亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        低毒金屬配合物催化丙交酯開環(huán)聚合研究進(jìn)展

        2016-08-18 06:36:14王富貴胡明剛鄧啟剛馬文輝宋偉明初紅濤齊齊哈爾大學(xué)化學(xué)與化學(xué)工程學(xué)院黑龍江齊齊哈爾161006
        化工進(jìn)展 2016年8期
        關(guān)鍵詞:開環(huán)分子量催化活性

        王富貴,胡明剛,鄧啟剛,馬文輝,宋偉明,初紅濤(齊齊哈爾大學(xué)化學(xué)與化學(xué)工程學(xué)院,黑龍江 齊齊哈爾 161006)

        綜述與專論

        低毒金屬配合物催化丙交酯開環(huán)聚合研究進(jìn)展

        王富貴,胡明剛,鄧啟剛,馬文輝,宋偉明,初紅濤
        (齊齊哈爾大學(xué)化學(xué)與化學(xué)工程學(xué)院,黑龍江 齊齊哈爾 161006)

        可生物降解材料聚丙交酯主要通過丙交酯開環(huán)聚合反應(yīng)制備,金屬配合物催化劑由于具有結(jié)構(gòu)易調(diào)變、催化活性高和立體選擇性等優(yōu)點,成為丙交酯開環(huán)聚合反應(yīng)中應(yīng)用最多的催化劑。近年來,低毒金屬配合物催化劑引起了人們的極大關(guān)注。本文詳細(xì)評述了低毒鋰、鈉、鉀、鈣、鎂和鋅配合物催化劑的最新研究進(jìn)展,重點闡述了配體類型、配體上不同取代基的結(jié)構(gòu)、電子效應(yīng)對催化劑催化性能的影響,分析了溶劑對配合物在溶液中的狀態(tài)以及對單體的配位、插入和聚合反應(yīng)的影響。本文還對該領(lǐng)域發(fā)展趨勢進(jìn)行了展望,隨著對低毒金屬配合物催化丙交酯開環(huán)聚合機(jī)理研究的深入,未來將從配體結(jié)構(gòu)設(shè)計出發(fā),開發(fā)催化活性更高、性能更好的配合物催化劑,進(jìn)而制得高質(zhì)量的聚丙交酯。

        聚丙交酯;催化;配合物;催化劑;聚合

        隨著人們環(huán)保意識的增強(qiáng),開發(fā)能夠減少環(huán)境污染的可降解生物材料成為高分子材料重要的研究領(lǐng)域之一。聚丙交酯(PLA)原料來源于可再生資源,可生物降解,環(huán)境友好,因而作為新型的生物基材料受到普遍關(guān)注。聚丙交酯的制備有乳酸直接縮聚和丙交酯開環(huán)聚合兩種方法,乳酸直接縮聚制備成本比開環(huán)聚合低,但所得產(chǎn)品相對分子量較低,機(jī)械強(qiáng)度較差。開環(huán)聚合可以制備高分子量的聚合物,可以通過活性可控聚合實現(xiàn)對分子量的控制,選擇合適的立體選擇性催化劑可制得立體規(guī)整度較高的產(chǎn)品。因而,開環(huán)聚合成為研究的熱點。近年來,國內(nèi)外學(xué)者從降低制備成本,提高聚合物的分子量和穩(wěn)定性及控制產(chǎn)物立體結(jié)構(gòu)出發(fā),做了大量的研究工作,開發(fā)了許多性能優(yōu)異的金屬配合物催化劑。然而,仍需解決的一個問題是,在由金屬配合物催化劑制得的產(chǎn)品中難免會有金屬殘留,要從聚合物中完全去除這些殘留物幾乎是不可能的。所以,低毒的鋰[1-4]、鈉[5-7]、鉀[8-12]、鈣[13-16]、鎂[17-26]和鋅[27-35]配合物成為更有希望的催化劑,特別當(dāng)聚丙交酯應(yīng)用于生物醫(yī)藥領(lǐng)域時,這類催化劑顯得更加重要。本文對這類低毒金屬配合物催化劑的研究進(jìn)展進(jìn)行了評述,展望了該領(lǐng)域未來的發(fā)展趨勢。

        1 低毒金屬鋰、鈉和鉀配合物催化劑

        鈉離子和鉀離子是無毒的,它們是生物體必需的元素且易于利用,非常適用于生物醫(yī)藥領(lǐng)域,另外,鋰、鈉和鉀配合物價格較便宜、穩(wěn)定并具有較好的催化性能。

        1.1鋰配合物催化劑

        烷基鋰和其他鋰配合物在有機(jī)合成中具有重要的作用,在丙交酯開環(huán)聚合中也表現(xiàn)出優(yōu)異的催化活性。LIN等[36]用2,2-亞乙基-二(4,6-二叔丁基苯酚)配體合成了多核鋰配合物1(圖1)。該配合物能夠引發(fā)丙交酯活性可控開環(huán)聚合,并且沒有差向異構(gòu)化反應(yīng)發(fā)生。HSUEH等[37]進(jìn)一步研究,發(fā)現(xiàn)此種二酚類配體與苯甲醇、丁基鋰在乙醚中反應(yīng)可制得雙核配合物2(圖1)。這種雙核鋰配合物與過量的四氫呋喃反應(yīng),可分解生成含有一個二酚配體、一個苯甲醇和兩個四氫呋喃的單核配合物3(圖1)。與多核鋰配合物相比,單核和雙核鋰配合物有更好的催化活性。而雙核鋰配合物具有比單核鋰配合物更高的活性。這是因為配位在單核鋰上的四氫呋喃阻礙了丙交酯單體對金屬中心的配位,因而降低了催化活性。

        圖1 鋰配合物

        CHEN等合成了一系列含氧、硫或氮配體的鋰配合物4(圖1)。苯甲醇存在時,配合物4a~4d均可催化丙交酯開環(huán)聚合,反應(yīng)分別在二氯甲烷、甲苯和四氫呋喃中進(jìn)行,表明二氯甲烷是最好的溶劑。另外,分別以苯甲醇、異丙醇為引發(fā)劑,表明[38]使用苯甲醇時,產(chǎn)物分子量分布更窄。相同的反應(yīng)條件下,這類化合物中4d性能最好,具有活性聚合的特征。然而,隨著單體與引發(fā)劑比增加,聚合產(chǎn)物分子量分布有變寬的趨勢。

        HUANG等[39]合成了一系列β-酮亞胺配體鋰配合物5(圖1)。該類配合物在四氫呋喃中均能催化L-丙交酯開環(huán)聚合,配合物5e表現(xiàn)出最高的活性。另外,溶劑對反應(yīng)也有顯著影響,在四氫呋喃中比在甲苯溶液中活性要高。在單體與引發(fā)劑比為300∶1,20℃反應(yīng) 20min,在四氫呋喃和甲苯中的轉(zhuǎn)化率分別為90%和81%。

        1.2鈉配合物催化劑

        鈉在自然界中含量較豐富,是海水中含量最多的元素,含量為1.1%。在地殼中,它是第6大元素,含量為2.3%。由于鈉資源豐富、易得到、低毒性且具有生物相容性,使其在丙交酯開環(huán)聚合方面受到極大關(guān)注。

        PAN等[40]報道了一種多核 6,6'-亞甲基雙(2,4-二叔丁基苯酚)配體鈉配合物6(圖2),單體與催化劑的比為300∶1,25℃反應(yīng)0.5h,轉(zhuǎn)化率達(dá)到97%。數(shù)均分子量隨單體與引發(fā)劑比呈線性關(guān)系,表明聚合反應(yīng)過程具有活性可控特征。配合物6表現(xiàn)出較高的催化活性,主要是因為在聚合反應(yīng)中,2-甲氧基乙醇陰離子是反應(yīng)的引發(fā)劑,而在甲苯中該配合物很容易生成這種陰離子。同核去耦1H NMR譜圖僅在δ=5.16處出現(xiàn)一個信號峰,表明聚合物的手性中心沒有發(fā)生差向異構(gòu)化。

        圖2 鈉和鉀配合物

        LIN等[41]報道了一種2,2-亞乙基-二(4,6-二叔丁基苯酚)配體鈉配合物7(圖2),在甲苯中配合物7具有很高的催化活性,單體與催化劑的比為 200∶1,20℃反應(yīng)8min,轉(zhuǎn)化率可達(dá)到98%。然而轉(zhuǎn)化率在極性溶劑四氫呋喃和1,2-二氯乙烷中卻顯著降低,相同反應(yīng)條件下,轉(zhuǎn)化率分別為11%和13%。分析原因可能是溶劑與鈉離子中心發(fā)生了配位作用。1H NMR譜圖分析表明聚合物的鏈端含有一個甲酯基,證明配合物中的甲醇分子是引發(fā)基團(tuán)。對實驗測得的數(shù)均分子量與理論值進(jìn)行分析,表明配合物7中的兩個甲醇分子均參與了反應(yīng)。

        ZHANG等[42]報道了一種鈉配合物8(圖2),該配合物催化活性受到溶劑的影響,在甲苯中反應(yīng)活性比在四氫呋喃中高,50℃單體與催化劑的比為400∶1,在甲苯和四氫呋喃中分別反應(yīng)3h,轉(zhuǎn)化率為83%和64%。數(shù)均分子量隨單體和引發(fā)劑比呈線性關(guān)系,說明該配合物引發(fā)的聚合反應(yīng)具有活性可控特征,但分子量分布較寬(PDI=1.39~1.60)。通常醇存在時,堿金屬配合物催化丙交酯開環(huán)聚合反應(yīng)活性可控性較好。然而,這類配合物在加入異丙醇后,聚合產(chǎn)物的分子量分布無明顯變化,即醇對反應(yīng)的活性可控性影響不大。

        1.3鉀配合物催化劑

        鉀配合物催化丙交酯開環(huán)聚合近來也有一些報道,PAN等[43]報道了6,6'-亞甲基雙(2,4-二叔丁基苯酚)配體鉀配合物9(圖2),該配合物在甲苯中可催化丙交酯開環(huán)聚合,單體L-丙交酯與引發(fā)劑的比為100∶1,90℃反應(yīng)36h,轉(zhuǎn)化率為78.5%,然而,在四氫呋喃和二氯甲烷中幾乎不反應(yīng)。LIN等[41]報道了類似的鈉配合物催化丙交酯開環(huán)聚合,需要甲醇作引發(fā)劑。而配合物9能直接催化反應(yīng),無需甲醇。實際上配合物9不能激活甲醇而引發(fā)丙交酯開環(huán)聚合反應(yīng),因為鉀離子的Lewis酸性較低,甲醇很難與鉀金屬中心進(jìn)行配位。

        CHEN等[44]報道了配體芳香環(huán)上連有醚鏈結(jié)構(gòu)的鉀配合物10(圖2),單體與引發(fā)劑比為100∶1,60℃四氫呋喃中反應(yīng) 36h,轉(zhuǎn)化率為 83.3%。分子量分布較窄(PDI=1.24~1.41)。利用相同配體合成結(jié)構(gòu)相似的鈉配合物,研究表明鈉配合物活性更高,這是因為鈉離子比鉀離子Lewis酸性更高,丙交酯單體更容易配位到鈉金屬中心而被激活。

        2 低毒金屬鈣、鎂和鋅配合物催化劑

        2.1鈣配合物催化劑

        近幾年,有關(guān)鈣配合物催化丙交酯開環(huán)聚合有很多報道。但一個主要不足是所使用的催化劑在大多數(shù)有機(jī)溶劑中活性很高,副反應(yīng)也相應(yīng)增多,致使產(chǎn)物分子量較低,分子量分布較寬;而另一些可制得分子量較高、分子量分布較窄聚合物的催化劑催化活性卻較低。后來,LIN等[45]報道了一種Schiff堿鈣配合物11(圖3),這種配合物能夠高效地催化丙交酯開環(huán)聚合,產(chǎn)物分子量分布較窄。室溫下,單體、催化劑與引發(fā)劑比為(50∶0.5∶1)~(125∶0.5∶1),反應(yīng)40~60min,轉(zhuǎn)化率可達(dá)96%以上,PDI=1.11~1.26。

        HSIAO等[46]報道了另一種新穎的NNO-三齒酮亞胺配體鈣配合物12(圖3)。在苯甲醇存在時,配合物12a~12i均能催化丙交酯開環(huán)聚合,30℃二氯甲烷中,單體、催化劑和苯甲醇比為50∶1∶1,反應(yīng)120min,配合物12a~12h活性都較高,轉(zhuǎn)化率均達(dá)到90%以上,而配合物12i活性較低,轉(zhuǎn)化率為10%。另外, 研究表明配體芳環(huán)4位上的取代基對配合物的活性沒有顯著影響。具有供電子基(R=p-Ome,p-Me)配體的配合物(12c,12d)與具有吸電子基(R=p-F,p-Cl)配體的配合物(12e,12f) 催 化 活 性 相 似 [Kobs=0.0393~ 0.0667 L/(mol·min)]。這表明電子效應(yīng)對催化劑活性無顯著影響。然而芳環(huán)鄰位取代基的空間位阻對催化活性有顯著影響,鄰位取代基由甲基變?yōu)榉?,催化活性顯著降低,Kobs由0.1242L/(mol·min()配合物12h)降低到0.0169/(mol·min)(配合物 12g)。對反應(yīng)機(jī)理研究表明,反應(yīng)過程中需經(jīng)過配體解離形成雙核配合物,而含有空間位阻較大基團(tuán)的配體,其離解速率增加,因而丙交酯聚合反應(yīng)速率增加。然而鄰位取代基由甲基變?yōu)槲蛔韪蟮娜谆鶗r,催化活性卻奇跡般下降,分析原因是因為太大的配體阻礙了單體對金屬活性中心的配位,因而反應(yīng)速率下降。可見配體結(jié)構(gòu)對催化性能的影響是復(fù)雜的。

        DARENSBOURG等[47-48]報道了一種Schiff堿鈣配合物13(圖3)。配合物13a催化丙交酯熔融聚合,單體與引發(fā)劑比為350∶1,110℃反應(yīng)15min,轉(zhuǎn)化率為80%。該類配合物配體亞胺骨架結(jié)構(gòu)對催化性能影響較大。含供電性更強(qiáng)、亞胺骨架位阻較小配體的配合物 13a,催化活性遠(yuǎn)高于含吸電性更強(qiáng)、亞胺骨架位阻較大配體的配合物 13b。另外,該類配合物催化 L-丙交酯開環(huán)聚合在配位溶劑四氫呋喃中明顯比二氯甲烷中快。

        圖3 鈣、鎂和鋅配合物

        2.2鎂配合物催化劑

        MA等[49]報道了一種salan配體鎂配合物14(圖3)。配體結(jié)構(gòu)及反應(yīng)溶劑對該類配合物的催化活性均有較大影響。在甲苯溶劑中,配體芳氧環(huán)上含有枯基的配合物 14b與含有叔丁基的配合物 14a相比,反應(yīng)活性有所增強(qiáng)。然而在四氫呋喃中二者催化活性相似,且均好于甲苯。分析原因,是因為在不同溶液中配合物的狀態(tài)不同,四氫呋喃中配合物聚集受到阻礙,進(jìn)而有利于單體的配位、插入,因而活性提高。

        LIN等[50]報道了一種酮亞胺配體鎂配合物 15(圖3)。這類配合物在溶液中存在單核和雙核配合物,而單核配合物在聚合反應(yīng)中活性更高。此類配合物中,配合物15b的活性最高,且配合物15b和15a的活性遠(yuǎn)大于配合物 15d。室溫下,甲苯溶液中,單體與引發(fā)劑摩爾比為200∶1,配合物15a為催化劑時,反應(yīng)8min,轉(zhuǎn)化率達(dá)到97%,相同條件下配合物15d為催化劑,反應(yīng)10h,轉(zhuǎn)化率為89%,而配合物 15b為催化劑,其他條件相同,0℃反應(yīng)2min,轉(zhuǎn)化率達(dá)到 99%以上。1,5-位為叔丁基的配合物15b與1,5-位為甲基的配合物15a相比,其活性顯著增強(qiáng),這是因為空間位阻較大的叔丁基增加了配合物15b形成單核配合物的趨勢,因而活性更高。而配合物 15d,配體中含有一個吸電子的三氟甲基,其活性遠(yuǎn)小于配合物15a和15b。這是因為配體上含有吸電子基時,中心金屬鎂的酸性增強(qiáng),導(dǎo)致Mg-OBn鍵增強(qiáng),因而阻礙了Mg—OBn鍵斷裂和單核配合物的形成,所以催化活性顯著降低。

        2.3鋅配合物催化劑

        DAI等[51]報道了一種 β-二亞胺配體鋅配合物16(圖3)。相同反應(yīng)條件下,配合物16a和16b活性顯著高于配合物16c和16d。室溫下二氯甲烷為溶劑,單體與催化劑摩爾比為100∶1,以16a、16b為催化劑時反應(yīng)40min,轉(zhuǎn)化率分別為83%和62%。16c、16d為催化劑,反應(yīng) 720min,轉(zhuǎn)化率分別為60%和55%。雖然聚合物的數(shù)均分子量隨單體與催化劑摩爾比增加而增大,但與理論值不同,且分子量分布較寬。當(dāng)加入1當(dāng)量苯甲醇時,聚合物的分子量分布變窄,但數(shù)均分子量仍與理論值相差較大,活性可控性沒有提高。有趣的是當(dāng)加入10當(dāng)量苯甲醇時,反應(yīng)的活性可控性顯著提高,實測的數(shù)均分子量與理論值接近,分子量分布較窄,PDI=1.03~1.13。分析原因是過量的醇與中心金屬配位,并進(jìn)一步抑制了副反應(yīng)的發(fā)生,然而詳細(xì)的機(jī)理研究仍在進(jìn)行中。

        REZAYEE等[52]報道了一種三齒酮亞胺配體鋅配合物17(圖3)。單體與催化劑摩爾比為500∶1,二氯甲烷中,室溫反應(yīng),配合物17a、17b、17e和17f為催化劑時,反應(yīng)3h,轉(zhuǎn)化率均達(dá)到100%。而配合物17c和17d為催化劑時,活性較低,相同條件下反應(yīng)6h,轉(zhuǎn)化率為60%和12%,這是因為配合物17c和17d配體上含有兩個吸電子基(CF3和Ph),而配體含有吸電子基的鋅配合物催化活性往往較低[53]。

        PANG 等[54]報道了一種含聯(lián)二萘結(jié)構(gòu)三齒NNO配體的鋅配合物18(圖3)。這類配合物催化活性受到配體上取代基的影響。隨著芳環(huán)上取代基增大,催化劑活性下降。配合物18a為催化劑時,Kp為2.43L/(mol·min),而配體上含有叔丁基的配合物18b,催化活性下降,Kp為1.96L/(mol·min)。此外,配體上含有吸電子基,可提高催化劑的活性。配體上含有氟的配合物18c,活性高于18a和18b,Kp為2.77L/(mol·min)。

        3 結(jié) 語

        隨著對環(huán)境問題的日益關(guān)注,來源于可再生資源、可生物降解的聚丙交酯越來越引人注目。目前,在低毒金屬配合物催化丙交酯開環(huán)聚合方面已取得了顯著進(jìn)展,然而,從實際應(yīng)用考慮,有必要開發(fā)性能更好的催化劑,以制備分子量更高、分子量分布更窄、穩(wěn)定性更好的聚合物。金屬配合物催化劑中,改變輔助配體的結(jié)構(gòu)可以調(diào)節(jié)中心金屬的性質(zhì),影響其催化性能。通常配體結(jié)構(gòu)中具有較大取代基時,可利用空間位阻保護(hù)金屬中心減少副反應(yīng)發(fā)生,另外由于空間位阻較大,配合物的聚集受到抑制,有利于提高催化劑活性。因而,通過設(shè)計、合成不同結(jié)構(gòu)的配體,可以調(diào)變金屬配合物性質(zhì),改善其催化性能。今后,應(yīng)進(jìn)一步加大配體結(jié)構(gòu)與催化劑性能關(guān)系的研究,深入探討反應(yīng)機(jī)理,開發(fā)價格相對便宜、低毒、更加高效的催化劑,進(jìn)而制備性能優(yōu)良的聚丙交酯。

        [1]DEAN R K,RECKLING A M,CHEN H,et al. Ring-opening polymerization of cyclic esters with lithium amine-bis(phenolate)complexes[J]. Dalton Transactions,2013,42(10):3504-3520.

        [2]HUANG C A,CHEN C T. Lithium complexes supported by amine bis-phenolate ligands as efficient catalysts for ring-opening polymerization of L-lactide[J]. Dalton Transactions,2007(47):5561-5566.

        [3]LIANG Z,ZHANG M,NI X,et al. Ring-opening polymerization of cyclic esters initiated by lithium aggregate containing bis(phenolate)and enolate mixed ligands[J]. Inorganic Chemistry Communications,2013,29:145-147.

        [4]KOBER E,PETRUS R,KOCIECKA P,et al. Lithium diaminebis (aryloxido)complexes:synthesis,structures and reactivity in L-lactide polymerization[J]. Polyhedron,2015,85:814-823.

        [5]LU W Y,HSIAO M W,HSU S C N,et al. Synthesis,characterization and catalytic activity of lithium and sodium iminophenoxide complexes towards ring-opening polymerization of L-lactide[J]. Dalton Transactions,2012,41(13):3659-3667.

        [6]GHOSH S,CHAKRABORTY D,VARGHESE B. Group 1 salts of the imino(phenoxide)scaffold:synthesis,structural characterization and studies as catalysts towards the bulk ring opening polymerization of lactides[J]. European Polymer Journal,2015,62:51-65.

        [7]GARCIA-VALLE F M,ESTIVILL R,GALLEGOS C,et al. Metal and ligand-substituent effects in the immortal polymerization of rac-lactide with Li,Na,and K phenoxo-imine complexes[J]. Organometallics,2015,34(2):477-487.

        [8]SAUNDERS L N,DAWE L N,KOZAK C M. Alkali metal complexes of tridentate amine-bis(phenolate) ligands and their rac-lactide ROP activity[J]. Journal of Organometallic Chemistry,2014,749:34-40.

        [9]ZHANG J,XIONG J,SUN Y,et al. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide[J]. Macromolecules,2014,47(22):7789-7796.

        [10]SUN Y,XIONG J,DAI Z,et al. Stereoselective alkali-metal catalysts for highly isotactic poly(raclactide) synthesis[J]. Inorganic Chemistry,2016,55(1):136-143.

        [11]DAI Z,SUN Y,XIONG J,et al. Alkali-metal monophenolates with a sandwich-type catalytic center as catalysts for highly isoselective polymerization of rac-lactide[J]. ACS Macro Letteres,2015,4(5):556-560.

        [12]XIONG J,ZHANG J,SUN Y,et al. Iso-selective ring-opening polymerization of rac-lactide catalyzed by crown ether complexes of sodium and potassium naphthalenolates[J]. Inorganic Chemistry,2015,54(4):1737-1743.

        [13]XU X,CHEN Y,ZOU G,et al. Magnesium,zinc,and calcium complexes based on tridentate nitrogen ligands:syntheses,structures,and catalytic activities to the ring opening polymerization of rac-lactide[J]. Journal of Organometallic Chemistry,2010,695(8):1155-1162.

        [14]HSIAO M W,WU G S,HUANG B H,et al. Synthesis and characterization of calcium complexes:efficient catalyst for ring-opening polymerization of L-lactide[J]. Inorganic Chemistry Communications,2013,36:90-95.

        [15]CHISHOLM M H,GALLUCCI J,PHOMPHRAI K. Lactide polymerization by well-defined calcium coordination complexes:comparisons with related magnesium and zinc chemistry[J]. Chemical Communications,2003,9(1):48-49.

        [16]YILDIRIM I,CROTTY S,LOH C H,et al. End-functionalized polylactides using a calcium-based precatalyst:synthesis and insights by mass spectrometry[J]. Journal of Polymer Science,Part A:Polymer Chemistry,2016,54(3):437-448.

        [17]LI C Y,SU J K,YU C J,et al. Synthesis and structural characterization of magnesium complexes bearing benzotriazole phenoxide ligands:photoluminescent properties and catalytic studies for ring-opening polymerization of L-lactide[J]. Inorganic Chemistry Communications,2012,20:60-65.

        [18]WU J,CHEN Y Z,HUNG W C,et al. Preparation,characterization,and catalytic studies of magnesium phenoxides:highly active initiators for ring-opening polymerization of L-lactide[J]. Organometallics,2008,27(19):4970-4978.

        [19]WU J C,HUANG B H,HSUEH M L,et al. Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides[J]. Polymer,2005,46(23):9784-9792.

        [20]CHEN M T,CHANG P J,HUANG C A,et al. Magnesium complexes containing bis-amido-oxazolinate ligands as efficient catalysts for ring opening polymerisation of L-lactide[J]. Dalton Transactions,2009,41:9068-9074.

        [21]EJFLER J,KOBYLKA M,JERZYKIEWICZ L B,et al. Highly efficient magnesium initiators for lactide polymerization[J]. Dalton Transactions,2005,11:2047-2050.

        [22]YI W,MA H. Magnesium complexes containing biphenyl-based tridentate imino-phenolate ligands for ring-opening polymerization of rac-lactide and α-methyltrimethylene carbonate[J]. Dalton Transactions,2014,43(13):5200-5210.

        [23]GAO B,ZHAO D,LI X,et al. Magnesium complexes bearing N,N-bidentate phenanthrene derivatives for the stereoselective ring-opening polymerization of rac-lactides[J]. RSC Advances,2015,5(1):440-447.

        [24]GHOSH S,ANTHARJANAM P K S,CHAKRABORTY D. Magnesium complexes of the N,O polydentate scaffold:synthesis,structural characterization and polymerization studies[J]. Polymer,2015,70:38-51.

        [25]HUANG M,PAN C,MA H. Ring-opening polymerization of rac-lactide and α-methyltrimethylene carbonate catalyzed by magnesium and zinc complexes derived from binaphthyl-based iminophenolate ligands[J]. Dalton Transactions,2015,44(27):12420-12431.

        [26]SUN Y,CUI Y,XIONG J,et al. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides[J]. Dalton Transactions,2015,44(37):16383-16391.

        [27]WOJTASZAK J,MIERZWICKI K,SZAFERT S,et al. Homoleptic aminophenolates of Zn,Mg and Ca. Synthesis,structure,DFT studies and polymerization activity in ROP of lactides[J]. Dalton Transactions,2014,43(6):2424-2436.

        [28]CHUANG H J,CHEN H L,HUANG B H,et al. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization[J]. Journal of Polymer Science,Part A:Polymer Chemistry,2013,51(5):1185-1196.

        [29]WHEATON C A,HAYES P G. Electron deficient zinc complexes:enhanced lactide polymerization activity achieved through rational ligand design[J]. Journal of Organometallic Chemistry,2012,704:65-69.

        [30]HONRADO M,OTERO A,F(xiàn)ERNANDEZ-BAEZA J,et al. Enantiopure N,N,O-scorpionate zinc amide and chloride complexes as efficient initiators for the heteroselective ROP of cyclic esters[J]. Dalton Transactions,2014,43(45):17090-17100.

        [31]GERLING K A,REZAYEE N M,RHEINGOLD A L,et al. Synthesis and structures of bis-ligated zinc complexes supported by tridentate ketoimines that initiate L-lactide polymerization[J]. Dalton Transactions,2014,43(43):16498-16508.

        [32]TROFYMCHUK O S,DANILIUC C G,KEHR G,et al. Synthesis and structures of N-arylcyano-bdiketiminate zinc complexes and adducts and their application in ring-opening polymerization of L-lactide[J]. RSC Advances,2015,5(27):21054-21065.

        [33]ZHENG X,ZHANG C,WANG Z. Synthesis and characterization of zinc complexes supported by NHC-based CNN- and CNP-tridentate ligands and their catalysis in the ring-opening polymerization of rac-lactide and ε-caprolactone[J]. Journal of Organometallic Chemistry,2015,783:105-115.

        [34]DUAN R,GAO B,LI X,et al. Zinc complexes bearing tridentate O,N,O-type half-salen ligands for ring-opening polymerization of lactide[J]. Polymer,2015,71:1-7.

        [35]YANG Y,WANG H,MA H. Stereoselective polymerization of rac-lactide catalyzed by zinc complexes with tetradentate aminophenolate ligands in different coordination patterns:kinetics and mechanism[J]. Inorganic Chemistry,2015,54(12):5839-5854.

        [36]KO B T,LIN C C. Synthesis,characterization and catalysis of mixed-ligand lithium aggregates, excellent initiators for the ring-opening polymerization of L-lactide[J]. Journal of American Chemical Society,2001,123(33):7973-7977.

        [37]HSUEH M L,HUANG B H,WU J,et al. Synthesis,characterization,and catalytic studies of lithium complexes:efficient initiators for ring-opening polymerization of L-lactide[J]. Macromolecules,2005,38(23):9482-9487.

        [38]HUANG C A,HO C L,CHEN C T. Structural and catalytic studies of lithium complexes bearing pendant aminophenolate ligands[J]. Dalton Transactions,2008,26:3502-3510.

        [39]LIU Z,CHEN H X,HUANG D,et al. A facile route to lithium complexes supported by β-ketoiminate ligands and their reactivity[J]. Journal of Organometallic Chemistry,2014,749:7-12.

        [40]XU X,PAN X,TANG S,et al. Synthesis and characterization of bisphenol sodium complexes: an efficient catalyst for the ring-opening polymerization of L-lactide[J]. Inorganic Chemistry Communications,2013,29:89-93.

        [41]CHEN H Y,ZHANG J,LIN C C,et al. Efficient and controlled polymerization of lactide under mild conditions with a sodium-based catalyst[J]. Green Chemistry,2007,9(10):1038-1040.

        [42]ZHANG J,WANG C,LU M,et al. Synthesis and characterization of alkali-metal aryloxo compounds and their catalytic activity for L-lactide polymerization[J]. Polyhedron,2011,30(11):1876-1883.

        [43]PAN X,LIU A,YANG X,et al. Synthesis,characterization of potassium bulky phenolate and application in ring-opening polymerization of L-lactide[J]. Inorganic Chemistry Communications,2010,13(3):376-379.

        [44]CHEN L,JIA L,CHENG F,et al. Synthesis,characterization of sodium and potassium complexes and the application in ring-opening polymerization of L-lactide[J]. Inorganic Chemistry Communications,2011,14(1):26-30.

        [45]CHEN H Y,TANG H Y,LIN C C. Ring-opening polymerization of L-lactide catalyzed by a biocompatible calcium complex[J]. Polymer,2007,48(8):2257-2262.

        [46]HSIAO M W,LIN C C. Ring-opening polymerization of L-lactide catalyzed by calcium complexes[J]. Dalton Transactions,2013,42 (6):2041-2051.

        [47]DARENSBOURG D J,CHOI W,KARROONNIRUN O,et al. Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals. Production of poly(lactide),poly(trimethylene carbonate),and their copolymers[J]. Macromolecules,2008,41(10):3493-3502.

        [48]DARENSBOURG D J,CHOI W,RICHERS C P. Ring-opening polymerization of cyclic monomers by biocompatible metal complexes. Production of poly(lactide),polycarbonates,and their copolymers[J]. Macromolecules,2007,40(10):3521-3523.

        [49]SONG S,MA H,YANG Y. Magnesium complexes supported by salan-like ligands:synthesis,characterization and their application in the ring-opening polymerization of rac-lactide[J]. Dalton Transactions,2013,42(39):14200-14211.

        [50]TANG H Y,CHEN H Y,HUANG J H,et al. Synthesis and structural characterization of magnesium ketiminate complexes:efficient initiators for the ring-opening polymerization of L-lactide[J]. Macromolecules,2007,40(25):8855-8860.

        [51]DAI Z,ZHANG J,GAO Y,et al. Synthesis and structures of tridentate β-diketiminato zinc phenoxides as catalysts for immortal ring-opening polymerization of L-lactide[J]. Catalysis Science & Technology,2013,3(12):3268-3277.

        [52]REZAYEE N M,GERLING K A,RHEINGOLD A L,et al. Synthesis and structures of tridentate ketoiminate zinc complexes bearing trifluoromethyl substituents that act as L-lactide ring opening polymerization initiators[J]. Dalton Transactions,2013,42(15):5573-5586.

        [53]CHEN H Y,TANG H Y,LIN C C. Ring-opening polymerization of lactides initiated by zinc alkoxides derived from NNO-tridentate ligands[J]. Macromolecules,2006,39(11):3745-3752.

        [54]GAO B,DUAN R,PANG X,et al. Zinc complexes containing asymmetrical N,N,O-tridentate ligands and their application in lactide polymerization[J]. Dalton Transactions,2013,42(46):16334-16342.

        Progress in ring-opening polymerization of lactide catalyzed by low-toxic metal complexes

        WANG Fugui,HU Minggang,DENG Qigang,MA Wenhui,SONG Weiming,CHU Hongtao
        (College of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar 161006,Heilongjiang,China)

        Polylactide(PLA)is a new biodegradable and biocompatible polymer,and can be prepared by ring-opening polymerization of lactides. Metal complexes are attractive catalysts for polylactide production,due to their rich structural availability,remarkable catalytic properties and stereoselectivity. In recent years,the low-toxic metal complexes have attracted growing interest. The progress in preparation of polylactide by low-toxic metal complexes is summarized and reviewed in this paper. The influences of the steric structure of ligands and the electronic effect of substituted groups on catalysis performance of complex catalysts are mainly explained. The effects of solvent on the existing state of complex in solution,the coordination-inserting of monomer and the ring-opening polymerization of lactide are analyzed. The development trends are proposed as well. With the knowledge of the mechanism of ring-opening polymerization of lactides by low-toxic metal complexes,new ligands will be designed and synthesized. Complex catalysts with high catalysis activity will be developed,and polylactide with improved properties will be produced in the future.

        polylactide;catalysis;complexes;catalyst;polymerization

        TQ 316.3;O 614

        A

        1000-6613(2016)08-2432-07

        10.16085/j.issn.1000-6613.2016.08.20

        2015-11-18;修改稿日期:2016-03-18。

        第49批教育部留學(xué)回國人員科研啟動基金([2015]311)、黑龍江省青年科學(xué)基金(QC2011C057)及齊齊哈爾市科技局資助項目(GYGG-201314)。

        王富貴(1982—),女,碩士研究生。聯(lián)系人:胡明剛,博士,副教授,從事功能金屬配合物和可降解高分子材料研究。E-mail hmgxs@163.com。

        猜你喜歡
        開環(huán)分子量催化活性
        加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
        轉(zhuǎn)速開環(huán)恒壓頻比的交流調(diào)速系統(tǒng)的分析與仿真研究
        電子測試(2018年1期)2018-04-18 11:52:24
        改良的Tricine-SDS-PAGE電泳檢測胸腺肽分子量
        不同對照品及GPC軟件對右旋糖酐鐵相對分子量測定的影響
        低分子量丙烯酰胺對深部調(diào)驅(qū)采出液脫水的影響
        一種溫和環(huán)醚開環(huán)成雙酯的新方法
        基于開環(huán)補(bǔ)償?shù)娘w機(jī)偏航角控制系統(tǒng)設(shè)計及仿真
        稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
        環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
        Fe3+摻雜三維分級納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
        免费无码av一区二区三区| 国产精品美女自在线观看 | 国产av熟女一区二区三区密桃| 精品福利一区二区三区免费视频| 中文字幕乱伦视频| 久久国产品野战| 手机在线观看成年人视频| 色综合久久中文字幕综合网| 亚洲av日韩av无码污污网站| 美女啪啪国产| 免费精品无码av片在线观看| 中文字幕亚洲人妻系列| 精品日韩一区二区三区av| 精品久久久久久亚洲综合网| 精品人妻人人做人人爽夜夜爽| 国产精品久久久久久麻豆一区 | 精品一区中文字幕在线观看| 欧美成人在线视频| 专区国产精品第一页| 国产伦精品一区二区三区在线| 亚洲高清在线天堂精品| 中文字幕在线亚洲日韩6页| 国产精品无码久久久一区蜜臀| 日韩精品一区二区三区av| 欧美xxxxx在线观看| 大地资源在线播放观看mv| 亚洲中字幕永久在线观看| av网页免费在线观看| 99久久人妻无码精品系列| 一级毛片60分钟在线播放| 亚洲一区二区三区综合网| 爽爽影院免费观看| 日韩a无v码在线播放| 538亚洲欧美国产日韩在线精品| 亚洲丰满熟女乱一区二区三区| 亚洲一区二区三区四区五区六| 久久精品中文字幕第23页| 一区二区三区人妻在线| 人人妻人人澡人人爽人人dvd| 国产色综合天天综合网| 中文字幕偷拍亚洲九色|