順序相同,由于稻田排放N2O的量非常少,因此稻季CH4對(duì)溫室氣體綜合增溫潛勢(shì)影響明顯,稻田減緩溫室氣體增溫潛勢(shì)的主要目標(biāo)就是減少CH4排放。對(duì)比當(dāng)?shù)亓?xí)慣施肥,OPT、OPT+M和OPT+S三種優(yōu)化施肥措施中,單施化肥OPT處理同時(shí)減少CH4和N2O的排放,增溫潛勢(shì)顯著降低了9.1%,OPT+M處理同時(shí)增加CH4排放減少N2O的排放,增溫潛勢(shì)基本相同,而秸稈還田由于顯著增加了CH4排放,同時(shí)顯著減少N2O的排放,其增溫潛勢(shì)增長(zhǎng)幅度較小僅為0.72%。

        對(duì)不同處理產(chǎn)量進(jìn)行分析得出,OPT、OPT+M和OPT+S三種優(yōu)化施肥措施相對(duì)于FP處理都增加了水稻產(chǎn)量,增產(chǎn)率分別為3.6%、14.3%和8.5%,均在減少化肥施用的情況下獲得增產(chǎn),其中OPT+M處理增產(chǎn)最明顯。

        表2 不同處理綜合增溫潛勢(shì)和溫室氣體排放強(qiáng)度

        注(Note): E-CH4—100年尺度下排放的甲烷相當(dāng)?shù)腃O2當(dāng)量 CO2equivalent of CH4emitted on a scale over 100 years; E-N2O—100年時(shí)間尺度下排放的N2O相當(dāng)?shù)腃O2當(dāng)量CO2equivalent of N2O emitted on the scale over 100 years. 同列數(shù)值后不同字母表示差異達(dá)到5%的顯著水平 Values followed by different letters are significantly different among fertilizer treatments at 5% level.

        溫室氣體排放碳強(qiáng)度(GHGI)是一項(xiàng)可綜合溫室效應(yīng)與產(chǎn)量而評(píng)價(jià)溫室效應(yīng)的指標(biāo)[28]。不施氮肥不僅降低作物產(chǎn)量,而且不斷消耗土壤肥力(表2、表3),因此在本研究中不考慮其溫室氣體排放強(qiáng)度。由表1可知,溫室氣體排放碳強(qiáng)度順序?yàn)镕P(0.56)>OPT+S(0.52)> OPT(0.50)>OPT+M(0.49),其中OPT和OPT+M顯著低于當(dāng)?shù)亓?xí)慣施肥處理,OPT+M溫室氣體排放強(qiáng)度最低,是綜合溫室效應(yīng)評(píng)價(jià)下最佳處理。

        2.4不同處理對(duì)土壤養(yǎng)分狀況影響

        表3 不同施肥處理下土壤養(yǎng)分狀況

        注(Note): 表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤Data are means ± SE,n=3; 同列數(shù)值后不同字母表示差異達(dá)到5%顯著水平 Values followed by different letters are significantly different among fertilizer treatments at 5% level.

        3 討論與結(jié)論

        目前針對(duì)不同施氮量及不同施肥措施對(duì)溫室氣體排放影響已有較多報(bào)道,結(jié)論尚不一致[34-36]。本研究結(jié)果顯示,調(diào)控氮磷施肥OPT處理較當(dāng)?shù)亓?xí)慣施肥減少了CH4和CO2排放,同時(shí)顯著降低N2O排放,鄔剛等[34]報(bào)道了調(diào)控施肥配比與當(dāng)?shù)貍鹘y(tǒng)施肥相比可顯著降低N2O排放量,此外劉運(yùn)通等[37]也得出了優(yōu)化施肥可以顯著降低N2O排放的結(jié)論。本試驗(yàn)中有機(jī)肥無(wú)機(jī)肥配施(OPT+M)和秸稈還田(OPT+S)都促進(jìn)了CH4和CO2的排放,有研究指出施用有機(jī)肥可以改善土壤有機(jī)質(zhì)來(lái)促進(jìn)植物根系的生長(zhǎng)和活力以及土壤微生物活性,從而促進(jìn)CO2的排放[25],并且有機(jī)肥和秸稈中含有比較容易被分解的易礦化碳,這樣就為CH4排放提供大量前體[38]。

        有機(jī)肥施用對(duì)稻田N2O排放的影響結(jié)果尚不一致,有研究[39-40]表明施用有機(jī)肥能夠減少稻田N2O的排放,原因可能是化學(xué)肥料適合硝化和反硝化反應(yīng)作用,使氮素隨著水稻生育期分解較為徹底,從而導(dǎo)致N2O排放較高; 同時(shí)也有施用有機(jī)肥可以增加N2O排放的報(bào)道[41-42],鄒建文等[19]研究得出N2O排放不但受到土壤的供氮水平和外源碳氮供應(yīng)的影響、土壤微生物對(duì)有機(jī)碳的分解作用及對(duì)氮的競(jìng)爭(zhēng)、作物對(duì)氮利用等因素制約,而且跟有機(jī)肥料的類(lèi)型和腐熟程度有關(guān)。土壤C/N是影響N2O排放的重要因素,在稻田生態(tài)系統(tǒng)中投入有機(jī)物料的C/N,數(shù)量和種類(lèi)是影響氮素礦化與固定的主要環(huán)境因子[43]。在我們的研究中投入C/N為86.59的小麥秸稈進(jìn)入稻田,異養(yǎng)微生物對(duì)氮的利用起主導(dǎo)作用并且和硝化細(xì)菌競(jìng)爭(zhēng)氮源,從而促進(jìn)了植物可利用氮的固定,因此減少了反應(yīng)生成N2O的底物[12,44]。而施用有機(jī)肥(C/N=21.72),有機(jī)物料的分解產(chǎn)生了大量易礦化碳,促進(jìn)反硝化細(xì)菌的生長(zhǎng),最終產(chǎn)生更高的N2O的排放[45]。

        溫室氣體排放強(qiáng)度是溫室效應(yīng)綜合評(píng)價(jià)指標(biāo),其將溫室效應(yīng)與作物經(jīng)濟(jì)產(chǎn)出相結(jié)合,用于評(píng)價(jià)稻田綜合溫室效應(yīng)。本研究中,OPT+M處理增溫潛勢(shì)最小,即單位產(chǎn)量的產(chǎn)出所排放溫室氣體產(chǎn)生的增溫潛勢(shì)最小,為本試驗(yàn)的評(píng)價(jià)體系下的最優(yōu)處理。本試驗(yàn)中,秸稈還田對(duì)比習(xí)慣施肥和OPT處理均增加了稻田產(chǎn)量,但由于顯著增加了CH4排放量使其GHGI大于其它處理,因此秸稈還田處理增溫潛勢(shì)不能作為最佳發(fā)展可持續(xù)農(nóng)業(yè)的選擇,目前相關(guān)的報(bào)道只是按照嚴(yán)格施肥類(lèi)型來(lái)加以對(duì)比,如果考慮到將其它處理的秸稈因飼料、焚燒或丟棄于田間,最終以溫室氣體計(jì)算的話(huà),結(jié)果還有待深入研究。本試驗(yàn)中秸稈還田對(duì)改善土壤養(yǎng)分的趨勢(shì)明顯(表3),秸稈還田可以穩(wěn)定甚至提高土壤的有機(jī)碳貯量,增加農(nóng)田總固碳量[49]; Pan等[50]認(rèn)為,稻作農(nóng)業(yè)的土壤固碳潛力十分突出。因此,綜合農(nóng)學(xué)效應(yīng),環(huán)境效應(yīng)及經(jīng)濟(jì)效應(yīng),對(duì)秸稈還田還需進(jìn)一步研究。

        [1]Solomon S, Qin D, Manning M,etal. Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007.

        [2]Metz B, Davidson O R, Bosch P R,etal. Climate change 2007:mitigation, contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007.

        [3]李玉寧, 王關(guān)玉. 土壤呼吸作用和全球碳循環(huán)[J]. 地學(xué)前緣, 2002, 9(2): 351-357.

        Li Y N, Wang G Y. Soil respiration and carbon cycle [J]. Earth Science Frontiers, 2002, 9(2): 351-357.

        [4]IPCC. The supplementary report to the IPCC scientific assessment[R].New York: Cambridge University Press,1992.

        [5]Delgado J A, Mosier A R. Mitigation alternatives to decrease nitro-

        us oxides emissions and urea-nitrogen loss and their effect on methane flux[J]. Journal of Environmental Quality, 1996, 25(5): 1105-1111.

        [6]Frolking S, Qiu J J, Boles S,etal. Combing remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China [J]. Global Biogeochemistry Cycle, 2002, 16(4): 1091.

        [7]Li X L, Yuan W P, Xu H,etal. Effect of timing and duration of midseason aeration on CH4and N2O emissions from irrigated lowland rice paddies in China [J]. Nutrient Cycling in Agroecosystems, 2011, 91(3): 293-305.

        [8]Ju X T, Xing G X, Chen X P,etal. Reducing environmental risk by improving N management in intensive Chinese agricultural systems [J]. Proceedings of the National Academy Sciences, U.S.A. 2009, 106, 3041-3046.

        [9]Parry M L, Canziani O F. Climate Change 2007: impacts, adapt-

        ation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.

        [10]Yamazki H, Uchiyama S, Komaisu H,etal. A 3-year fieldmeasurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application [J]. Global Biogeochemical Cycles, 2005, 19(2): 153-174.

        [11]Zhao X, Wang J W, Wang S Q. Successive straw biocharapplication as a strategy to sequester carbon and improve fertility: a pot experiment with two rice-wheat rotations in paddy soil [J]. Plant and Soil, 2014. 378(1-2): 279-294.

        [12]Das S, Adhya T K. Effect of combine application of organicmanure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice [J]. Geoderma, 2014. 213: 185-192.

        [13]Diacono M, Montemurro F. Long-term effects of organic amendm-

        ents on soil fertility. a review [J]. Agronomy for Sustainable Development, 2010. 30(2): 401-422.

        [14]鄭聚鋒, 張旭輝, 潘根興, 等. 水稻土基底呼吸與CO2排放強(qiáng)度的日動(dòng)態(tài)及長(zhǎng)期不同施肥下的變化[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(4): 485-494.

        Zheng J F, Zhang X H, Pan G X,etal. Diurnal variation of soil basal respiration and CO2emissions from a typical paddy soil after rice harvest under long-term different fertilization [J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 485-494.

        [15]Zhang A F, Cui L Q, Pan G X,etal. Effect of biochar amendm-

        ent on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469-475.

        [16]秦曉波, 李玉娥, 劉克櫻, 等. 不同施肥處理稻田甲烷和氧化亞氮排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2006, 22(7): 143-148.

        Qin X B, Li Y E, Liu K Y,etal. Methane and nitrous oxide emissions from paddy field under different fertilization treatments [J]. Transactions of the CSAE, 2006, 22(7): 143-148.

        [17]Parry M L. Climate Change 2007-Mitigation of climate change: Working Group III Contribution to the fourth assessment report of the IPCC [M]. Cambridge: Cambridge University Press, 2007.

        [18]Herzog T, Baumert K A, Pershing J. Target-Intensity: An analysis of greenhouse gas intensity targets [M]. Washington, USA: World Resources Institute, 2006.

        [19]鄒建文, 黃耀, 宗良綱, 等. 稻田 CO2, CH4和N2O排放及其影響因素[J]. 環(huán)境科學(xué)學(xué)報(bào), 2003, 23(6): 758-764.

        Zou J W, Huang Y, Zong L G,etal. A field study on CO2,CH4and N2O emissions from rice paddy and impact factors [J]. Acta Seientiae Circumstantiate, 2003, 23(6): 758-764.

        [20]馬靜, 徐華, 蔡祖聰, 等. 焚燒麥桿對(duì)稻田CH4和N2O排放的影響[J]. 中國(guó)環(huán)境科學(xué), 2008, 28(2): 107-110.

        Ma J, Xu H, Cai Z C,etal. Influence of wheat straw burning on CH4and N2O emissions from rice fields [J]. China Environmental Science, 2008, 28(2): 107-110.

        [21]Zou J W, Liu S W, Qin Y M,etal. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China [J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 516-522.

        [22]梁國(guó)慶, 周衛(wèi), 夏文建, 等. 優(yōu)化施氮下稻-麥輪作體系土壤N2O排放研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, (2): 304-311.

        Liang G Q, Zhou W, Xia W J,etal. Effect of optimized nitrogen application on N2O emissions from paddy field under wheat-rice rotation system [J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 304-311.

        [23]鄒建文, 黃耀, 宗良綱, 等. 稻田灌溉和秸稈施用對(duì)后季麥田N2O排放的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2003, 36(4): 409-414.

        Zou J W, Huang Y, Zong L G,etal. Effects of water regime and straw application in paddy rice season on N2O emissions from following wheat growing season [J]. Scientia Agricultura Sinica, 2003, 36(4): 409-414.

        [24]萬(wàn)運(yùn)帆, 林而達(dá). 翻耕對(duì)冬閑農(nóng)田CH4和CO2排放通量的影響初探[J]. 中國(guó)農(nóng)業(yè)氣象, 2004, 25(3): 8-10.

        Wan Y F, Lin E D. The influence of tillage on CH4and CO2emissions flux in winter fallow cropland [J]. Chinese Journal of Agrometeorology, 2004, 25(3): 8-10.

        [25]Ginting D, Kessavalou A, Eghball B,etal. Greenhouse gasemissions and soil indicators four years after manure and compost applications [J]. Journal of Environmental Quality, 2003, 32(1): 23-32.

        [26]鄒建文, 黃耀, 宗良綱, 等. 不同種類(lèi)有機(jī)肥施用對(duì)稻田CH4和N2O排放的綜合影響[J]. 環(huán)境科學(xué), 2003, 24(4): 7-12.

        Zou J W, Huang Y, Zong L G,etal. Integrated effect of incorporation with different organic manures on CH4and N2O emissions from rice paddy [J]. Environmental Science, 2003, 24(4): 7-21.

        [27]Vanlauwe B, Wendt J, Diels J,etal. Combined application of organic matter and fertilizer [A]. Tian G, Ishida F. Sustaining soil fertility in West Africa[C]. Minneapolis, USA: Proceedings of a Symposium Sponsored by the Soil Science Society of America and the American Society of Agronomy, 2001. 247-279.

        [28]秦曉波, 李玉娥, 萬(wàn)運(yùn)帆, 等. 免耕條件下稻草還田方式對(duì)溫室氣體排放強(qiáng)度的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(6): 210-216.

        Qin X B, Li Y e, Wan Y F,etal. Effects of straw mulching on greenhouse gas intensity under no-tillage conditions [J]. Transactions of the CSAE, 2012, 28 (6): 210-216.

        [29]黃錦法, 曹志洪, 李艾芬, 等. 稻麥輪作田改為保護(hù)地菜田土壤肥力質(zhì)量的演變[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2003, 9(1): 19-25.

        Huang J F, Cao Z H, Li A F,etal. Soil fertility quality evolution after land use change from rice-wheat rotation to plastic film covered vegetable [J]. Plant Nutrition and Fertilizer Science, 2003, 9(1): 19-25.

        [30]Le Mer J, Roger P. Production, oxidation, emissions and consu-

        mption of methane by soils: a review [J]. European Journal of Soil Biology, 2001, 37(1): 25-50.

        [31]Ugalde D, Brungs A, Kaebernick M,etal. Implications of clim-

        ate change for tillage practice in Australia [J]. Soil and Tillage Research, 2007, 97(2): 318-330.

        [32]Minami K. Atmospheric methane and nitrous oxide: sources, sin-

        ks and strategies for reducing agricultural emissions [J]. Nutrient Cycling in Agroecosystems, 1997, 49: 203-211.

        [33]Yu K W, Wang Z P, Chen G X. Nitrous oxide and methane tra-

        nsport through rice plants [J]. Biology and Fertility of Soils, 1997, 24: 341-343.

        [34]鄔剛, 潘根興, 鄭聚鋒, 等. 施肥模式對(duì)雨養(yǎng)旱地溫室氣體排放的影響[J]. 土壤, 2013, 45(3): 459-463.

        Wu G, Pan G X, Zheng J F,etal. Effect of different fertilization mode on greenhouse gas emissions from rain-fed dry land [J]. Soils, 2013, 45(3): 459-463.

        [35]劉昭兵, 紀(jì)雄輝, 彭華, 等. 施氮量及抑制劑配比對(duì)雙季稻生長(zhǎng)期溫室氣體排放的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2010, 19(4): 919-925.

        Liu Z B, Ji X H, Peng H,etal. Effect of nitrogen amount and inhibitor ratio on greenhouse gas emissions during double-rice growing season [J]. Ecology and Environmental Sciences, 2010, 19(4): 919-925.

        [36]Yao Z S, Zheng X H, Dong H,etal. A 3-year record of N2O

        and CH4emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates [J]. Agriculture, Ecosystems & Environment, 2012, 152: 1-9.

        [37]劉運(yùn)通, 萬(wàn)運(yùn)帆, 林而達(dá), 等. 施肥與灌溉對(duì)春玉米土壤N2O排放通量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2008, 27(3): 997-1002.

        Liu Y T, Wan Y F, Lin E D,etal. N2O flux variations from spring maize soil under fertilization and irrigation [J]. Journal of Agro-Environment Science, 2008, 27(3): 997-1002.

        [38]Knoblauch C, Maarifat A A, Pfeiffer E M,etal. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils [J]. Soil Biology and Biochemistry, 2011, 43: 1768-1778.

        [39]Yao Z S, Zhou Z W, Zheng X H,etal. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China [J]. Plant and Soil, 2010, 327(1-2): 315-330.

        [40]Aulakh M S, Khera T S, Doran J W,etal. Denitrification, N2O and CO2fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure [J]. Biology and Fertility of Soils, 2001, 34(6): 375-389.

        [41]Van Groenigen J W, Kasper G J, Velthof G L,etal. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications [J]. Plant and Soil, 2004, 263(1): 101-111.

        [42]Zhu T B, Zhang J B, Yang W Y,etal. Effects of organicmaterial amendment and water content on NO, N2O, and N2emissions in a nitrate-rich vegetable soil [J]. Biology and Fertility of Soils, 2013, 49(2): 153-163.

        [43]DeDatta S K. Nitrogen transformations in wetland rice ecosystems [J]. Plant and Soil, 1995, 42, 193-203.

        [44]Yao Z S, Zheng X H, Wang R,etal. Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices [J]. Atmospheric Environment, 2013, 79: 641-649.[45]Jarvis S C, Hatch D J. Potential for denitrification at depth below long-term grass swards [J]. Soil Biology and Biochemistry. 1994, 26, 1629-1636.

        [46]Solomon S. Climate Change 2007-The Physical Science Basis: Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge: Cambridge University Press, 2007.

        [47]Ma J, Ma E D, Xu H,etal. Wheat straw management affects CH4and N2O emissions from rice fields [J]. Soil Biology and Biochemistry, 2009. 41(5): 1022-1028.

        [48]Liu S W, Qin Y M, Zou J W,etal. Effects of water regime during rice-growing season on annual direct N2O emissions in a paddy rice-winter wheat rotation system in southeast China [J]. Science of the Total Environment, 2010, 408(4): 906-913.

        [49]韓冰, 王效科, 逯非, 等. 中國(guó)農(nóng)田土壤生態(tài)系統(tǒng)固碳現(xiàn)狀和潛力[J]. 生態(tài)學(xué)報(bào), 2008, 28(2): 612-619.

        Han B, Wang X K, Lu F,etal. Soil carbon sequestration and its potential by cropland ecosystems in China [J]. Acta Ecologica Sinica, 2008, 28(2): 612-619.

        [50]潘根興. 中國(guó)土壤有機(jī)碳庫(kù)及其演變與應(yīng)對(duì)氣候變化[J]. 氣候變化研究進(jìn)展, 2008, 4(5): 282-289.

        Pan G X. Soil organic carbon stock, dynamics and climate change mitigation of China [J]. Advance in Climate Change, 2008, 4(5): 282-289.

        Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil

        GUO Teng-fei1, LIANG Guo-qing1*, ZHOU Wei1, LIU Dong-hai2, WANG Xiu-bin1, SUN Jing-wen1, LI Shuang-lai2, HU Cheng2

        (1InstituteofAgriculturalResourceandRegionalPlanning,CAAS,Beijing100081,China;2InstituteofPlantProtectionandSoilFertilization,HubeiAcademyofAgriculturalSciences,Wuhan430064,China)

        【Objectives】 The impact of greenhouse gas caused by the agricultural activities on global warming has been recognized broadly. The aim of this study was to evaluate the effects of different fertilizer treatment on greenhouse gas emissions, crop yield and soil fertility of paddy soil. 【Methods】 The fertilization treatments were designed under the rice-wheat rotation system in Yangtze River as follows: no nitrogen fertilizer (CK), farmer’s customary fertilization (FP), optimum N fertilization (OPT), OPT plus manure (OPT+M), and OPT plus wheat straw return (OPT+S). Static opaque chamber method was used to measure the CH4, N2O and CO2flux during the rice-growing season and the global warming potential (GWP). The crop yield, carbon emission intensity and soil chemical property of rice production (GHGI) were comprehensively evaluated and a fertilizer management system was proposed.【Results】 1) The cumulative emission of CH4in different treatments was in order of OPT+S>OPT+M>FP>OPT>CK (99.02-143.69 kg/hm2), that of NO2was FP>OPT+M>OPT>OPT+S >CK (0.95-3.57 kg/hm2), and that of CO2showed the same trend as CH4’s, ranging from 7231.64 to 13715.24 kg/hm2. 2) Calculated as the CO2-equivalents on the scale over 100 years, the GWP from the CH4and N2O emissions in different treatments were in order of OPT+S>OPT+M> FP> OPT> CK. The contribution of N2O to the total GWP were only 10.31%,26.39%,21.51%,22.91%, and 11.58%, and that of CH4were 89.69%,73.61%,78.49%,77.09% and 88.42% in CK, FP, OPT, OPT+M and OPT+S respectively. The overall assessment of the GWP was dominated by CH4emissions and much lower by N2O. The rice yield in treatment of OPT, OPT+M and OPT+S was 3.6%, 14.3% and 8.5% more than in FP. The most significant yield increase was obtained in treatment of the combined application of organic manure with chemical fertilizer. 3) The GHGI was in order of FP(0.56)>OPT+S(0.52)> OPT(0.50)>OPT+M(0.49). The GHGI in treatment OPT and OPT+M were significantly lower than in FP, and the lowest value was in OPT+M. 4) The highest soil organic carbon, total nitrogen, available phosphorus and potassium content were all appeared in the OPT+S treatment. 【Conclusion】 Fertilization influence the emissions of CH4, N2O and CO2. The application of manure and chemical nitrogen fertilizer increase the emissions of all the three greenhouse gases, the straw return increases the emissions of CO2and CH4, but reduces that of N2O. Mitigation of CH4emissions should be considered in the paddy soil with priority. As the chemical fertilizer plus manure (OPT+M) produces the lowest GHGI, the pattern is recommended as relatively better fertilizer management in this region. Although the straw return will increase the emission of CO2from soil, it is still a prosperous management as it could reduce the total CO2emission from possible burning of straw. Further research on proper amount of straw return should be conducted.

        fertilization; paddy soil; greenhouse gas; GWP; yield; GHGI; soil nutrient

        2014-12-10接受日期: 2015-01-20網(wǎng)絡(luò)出版日期: 2015-02-13

        國(guó)家自然科學(xué)基金項(xiàng)目(31471943); 國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2013CB127401)資助。

        郭騰飛(1991—),男,河南寶豐人,碩士研究生,主要從事農(nóng)業(yè)可持續(xù)利用方面的研究。E-mail: tracygtf@163.com

        E-mail: liangguoqing@caas.cn

        S506.2; X16

        A

        1008-505X(2016)02-0337-09

        亚洲熟妇久久精品| 亚洲女同人妻在线播放| 青青草手机在线观看视频在线观看 | 99久久久无码国产精品6| 精品国产高清自在线99| 国产美女自拍国语对白| 国产亚洲精品一区在线| 亚洲精品乱码久久久久久中文字幕| 免费无码av片在线观看| 亚洲AV无码AV色| 亚洲av乱码一区二区三区人人| 国产片精品av在线观看夜色| 蜜桃精品免费久久久久影院| 成年女人窝窝视频| 亚洲av色在线播放一区| av色欲无码人妻中文字幕| 国产人碰人摸人爱视频| 日本最新一区二区三区免费看| 蜜桃视频第一区免费观看| 绝顶潮喷绝叫在线观看| 91日本精品国产免| 中文字幕国内一区二区| 人妻少妇被猛烈进入中文字幕| 欧美成人免费全部| 国产免费播放一区二区| 国产一区二区三区在线爱咪咪 | 天天爽天天爽夜夜爽毛片| 草莓视频一区二区精品| 国产成人久久精品二区三区| 久久亚洲精品中文字幕| 精品亚洲成a人在线观看青青| 日韩最新在线不卡av| 少妇人妻无一区二区三区 | 国产亚洲av一线观看| 97人伦影院a级毛片| 国产精品 高清 尿 小便 嘘嘘 | 亚洲一本二区偷拍精品| 朋友的丰满人妻中文字幕| 国产喷水福利在线视频| 精品国产一品二品三品| 极品少妇被黑人白浆直流|