亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        微波法制備單晶金剛石的研究進(jìn)展

        2016-08-15 03:39:15汪建華王小安
        關(guān)鍵詞:功率密度外延襯底

        黃 平,汪建華,劉 繁,翁 俊,王小安

        等離子體化學(xué)與新材料湖北省重點(diǎn)實(shí)驗(yàn)室(武漢工程大學(xué)),湖北 武漢 430074

        微波法制備單晶金剛石的研究進(jìn)展

        黃平,汪建華*,劉繁,翁俊,王小安

        等離子體化學(xué)與新材料湖北省重點(diǎn)實(shí)驗(yàn)室(武漢工程大學(xué)),湖北 武漢 430074

        人工合成金剛石的方法主要有高溫高壓法和化學(xué)氣相沉積法兩種.高溫高壓法制備的金剛石尺寸小,無(wú)法避免金屬雜質(zhì)使得制備的金剛石應(yīng)用受到限制.在所有的化學(xué)氣相沉積中,微波等離子體化學(xué)氣相沉積法具有無(wú)放電污染,能量轉(zhuǎn)換效率高,工藝參數(shù)易于調(diào)節(jié)等優(yōu)點(diǎn).用微波等離子體化學(xué)氣相沉積法制備大尺寸、高速率、高質(zhì)量的單晶金剛石受到廣泛重視.介紹了微波等離子體化學(xué)氣相沉積單晶金剛石的制備工藝,對(duì)提高金剛石生長(zhǎng)速率,擴(kuò)大金剛石單晶尺寸兩個(gè)方面的研究進(jìn)展進(jìn)行了綜述,并對(duì)單晶金剛石的前景進(jìn)行了展望.

        微波等離子體;化學(xué)氣相沉積;單晶金剛石

        1 引言

        金剛石具有高硬度,高熱導(dǎo)率,高的光學(xué)透過(guò)率,優(yōu)異的電子遷移率等許多優(yōu)異的物理化學(xué)特性,是一種用途十分廣泛的功能性材料.金剛石可分為天然金剛石和人工合成兩類,合成金剛石又分為單晶和多晶,多晶金剛石由于自身存在大量不規(guī)則晶界,無(wú)法繼承單晶金剛石的許多優(yōu)良特性.高質(zhì)量的單晶金剛石可以用作金剛石高溫半導(dǎo)體、電子器件、量子計(jì)算機(jī)信息處理、高能輻射離子探測(cè)器、高壓設(shè)備頂砧等領(lǐng)域[1-5],寶石級(jí)單晶金剛石還能夠作為首飾用[6].而天然金剛石在地球上的儲(chǔ)存量十分稀少,且價(jià)格昂貴,因此人工合成在物理化學(xué)性質(zhì)接近天然金剛石的高質(zhì)量單晶金剛石顯得十分必要.

        目前,天然金剛石十分稀少,工業(yè)上應(yīng)用的金剛石主要來(lái)自于人工合成的金剛石.制備單晶金剛石的方法主要分為高溫高壓法[7](high temperature and high pressure,HPHT)和化學(xué)氣相沉積法(chemical vapor deposition,CVD).HPHT[8]生長(zhǎng)技術(shù)一般只用來(lái)合成小顆粒金剛石(數(shù)個(gè)微米至毫米),高溫高壓使得成本昂貴,設(shè)備要求苛刻,而且HPHT金剛石由于使用了金屬催化劑,使得金剛石中殘留有金屬顆粒雜質(zhì),從而限制了HPHT金剛石的大規(guī)模應(yīng)用.與傳統(tǒng)HPHT法相比,CVD制備單晶金剛石在成本、條件等方面更具優(yōu)勢(shì),特別是對(duì)于合成尺寸,CVD法理論上不受限制.CVD合成金剛石單晶的方法主要有熱絲CVD法[9-10]、直流等離子體噴射CVD法[11-12]、微波等離子CVD法[13].在這三種方法中,由于微波等離子體化學(xué)氣相沉積(microwave plasma chemical vapor deposition diamond,MPCVD)具有無(wú)極放電無(wú)污染、能量轉(zhuǎn)換效率高、微波等離子參數(shù)可控等優(yōu)點(diǎn),是國(guó)內(nèi)外研究者們制備高質(zhì)量單晶金剛石的首選方法[14].

        2 CVD制備金剛石工藝

        相對(duì)于高溫高壓沉積技術(shù),微波等離子體化學(xué)氣相沉積是一種低氣壓沉積技術(shù).等離子體在進(jìn)行化學(xué)氣相沉積時(shí),活性基團(tuán)在襯底表面發(fā)生一系列復(fù)雜的化學(xué)或物理反應(yīng),最終得到需要的產(chǎn)物.A(氣)+B(氣)→C(固)+D(氣).反應(yīng)氣體A、B被激發(fā)為等離子體狀態(tài),其活性基團(tuán)發(fā)生反應(yīng)生成所需要的固態(tài)物沉積在襯底上.

        制備金剛石的常見(jiàn)混合氣體是甲烷和氫氣.在微波能量激勵(lì)下,含碳混合氣體電離生成含碳的活性粒子并在襯底上以sp2和sp3鍵重組形成石墨相和金剛石相.從甲烷中電離的CH3基團(tuán)[15],是形成金剛石最主要的前驅(qū)體.氫氣離解成的原子氫,能夠刻蝕非金剛石相穩(wěn)定金剛石相,在金剛石形成過(guò)程中起著至關(guān)重要的作用[16-17].含碳基團(tuán)在基片表面進(jìn)行結(jié)構(gòu)重組,由于原子氫對(duì)sp2鍵碳原子的刻蝕作用遠(yuǎn)比對(duì)sp3鍵碳原子的刻蝕作用強(qiáng),這樣重組后的碳-碳鍵具有金剛石結(jié)構(gòu)的sp3鍵保留下來(lái),在合適的工藝下沉積得到金剛石.

        金剛石成核所需要的表面能很高,很難在單晶硅表面實(shí)現(xiàn)異質(zhì)外延.所以通常使用單晶金剛石作為單晶金剛石外延的襯底.同質(zhì)外延單晶金剛石是在金剛石亞穩(wěn)區(qū)利用CVD法在金剛石晶面上外延生長(zhǎng)金剛石的方法.MPCVD法制備單晶金剛石的工作氣壓一般都很高,16 kPa~40 kPa,常見(jiàn)的微波功率600 W ~6 000 W[18-19].襯底溫度在800℃~1 200℃[13-14,20].常見(jiàn)的微波發(fā)生器有2.45 GHz和915 MHz.2.45 GHz的微波輸入功率通常低于10 kW,與2.45 GHz相比,915 MHz的MPCVD裝置產(chǎn)生的等離子球的尺寸更大[21],能夠同時(shí)放入許多片襯底(圖1[20]),Asmussen等人在915 MHz的MPCVD裝置中,放入了70片3.5 mm× 3.5 mm HPHT金剛石晶種同時(shí)外延單晶金剛石[21],生長(zhǎng)條件如下:微波功率11.5 kW,氣壓16 kPa,5%~8%的CH4/H2體積比,放電直徑>100 mm,基片溫度1 125℃~1 200℃,該方法能夠極大地提高金剛石的生長(zhǎng)效率,節(jié)約成本.據(jù)報(bào)道[22],915 MHz的最大輸出功率可以達(dá)到70 kW,最大等離子球直徑達(dá)到了300 mm.

        圖1 使用915 MHz裝置在70片金剛石晶種同時(shí)外延單晶金剛石Fig.1 Epitaxial deposition of single crystal diamond over 70 seed crystals with 915 MHz equipment

        3 提高單晶金剛石生長(zhǎng)速率

        在能夠生長(zhǎng)出一定厚度單晶金剛石的情況下,提高金剛石的沉積速率能夠縮短沉積時(shí)間,有效地控制成本.影響單晶金剛石生長(zhǎng)速率的因素有很多,如襯底溫度、微波功率密度、甲烷濃度、添加輔助性氣體等.近年來(lái),提高單晶金剛石生長(zhǎng)速率的同時(shí)保證較好的金剛石質(zhì)量對(duì)于研究者來(lái)說(shuō)仍然是一項(xiàng)重大的挑戰(zhàn).

        襯底溫度對(duì)單晶金剛石生長(zhǎng)十分重要.在適合單晶外延的溫度范圍內(nèi),適當(dāng)升高襯底溫度有利于提高金剛石的生長(zhǎng)速率.這是由于襯底表面沉積溫度升高后,襯底表面活性增強(qiáng),促進(jìn)含碳化合物的分解擴(kuò)散[23-24],加速襯底表面的物理化學(xué)反應(yīng),進(jìn)而提高金剛石的生長(zhǎng)速率.單晶金剛石的生長(zhǎng)溫度一般在800℃~1 200℃.研究發(fā)現(xiàn),其他生長(zhǎng)條件相同的情況下,金剛石的沉積速率在1 000℃左右達(dá)到飽和[25].然而隨著沉積溫度的升高,金剛石表面形貌有可能會(huì)發(fā)生變化.Tallaire等人在單晶生長(zhǎng)的研究中發(fā)現(xiàn),當(dāng)襯底溫度超過(guò)900℃,單晶襯底表面形成了典型的金字塔缺陷[26],如圖2(a).金字塔缺陷是單晶生長(zhǎng)過(guò)程中常見(jiàn)的一種缺陷.這種金字塔的頂端含有非外延微晶金剛石.該微晶可能來(lái)自于襯底表面缺陷如二次形核或螺旋位錯(cuò)的攀移造成的[27-28].當(dāng)襯底溫度低于750℃時(shí),生長(zhǎng)速率極低,且觀察到的薄膜粗糙,含有大量缺陷[26].當(dāng)溫度高于1 200℃時(shí),易出現(xiàn)石墨化不利于單晶金剛石的生長(zhǎng).

        圖2 單晶生長(zhǎng)過(guò)程中常見(jiàn)的兩種缺陷(a)金字塔缺陷;(b)邊緣多晶化Fig.2 Two kinds of common defects in the process of the growth of crystal diamond (a)Pyramid defect;(b)Polycrystallization of the edge

        微波功率密度是輸入功率與等離子體球尺寸的比率,對(duì)金剛石生長(zhǎng)影響很大.高微波功率和高的氣壓都能夠加速含碳?xì)庠吹臒岱纸猓岣呓饎偸L(zhǎng)速率和晶體質(zhì)量[29].氣體的離解,特別是氫,在金剛石的生長(zhǎng)過(guò)程中十分關(guān)鍵,能夠?yàn)榻饎偸纳L(zhǎng)提供前驅(qū)體.在反應(yīng)腔內(nèi),氣體的離解主要依靠來(lái)自等離子體球中心的熱量來(lái)完成.要想提高原子氫的含量,就必須有更高的微波等離子體密度.早期的微波等離子體裝置制備單晶金剛石的微波功率密度小于5 W/cm3,氣壓小于15 kPa,只有在低甲烷體積分?jǐn)?shù)(<1%)下才能夠得到質(zhì)量較好的單晶金剛石,生長(zhǎng)速率也小于1 μm/h.隨著設(shè)備的不斷改進(jìn),微波功率密度最大可提升到1 000 W/cm3[29].研究表明[30],在其他生長(zhǎng)條件相同的情況下,隨著微波功率密度的增加,金剛石的生長(zhǎng)速率隨之增加,如圖3.由于反應(yīng)腔體承受能力有限,微波功率密度不可能無(wú)限制的增加.太大的微波功率密度會(huì)使得腔體內(nèi)壁過(guò)熱,腔體內(nèi)壁或者石英窗口可能會(huì)被刻蝕,同時(shí)也會(huì)影響晶體穩(wěn)定的生長(zhǎng).據(jù)報(bào)道[31-32],使用脈沖微波能夠有效的解決由于微波功率密度增加而導(dǎo)致腔體過(guò)熱的這一問(wèn)題.

        混合氣體中甲烷體積濃度對(duì)金剛石的生長(zhǎng)速率也有影響.較低的甲烷體積濃度下,金剛石的沉積速率相當(dāng)?shù)停?3-34].低甲烷體積濃度下,特別是功率密度較低的情況下,表面易發(fā)生二次形核,不利于單晶金剛石的生長(zhǎng)[28,34].Tallaire[35]等在功率3.2 kW,甲烷體積分?jǐn)?shù)為2%~7%的參數(shù)下制備了單晶金剛石,發(fā)現(xiàn)當(dāng)體積分?jǐn)?shù)為2%時(shí),制備的金剛石生長(zhǎng)速率只有2 μm/h,而且表面粗糙,含有大量刻蝕坑;當(dāng)甲烷體積分?jǐn)?shù)增加至7%時(shí)生長(zhǎng)速率達(dá)到15 μm/h.這是由于在較高的功率密度下,等離子體中會(huì)產(chǎn)生大量的原子氫,碳源濃度過(guò)低時(shí),金剛石的刻蝕會(huì)相對(duì)加劇[26,36],從而降低了金剛石的生長(zhǎng)速率.當(dāng)碳源濃度升高時(shí),原子氫會(huì)激發(fā)更多的含碳基團(tuán)用于金剛石生長(zhǎng),進(jìn)而提高金剛石的生長(zhǎng)速率[26,37].

        圖3 生長(zhǎng)速率與微波功率密度的關(guān)系曲線Fig.3 Relationship curves between the growth rate and the microwave power density

        在傳統(tǒng)的混合氣體中添加少量的氮?dú)饽軌蚩焖偬嵘饎偸纳L(zhǎng)速率[14,38].據(jù)報(bào)道[14],卡內(nèi)基實(shí)驗(yàn)室的研究人員發(fā)現(xiàn),在反應(yīng)氣體中添加少量氮?dú)獾那闆r下,生長(zhǎng)速率高達(dá)200 μm/h,是不添加氮?dú)鈺r(shí)2~3倍.在較高沉積溫度的情況下,氮?dú)獾奶砑舆€能夠阻止襯底表面孿晶的生成[39].毫米級(jí)厚度的單晶金剛石,添加少量氮?dú)怙@得十分必要.雖然氮?dú)獾募尤肽軌蛱岣呓饎偸某练e速率,對(duì)于單晶金剛石來(lái)說(shuō),N是雜質(zhì)原子,不可避免地對(duì)金剛石的電學(xué)性能造成影響.添加雜質(zhì)氣體的方法適合制備熱學(xué)力學(xué)應(yīng)用方面的單晶金剛石[40].添加Ar能夠提高金剛石的生長(zhǎng)速率.由于Ar熱傳導(dǎo)率比氫氣低,添加Ar后使得等離子球的熱擴(kuò)散變慢,從而等離子體中心的熱量束縛更為集中,襯底溫度上升得更快,從而提高生長(zhǎng)速率[41-42].

        4 大尺寸單晶的生長(zhǎng)

        圖4 不同基片臺(tái)上單晶金剛石的生長(zhǎng)示意圖(時(shí)間:t0<t1<t2)Fig.4 Schematic diagram of single crystal diamond growth on different substrates(time:t0<t1<t2)(a)Original open substrate;(b)Improved pocket substrate

        CVD法制備單晶金剛石需要單晶金剛石作為襯底,理論上講,金剛石襯底有多大面積,CVD單晶金剛石就有多大.據(jù)報(bào)道[43],目前HPHT單晶晶種最大尺寸達(dá)到了12 mm×12 mm.CVD金剛石單晶的生長(zhǎng)與其他晶體的生長(zhǎng)不一樣,其他晶體生長(zhǎng)基本上都是越長(zhǎng)越大,而CVD金剛石單晶生長(zhǎng)過(guò)程中存在邊緣多晶化(PCD rim),單晶卻是越長(zhǎng)越小.這是因?yàn)橥庋訂尉У耐瑫r(shí),襯底邊緣多晶金剛石也在同時(shí)生長(zhǎng),如圖2(b)[44].由于邊緣效應(yīng),晶種四周同時(shí)生長(zhǎng)多晶層,而且隨著單晶外延生長(zhǎng)層厚度的增加,單晶表面積越來(lái)越小,而多晶表面積越來(lái)越大,甚至有可能完全演變成多晶生長(zhǎng). 在CVD單晶金剛石生長(zhǎng)研究中,邊緣多晶化是另一個(gè)需要解決的難題.Nad[45]等通過(guò)特殊的基片臺(tái)設(shè)計(jì),如圖4[45],成功地在3.5 mm×3.5 mm×1.4 mm單晶襯底上制備了5.3 mm×5.2 mm×4.5 mm(激光切割后)的單晶金剛石,研究結(jié)果表明改進(jìn)后的口袋型基片臺(tái)不僅能夠有效的遏制邊緣多晶化的現(xiàn)象,外延單晶表面積還有所擴(kuò)大.

        馬賽克拼接技術(shù)可以生產(chǎn)大尺寸的單晶.馬賽克拼接法[46](圖5)是先選用一塊單晶襯底模板通過(guò)離子注入與剝離的方法克隆出許多個(gè)相同的CVD單晶片,然后將這些相同的CVD單晶片拼接在一起作為襯底,再在上面外延單晶.2012年,Yamada等使用馬賽克法利用4~8片10 mm× 10 mm×1.0 mm的克隆單晶片成功外延了1 inch的大單晶片[46].2014年,他們使用相同的方法采用24片10 mm×10 mm×1.0 mm的克隆片成功制備了40 mm×60 mm(約2 inch)的大單晶片[47].可以設(shè)想,如果等離子球尺寸足夠大,采用馬賽克法將能夠更有效的擴(kuò)大單晶尺寸,已見(jiàn)報(bào)道[22]的等離子球直徑尺寸能達(dá)到直徑300 mm.

        圖5 馬賽克法生產(chǎn)大尺寸單晶的示意圖Fig.5 Schematic diagram of large size crystals produced by mosaic growth

        5 展 望

        近10年來(lái),研究者們關(guān)于MPCVD單晶金剛石的研究方面已經(jīng)取得了很大的成就.然而,單晶金剛石的制備仍然存在不少問(wèn)題,比如說(shuō),光學(xué)透明度不夠,單晶邊緣多晶化,襯底缺陷延伸到外延層等.獲得大尺寸、高速率、高質(zhì)量的金剛石一直是研究者們不斷追求的目標(biāo).人工合成金剛石技術(shù)的不斷成熟,制備單晶金剛石的成本的逐步下降,將會(huì)更有利于金剛石的應(yīng)用范圍進(jìn)一步的擴(kuò)大.特別是單晶金剛石的摻雜技術(shù)一旦突破,半導(dǎo)體領(lǐng)域?qū)?huì)迎來(lái)全新的時(shí)代.總之,人造單晶金剛石將會(huì)在未來(lái)的社會(huì)和科學(xué)技術(shù)發(fā)展中產(chǎn)生巨大的影響.

        [1] UEDA K,SOUMIYA T,ASANO H.Ferromagnetic schottky junctions using diamond semiconductors[J]. Diamond and related materials,2012,25:159-162.

        [2] AZADEGAN B,WAGNER W.Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal(classical approach)[J].Nuclear instruments and methods in physics research B,2015,342:144-149.

        [3]BAYN I,MEYLER M,LAHAV A,et al.Processing of photonic crystal nanocavity for quantum information in diamond[J].Diamond and related materials,2011,20:937-943.

        [4] FREGEAUA MO,OBERSTEDT S,BRYS T,et al.First use of single-crystal diamonds as fission-fragment detector[J].Nuclear instruments and methods in physics research A,2015,791:58-64.

        [5]OHTANI E,MIBESOUND K,SAKAMAKI T,et al. Velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell[J].Russian geology and geophysics,2015,56:190-195.

        [6] 王東勝,王志勇,董耀華.人造大單晶金剛石合成技術(shù)及應(yīng)用研究現(xiàn)狀[J].廣東建材,2010(4):36-40.

        WANG D S,WANG Z Y,DONG Y H.Research situation on artificial big mono-crystalline diamond synthesis technology and application[J].Guangdong building materials,2010(4):36-40.

        [7] 田宇.高溫高壓生長(zhǎng)寶石級(jí)金剛石單晶的實(shí)驗(yàn)與理論研究[D].長(zhǎng)春:吉林大學(xué),2009.

        [8]SU Q,ZHANG J,LI M,et al.Defects of diamond single crystal grown under high temperature and high pressure [J].Thin solid films,2013,546:457-460.

        [9]HIEMKE J,SCHWARZ S,ROTTMAIR C,et al.Diamond single crystal growth in hot filament cvd[J].Diamond and related materials,2005,15:536-541.

        [10]YAMAZAKI K,F(xiàn)URUICHI K,TSUMURA I,et al. The large-sized diamond single-crystal synthesis by hot filament cvd[J].Journal of crystal growth,2008,310:1019-1022.

        [11]HEI LF,LIU J,LI C,et al.Fabrication and characterization of large homoepitaxial single crystal diamond grown by dc arc plasma jet cvd[J].Diamond and related materials,2012,30:77-84.

        [12]LIU J,HEI L F,SONGJH,et al.High-rate homoepitaxial growth of cvd single crystal diamond by dc arc plasma jet at blow-down(open cycle)mode[J].Diamond and related materials,2014,46:42-51.

        [13] YAMADA H,CHAYAHARA A,MOKUNO Y,et al. Numerical microwave plasma discharge study for the growth of large single-crystal diamond[J].Diamond and related materials,2015,54:9-14.

        [14]CHAYAHARA A,MOKUNO Y,HORINO Y,et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave cvd[J].Diamondandrelatedmaterials,2004,13(11) :1954-1958.

        [15]HARRIS S J.Mechanism for diamond growth from methy radicals[J].Applied physics letters,1990,56:2298-2300.

        [16]BATTAILE C,SROLOVITZ D,OLEINIKI,et al. Etching effects during the chemical vapor deposition of (100)diamond[J].The journal of chemical physics,1999,111(9):4291-4299.

        [17]GORDON MH,DUTEN X,GICQUE A,et al.Energy coupling efficiency of a hydrogen microwave plasma reactor[J].Journal of applied physics,2001,89(3):1544-1549.

        [18] 嚴(yán)壘,馬志斌,曹為,等.高溫高壓金剛石襯底上的同質(zhì)外延生長(zhǎng)研究[J].人工晶體學(xué)報(bào),2014,43(6):1420-1424. YAN L,MA Z B,CAOW,et al.Homoepitaxial growth of diamond single crystal on hpht substrates[J]. Journal of synthetic crystals,2014,43(6):1420-1424.

        [19]AHARONOVICH I,LEE J C,MAGYAR A P,et al. Homoepitaxial growth of single crystal diamond membranesforquantuminformationprocessing[J]. Advanced materials,2012,24(10):54-59.

        [20] SCHRECK M,ASMUSSEN J,SHIKATA S,et al. Large-area high-quality single crystal diamond[J].Materials research society,2014,39:504-510.

        [21] ASMUSSEN J,GROTJOHN TA,SCHUELKE T,et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis [J].Applied physics letters,2008,93:031502-1-031502-3.

        [22]LIANG Q,YAN C,LAI J,et al.Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition[J].Crystal growth design,2014,14(7):3234-3238.

        [23] MARINELLIA M,MILANIA E,PAOLETTI A,et al. Analysis of traps in high quality cvd diamond films through the temperature dependence of carrier dynamics[J].Diamond and related materials,2003,12:1733-1737.

        [24] DEMLOWA SN,RECHENBERG R,GROTJOHN T,et al.The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond[J].Diamond and related materials,2014,49:19-24.

        [25]MAEDA H,OHTSUBO K,GROTJOHN M,et al. Growth behavior of boron-doped diamond in microwave plasma-assisted chemical vapor deposition using trimethy boron as the dopant source[J].Diamond and related materials,1998,7:88-95.

        [26] TALLAIRE A,ACHARD J,SILVA F,et al.Homoepitaxial deposition of high-quality thick diamond films:effect of growth parameters[J].Diamond and related materials,2005,14:249-254

        [27] ENCKEVORT WJ,JANSSEN G,SCHERMER J,et al. Step-related growth phenomena on exact and misoriented{001}surfaces of cvd-grown single-crystal diamonds [J].Diamond and related materials,1995,4:250-255.

        [28] OKUSHI H,WATANABE H,RI S,et al.Device-grade homoepitaxial diamond film growth[J].Journal of crystal growth,2002,237:1269-1276.

        [29] GU Y,LU L,GROTJOHNT,et al.Microwave plasma reactor design for high pressure and high power density diamond synthesis[J].Diamond and related materials,2012,24:210-214.

        [30]ACHARD J,SILVA F,TALLAIRE A,et al.High quality microwave plasma chemical vapor deposition diamond single crystal growth:high microwave power density regime[J].Journal of physics D:applied physics,2007,40:6175-6188.

        [31] DUTEN X,ROUSSEAU A,GICQUEL A,et al.Timeresolved measurements of the gas temperature in a hydrogen/methanemediumpressuremicrowave915 MHz pulsed plasma[J].Journal of physics D:applied physics,2002,35:1939-1945.

        [32]TALLAIRE A,ACHARD J,SILVA F,et al.Effect of increasing the microwave density in both continuous and pulsed wave mode on the growth of monocrystalline diamond films[J].Physica status solidi(a),2005,202:2059-2065.

        [33] RI SG,YOSHIDA H,YAMANAKA S,et al.Misorientation angle dependence of surface morphology in homoepitaxial diamond film growth at a low hydrogen/methane ratio[J].Journal of crystal growth,2002,235:300-306.

        [34]TERAJI T,ITO T.Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition[J].Journal of crystal growth,2004,271:409-419

        [35]TERAJI T,MITANI S.High rate growth and luminescence properties of high-quality homoepitaxial diamond(100)films[J].Physica status solidi(a),2003,198(2):395-406.

        [36]LOMBARDI G,HASSOUNI K,STANCU G,et al. Modeling of microwave discharges of hydrogenadmixed with methane for diamond deposition[J].Ap-plied physics letters,2005,98:053303-1-053303-12.

        [37] DERKAOUI N,ROND C,HASSOUNI K,et al.Spectroscopic analysis of hydrogen/methane microwave plasma and fast growth rate of diamond single crystal [J].Applied physics letters,2014,115:233301-1-233301-8.

        [38]TALLAIRE A,COLLINS A T.CHARLES D,et al. Characterisation of high-quality thick single-crystal diamond grown by chemical vapor deposition with a low nitrogen addition[J].Diamond and related materials,2006,15:1700-1707

        [39]ACHARD J,SILVA F,BRINZA O,et al.Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick chemical vapor deposition diamond single crystals[J].Diamond and related materials,2007,16:685-689.

        [40]TALLAIRE A,ACHARD J,SILVA F,et al.Growth of large size diamond single crystals by plasma assisted chemical vapour deposition:recent achievements and remaining challenges[J].Comptes rendus physique,2013,14:169-184.

        [41] BOLSHAKOVAP,RALCHENKOVG.High-rate growth of single crystal diamond in microwave plasma in hydrogen/methane and argon/hydrogen/methane gas mixtures in presence of intensive soot formation[J]. Diamond and related materials,2016,62:49-57.

        [42]CICAL G,MONEGER D,CORNACCHIA D,et al. Toward smooth microwave plasma chemical vapor deposition diamond films:exploring the limits of the hydrogen percentage in argon/hydrogen/methane gas mixture[J].Surface and coatings technology,2012,211:152-157.

        [43] SUMIYAA H,HARANOA K.High temperature and high pressure synthesis and crystalline quality of large high-quality(001)and(111)diamond crystals[J]. Diamond and related materials,2015,58:221-225.

        [44]呂反修,黑立富,劉杰,等.CVD金剛石大單晶外延生長(zhǎng)及其高技術(shù)應(yīng)用前景[J].熱處理,2013,28 (5):1-11. LYU F X,HEI L F,LIU J,et al.Epitaxial growth of large size single crystal diamonds prepared by chemical vapor deposition technique and the prospect in high technology applications[J].Heat treatment,2013,28(5):1-11

        [45]NAD S,GU Y,ASMUSSEN J,et al.Growth strategies for large and high quality single crystal diamond substrates[J].Diamond and related materials,2015,60:26-34.

        [46] YAMADA H,CHAYAHARA A,UMEZAWA H,et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and related materials,2012,24:29-33.

        [47] YAMADA H,CHAYAHARA A,MOKUNO Y,et al. A 2-in.mosaic wafer made of a single-crystal diamond [J].Applied physics letter,2014,104:102110-1-1021110-4.

        本文編輯:龔曉寧

        Research Progress in Preparation of Mono-Crystal Diamond by Microwave Method

        HUANG Ping,WANG Jianhua*,LIU Fan,WENG Jun,WANG Xiao'an
        Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology),Wuhan 430074,China

        The high temperature and high pressure and the chemical vapor deposition are the main methods for preparing synthetic diamond.The diamond prepared by the high temperature and high pressure has too small sizes with metal impurities,which restricts its application.Microwave plasma chemical vapor deposition has advantages of no discharge pollution,high energy conversion efficiency,and adjustable process parameters,compared with other chemical vapor deposition,and more attention was paid on it to obtain the single diamond with large size,high speed and high quality.The technologies for preparaing single crystal diamond by microwave plasma chemical vapor deposition diamond were introduced.The research progresses in improving the diamond growth rate and scaling the size of single crystal diamond were summarized.Finally,the application of single diamond was prospected.

        microwave plasma;chemical vapor deposition;single-crystal diamond

        汪建華,博士,教授,博士研究生導(dǎo)師.E-mail:wjhwz@126.com

        TB43

        A

        10.3969/j.issn.1674-2869.2016.04.009

        2016-02-28

        湖北省教育廳科學(xué)技術(shù)研究計(jì)劃優(yōu)秀中青年人才項(xiàng)目(Q20151517);武漢工程大學(xué)科學(xué)研究基金項(xiàng)目(K201506)

        黃平,碩士研究生.E-mail:fletly@126.com.

        猜你喜歡
        功率密度外延襯底
        硅襯底LED隧道燈具技術(shù)在昌銅高速隧道中的應(yīng)用
        關(guān)于工資內(nèi)涵和外延界定的再認(rèn)識(shí)
        大尺寸低阻ZnO單晶襯底
        入坑
        意林(2016年13期)2016-08-18 22:38:36
        愛(ài)情的內(nèi)涵和外延(短篇小說(shuō))
        大尺寸低阻ZnO 單晶襯底
        大尺寸低阻ZnO 單晶襯底
        高效高功率密度低噪聲電機(jī)研究
        PrimePACKTM結(jié)合最新IGBT5和.XT模塊工藝延長(zhǎng)產(chǎn)品壽命,提高功率密度
        國(guó)內(nèi)功率密度最大中頻感應(yīng)爐太鋼熱試成功
        上海金屬(2013年6期)2013-12-20 07:58:07
        欧美性猛交xxxx免费看蜜桃| 亚洲国产精品成人一区| 国产天堂av在线播放资源| 欧美成人午夜免费影院手机在线看| av无码久久久久不卡网站下载| 啪啪视频一区二区三区入囗| 人妻中文字幕一区二区三区| 欧美高清视频手机在在线| 亚洲综合区图片小说区| 欧美国产亚洲精品成人a v| 亚洲女同av一区二区在线观看| 国产成人久久精品一区二区三区 | 日本五月天婷久久网站| 国产精品自在在线午夜出白浆| 中文字幕午夜精品久久久| 人妻少妇偷人精品无码 | 国产91在线|亚洲| av在线免费观看麻豆| 国产午夜福利久久精品| 人妻无码中文专区久久五月婷| 日韩精品人妻少妇一区二区| 国产不卡精品一区二区三区| 强行无套内谢大学生初次| 欧美xxxx新一区二区三区 | 美女脱掉内裤扒开下面让人插| 色一情一乱一伦| 亚洲欧美日韩综合在线观看| 日本高清色一区二区三区| 亚洲国产精品综合久久网络| 国产在线精品一区二区三区不卡| 岛国视频在线无码| 亚洲人成网站色在线入口口| 国产免费av片在线观看| 九九99国产精品视频| 丰满巨臀人妻中文字幕| 国产免费爽爽视频在线观看| 香蕉视频一级片| 91九色精品日韩内射无| 国产欧美日韩精品丝袜高跟鞋| 伊人久久网国产伊人| 亚洲av高清在线一区二区三区|