陶瑩 王帆 康毅敏 李浩軍 劉志躍
(1.內(nèi)蒙古醫(yī)科大學(xué),呼和浩特,010110;2.北京回龍觀醫(yī)院,北京,100096;3.內(nèi)蒙古精神衛(wèi)生中心,呼和浩特,010010)
?
代謝相關(guān)因子在物質(zhì)依賴睡眠障礙中的研究進展
陶瑩1王帆2康毅敏1李浩軍3劉志躍1
(1.內(nèi)蒙古醫(yī)科大學(xué),呼和浩特,010110;2.北京回龍觀醫(yī)院,北京,100096;3.內(nèi)蒙古精神衛(wèi)生中心,呼和浩特,010010)
物質(zhì)依賴是一種慢性腦病,睡眠障礙則是由睡眠質(zhì)量或時序的改變而引起的機體功能紊亂的綜合征。代謝相關(guān)因子在睡眠-覺醒節(jié)律的調(diào)節(jié)中發(fā)揮重要的作用,并且參與物質(zhì)依賴的發(fā)生發(fā)展。本文就代謝相關(guān)因子在物質(zhì)依賴睡眠障礙中的研究作簡單綜述。
代謝相關(guān)因子;物質(zhì)依賴(成癮);睡眠障礙
物質(zhì)依賴(成癮)是藥物與機體相互作用引起的病理性軀體或/與精神癥狀的一類慢性復(fù)發(fā)性的疾病[1],以成癮-戒斷-復(fù)發(fā)為主要特點。這里的“物質(zhì)”指的是精神活性藥物,如嗎啡(Morphine)、海洛因(Heroin)、可卡因(Cocaine)、甲基苯丙胺(MA)、氯胺酮(Ketamine)等。睡眠障礙是由器質(zhì)或非器質(zhì)性因素引起睡眠時序或質(zhì)量的變化即失眠、嗜睡、睡眠-覺醒節(jié)律障礙或睡眠中出現(xiàn)異常的發(fā)作性事件,導(dǎo)致睡眠質(zhì)量不能滿足個體生理需要而明顯影響患者白天活動的一種綜合征[2]。睡眠障礙是物質(zhì)依賴者戒斷中普遍存在的癥狀,同時也是導(dǎo)致其復(fù)吸的原因之一。研究證明[3],睡眠不足和精神興奮在多巴胺能系統(tǒng)上有著相似的神經(jīng)生物學(xué)效應(yīng)。
能量平衡是機體最基本的調(diào)節(jié)之一,在哺乳動物和人類中,中樞神經(jīng)系統(tǒng)和外周信號之間精確的相互作用是維持食物攝取和能量消耗平衡的關(guān)鍵[4]。在中樞神經(jīng)系統(tǒng),下丘腦通過激活或抑制外周的信號,包括Leptin、Ghrelin、orexin與adiponectin等代謝相關(guān)因子而參與調(diào)節(jié)[4]。代謝相關(guān)因子是指影響代謝的多肽或細(xì)胞因子,由肝臟、白色脂肪組織(White Adipose,WAT)和胰腺等代謝器官表達(dá)[5],參與調(diào)節(jié)中樞神經(jīng)系統(tǒng)和外周神經(jīng)元,從而參與影響中樞神經(jīng)系統(tǒng)的睡眠調(diào)節(jié)和成癮。
2.1瘦素瘦素(Leptin,LP)是由167個氨基酸構(gòu)成的蛋白質(zhì),主要由脂肪組織產(chǎn)生,在食物的攝取和體重的調(diào)節(jié)中發(fā)揮重要作用[6]。一項美國兒童睡眠的研究發(fā)現(xiàn)[7],年齡為7歲的女童中,特別是肥胖者,慢性睡眠剝奪與低水平血清LP相關(guān)聯(lián)。另外,青春期男性低水平血清LP與睡眠剝奪也存在關(guān)聯(lián)性。動物實驗表明,將處于正常睡眠周期的小鼠睡眠剝奪,可增加小鼠的日常食物攝入量,同時降低下丘腦中LP受體的信號傳導(dǎo)[8]。另外,據(jù)Simon等人研究[9],睡眠期間LP水平高于覺醒狀態(tài)。絕經(jīng)期婦女睡眠的研究發(fā)現(xiàn)[10],與睡眠時間≤6 h相比,時間≥8 h循環(huán)LP濃度更高,另外,睡眠質(zhì)量與LP水平無相關(guān)性。剝奪快速動眼睡眠(REM)將導(dǎo)致恐怖的場景記憶,同時減少杏仁核表面GluR1的表達(dá),腹腔注射LP,處于REM的小鼠會減少記憶障礙和翻轉(zhuǎn)減少的杏仁核GluR1表達(dá)[6]。
2.2生長激素釋放肽生長激素釋放肽(Ghrelin,GHRE)是一種由28個氨基酸組成的肽,主要由胃分泌,參與睡眠-覺醒節(jié)律調(diào)節(jié)[11]。Weikel等人[12]研究發(fā)現(xiàn):小鼠腹腔GHRE給藥后可增加慢波睡眠(SWS)的時長。GHRE增加非快速動眼睡眠(NREM)時長,減少快速動眼睡眠(REM)[13]。在Szentirmai等[14]研究發(fā)現(xiàn),GHRE基因敲除小鼠的睡眠少于野生型。由此推斷,GHRE可能具有睡眠促進效果。類似的研究發(fā)現(xiàn),在睡眠剝奪的恢復(fù)期,血清GHRE含量優(yōu)先增加[15]。這些證據(jù)表明,GHRE在哺乳動物的睡眠-覺醒周期中扮演著重要的角色。
2.3食欲素食欲素(Orexin)存在食欲素A和食欲素B兩種亞型,在大腦和下丘腦中廣泛分布,在睡眠-覺醒調(diào)節(jié)和晝夜節(jié)律變化中發(fā)揮作用[16]。研究發(fā)現(xiàn)[9],在Orexin基因中插入光敏蛋白基因,通過發(fā)射到大腦、下丘腦特定部位的激光纖維光束激活Orexin能神經(jīng)元,一旦Orexin能神經(jīng)元被激活,處于睡眠狀態(tài)的小鼠就會比Orexin神經(jīng)元未被激活的小鼠更容易覺醒。大鼠腦室注射Orexin-A發(fā)現(xiàn),可增加其激動水平,延長覺醒時間并減少其睡眠時間,而更高劑量的Orexin A可完全剝奪異項睡眠時間,從而減少大鼠深度睡眠時間。研究小鼠Orexin能神經(jīng)元發(fā)現(xiàn),與正常睡眠相比,睡眠剝奪后,小鼠Orexin能神經(jīng)元增加對GABAA受體激動劑的敏感性,同時改變突觸可塑性[17]。另外,具有GABA能輸入性的Orexin能神經(jīng)元對睡眠剝奪有很強的敏感性。Orexin能神經(jīng)元的這種分子效應(yīng)在長期失眠中扮演著重要的角色,特別是減少恢復(fù)睡眠的可能性[17]。另外,人,狗和小鼠缺乏食欲素系統(tǒng)將導(dǎo)致白天過度嗜睡[18]。
研究表明[19],GHRH和LP可能通過降低REM和影響NREM睡眠參與睡眠調(diào)節(jié)。當(dāng)睡眠限制時,高水平GHRE和低水平的LP可能是機體增加能量攝入的正常反應(yīng)。因此,增加喚醒時間,高水平的GHRE導(dǎo)致饑餓和更多的能量攝入,同時低水平LP可增加能量需要。另外,降低LP水平,增加GHRE水平可直接調(diào)節(jié)Orexin的活性,增加Orexin能神經(jīng)元的興奮性,因此可以促進覺醒[18]。
2.4脂聯(lián)素脂聯(lián)素(Adiponectin,ADPQ)是一種脂肪細(xì)胞衍生的抗炎激素,調(diào)節(jié)脂質(zhì)和糖代謝,包括促進脂肪酸氧化、葡萄糖的利用和抑制肝糖元異生[20]。動物實驗發(fā)現(xiàn),妊娠后期睡眠剝奪,可影響后代成年小鼠內(nèi)臟白色脂肪組織(VWAT)中ADPQ的表達(dá),降低血漿ADPQ水平[20]。另外,發(fā)生在孕期的睡眠剝奪通過對組織特異性靶基因如VWAT中的ADPQ進行錯誤的調(diào)節(jié),影響后代小鼠代謝綜合征的發(fā)病率[20]。一項美國報道顯示[21],健康男性(平均BMI=22.8 kg/m2)的脂聯(lián)素水平表現(xiàn)出日/夜節(jié)律變化,夜晚顯著下降,清晨達(dá)到最低。并且,睡眠剝奪導(dǎo)致脂聯(lián)素基因表達(dá)失調(diào)[22]。
3.1阿片類
3.1.1嗎啡作為一種有效的鎮(zhèn)痛劑,嗎啡(morphine)被廣泛應(yīng)用于臨床,如惡性腫瘤晚期和術(shù)后疼痛的緩解[23],長期嗎啡暴露將引起機體的依賴和藥物的耐受[24]。
Grewo Lim等在細(xì)胞水平研究發(fā)現(xiàn)[25],嗎啡給藥可激活LP表達(dá),同時上調(diào)伏隔核(NAc)多巴胺受體的表達(dá),然而,布洛芬等非甾體類抗炎藥則對NAc上LP的表達(dá)無影響。缺乏LP的ob小鼠,嗎啡的獎賞效應(yīng)被阻滯,或者通過減少NAc上LP或白介素-1β水平而降低嗎啡的鎮(zhèn)痛作用。另外,阿片類藥物可激活NAc上LP介導(dǎo)的中央控制系統(tǒng),從而增加阿片類藥物的獎賞效應(yīng)。最近的一項實驗發(fā)現(xiàn)[26],大鼠鞘內(nèi)LP阻斷劑給藥可阻斷嗎啡鎮(zhèn)痛耐受的形成。進一步研究發(fā)現(xiàn),嗎啡慢性給藥,脊髓LP和LP受體(Ob-R)水平隨時間的延長而增加,同時激活信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)通路,增加N-甲基-D-天冬氨酸(NMDA)受體NR1亞基的表達(dá)[26]。逐漸減少鞘內(nèi)LP阻斷劑給藥量,STAT3和NR1亞基活化明顯增強。由此可見,脊髓LP通過激活STAT3-NMDA受體通路而促進嗎啡鎮(zhèn)痛耐受的形成。
GHRE通過激活并結(jié)合腹側(cè)被蓋區(qū)(VTA)而參與獎賞效應(yīng)[27]。側(cè)腦室注射GHRE-R1α激動劑發(fā)現(xiàn),GHRP-2和GHRP-6可減弱小鼠腹腔注射嗎啡誘導(dǎo)的鎮(zhèn)痛效應(yīng)[28]。
Orexin存在于下丘腦外側(cè),釋放至VTA,促進覓藥行為并增加釋放到VTA多巴胺能神經(jīng)元的興奮性遞質(zhì)[29]。VTA多巴胺能神經(jīng)元是成癮性藥物誘導(dǎo)突觸可塑性的關(guān)鍵區(qū)域。實驗發(fā)現(xiàn)[29],嗎啡不僅增加突觸前谷氨酸的釋放,而且增大在突觸效能上依賴VTA Orexin 1型受體(OxR1)信號的多巴胺能神經(jīng)元在突觸前和突觸后的變化。旁巨細(xì)胞外側(cè)核(LPGi)是控制嗎啡戒斷癥狀中軀體癥狀出現(xiàn)的大腦關(guān)鍵區(qū)域[30],Orexin-A和OxR1存在于LPGi。LPGi SB334867(選擇性O(shè)xR1拮抗劑)給藥實驗發(fā)現(xiàn)[30],SB334867可顯著的降低嗎啡戒斷癥狀的發(fā)生率。
3.1.2海洛因海洛因(Heroin)是一種非法的,具有很強成癮性的毒品,吸食后出現(xiàn)機體的愉悅感,一旦停藥將出現(xiàn)包括煩躁、失眠、藥物渴求、肌肉和骨骼疼痛等一系列戒斷癥狀,影響機體健康[31]。
國內(nèi)一項海洛因脫毒1個月內(nèi)神經(jīng)內(nèi)分泌變化的研究發(fā)現(xiàn)[32],與對照組(健康人)相比,海洛因成癮者在戒斷的第3、10天,血清LP和神經(jīng)肽Y(NPY)水平明顯下降,在戒斷的第30 d恢復(fù)正常。許多研究發(fā)現(xiàn),藥物渴求和攝食行為存在共同的神經(jīng)生物學(xué)機制,膳食的改變將導(dǎo)致內(nèi)分泌激素和神經(jīng)肽信號的變化,如LP和GHRE,是鏈接能量平衡和攝食行為的紐帶。最近的一項研究發(fā)現(xiàn)[33],LP、GHRE可阻斷因食物匱乏而誘導(dǎo)的海洛因復(fù)吸。另外,LP和GHRE反饋性的調(diào)節(jié)下丘腦刺鼠相關(guān)肽(AGRP)和NPY的水平,動物實驗發(fā)現(xiàn),側(cè)腦室注射NPY可增加小鼠對海洛因的渴求,并誘導(dǎo)其復(fù)吸[33]。
有學(xué)者研究發(fā)現(xiàn)[34],側(cè)腦室注射Orexin導(dǎo)致下丘腦阿黑皮素原(POMC)水平降低和Orexin mRNA表達(dá)增加。另一項研究發(fā)現(xiàn)[35],OxR1拮抗劑SB334867不但能減少小鼠對海洛因的攝入量,而且可以降低其復(fù)吸的發(fā)生率。
3.2中樞神經(jīng)系統(tǒng)興奮劑
3.2.1可卡因可卡因(Cocaine)為中樞神經(jīng)系統(tǒng)興奮劑,是在世界上排名第二的被販賣的非法藥物,僅次于大麻[36],具有很強的成癮性,濫用將導(dǎo)致嚴(yán)重的身心損害。
與健康人相比,住院治療3周內(nèi),女性可卡因依賴者血漿LP和ADPQ水平明顯下降[37]。用較低劑量2.5 nmol GHRE做預(yù)處理8%乙醇依賴的雄性SD大鼠,可增加可卡因促進酒精攝入的作用,而10nml則抑制這種作用[38]。由此可知,可卡因促進酒精攝入的作用依外周GHRE預(yù)處理的劑量的不同而不同。類似的實驗發(fā)現(xiàn),VTA注射GHRE(300 pmol)可增強上述可卡因促進酒精攝入的作用。GHRE不僅調(diào)控覓食的獎賞系統(tǒng),而且通過中腦邊緣的多巴胺系統(tǒng)調(diào)節(jié)藥物成癮。研究發(fā)現(xiàn)[39],與對照組(不進行可卡因預(yù)處理)相比,實驗組(腹腔注射可卡因做預(yù)處理)NAc核心注射GHRE,大鼠的自主運動顯著增強,這種效應(yīng)可被GHRE拮抗劑所阻斷。
體內(nèi)實驗發(fā)現(xiàn)[40],可卡因預(yù)處理小鼠,Orexin能神經(jīng)元可顯著增強cAMP應(yīng)答元件結(jié)合蛋白(CREB)的磷酸化程度。而在可卡因戒斷初期,Orexin能神經(jīng)元的突觸效能增強作用仍存在,但長期戒斷后,這種增強的效能則被翻轉(zhuǎn),恢復(fù)至基線水平。與單一封閉Orexin受體2(OX2R)相比,封閉Orexin受體1(OX1R)或同時封閉受體1和2,能顯著地削弱可卡因在多巴胺信號通路上的影響,同時削弱攝入可卡因的動機[41]。OX1R通過可卡因選擇性刺激獎賞系統(tǒng)在控制食欲方面起著重要的作用,更重要的使將OX1R確定為潛在的預(yù)防可卡因復(fù)吸的靶點[42]。
3.2.2甲基苯丙胺甲基苯丙胺(Methamphetamine,MA)又稱“冰毒”,屬于苯丙胺類藥物,是最常見的合成毒品,直接作用于中樞神經(jīng)系統(tǒng),依賴性強。
MA增加自由攝食(ad libitum feed,AL)動物NPY mRNA的表達(dá)明[43],減少LP分泌,增加GHRE分泌。MA急性大鼠給藥影響LP與GHRE血清水平現(xiàn)[44]。同時可能會干擾LP和GHRE對NPY發(fā)揮作用,翻轉(zhuǎn)LP和GHRE對NPY的作用(GHRE刺激NPY的表達(dá),LP抑制NPY表達(dá))。
GHRE受體不僅被發(fā)現(xiàn)存在丘腦、海馬與黑質(zhì),腹側(cè)被蓋區(qū)和縫核也有表達(dá),這些腦區(qū)已知構(gòu)成大腦獎賞途徑[27]。GHRE前體Leu72Met基因多態(tài)性與MA依賴關(guān)聯(lián),且與MA依賴者的情緒問題相關(guān)[45]。
Orexin在獎賞系統(tǒng)與藥物成癮中發(fā)揮重要作用。Rusyniak DE等[46]研究發(fā)現(xiàn),OX1R拮抗劑SB-334867可減弱中等劑量MA(腹腔注射5 mg/kg)誘發(fā)的交感神經(jīng)反應(yīng),使小鼠的體溫下降,心率減慢。國內(nèi)一項阿片和MA成癮者脫毒后Orexin的研究中[47]發(fā)現(xiàn),與健康人相比,阿片和MA成癮者食欲素水平均較低,并且,阿片成癮者中Orexin水平明顯低于MA成癮者。另一項研究中發(fā)現(xiàn):MA急性給藥使Orexin能神經(jīng)元的Fos基因表達(dá)增加[48]。
3.3氯胺酮氯胺酮(Ketamine)俗稱“K粉”,是醫(yī)學(xué)界公認(rèn)的分離性麻醉劑[49],為苯環(huán)己哌啶衍生物,能選擇性的阻斷痛覺沖動,興奮腦干及邊緣系統(tǒng),出現(xiàn)意識模糊,幻覺等癥狀,有一定的致幻性和成癮性[50]。
氯胺酮麻醉老年大鼠的實驗發(fā)現(xiàn)[51],氯胺酮將導(dǎo)致的老年大鼠的學(xué)習(xí)記憶能力明顯受損,腹腔注射Orexin A(4 nmol/L),可明顯的縮短其翻正反射消失的時間,標(biāo)記減少的sigma活動,更重要的是,可顯著提高大鼠的學(xué)習(xí)和空間定位能力。由此可知,Orexin A可提高和促進恢復(fù)氯胺酮麻醉后老年大鼠的認(rèn)知功能。Orexin選擇性促進大鼠大腦皮層去甲腎上腺素(NE)的釋放,氯胺酮也有同樣的作用。側(cè)腦室注射Orexin A顯著縮短氯胺酮的麻醉時間,而Orexin A拮抗劑完全逆轉(zhuǎn)這種作用[52]。同時,Orexin A也降低由氯胺酮誘導(dǎo)的NE釋放,即使Orexin A本身有促進NE釋放的作用。
物質(zhì)依賴(成癮)不僅給患者帶來軀體上的損害,而且給家庭和社會造成負(fù)擔(dān)。睡眠障礙嚴(yán)重影響人類的心身健康,同時又促使物質(zhì)依賴者復(fù)吸。代謝相關(guān)因子LP、GHRE、Orexin和ADPQ參與物質(zhì)依賴,且在睡眠-覺醒調(diào)節(jié)中發(fā)揮一定的作用。
代謝相關(guān)因子同時參與物質(zhì)依賴和睡眠的發(fā)生,且物質(zhì)依賴與睡眠之間相互作用,因此,進一步研究代謝相關(guān)因子在物質(zhì)依賴睡眠障礙中的作用與神經(jīng)生物學(xué)機制,為物質(zhì)依賴睡眠障礙的研究提供理論依據(jù),從而為防止其復(fù)吸提供臨床指導(dǎo),對于促進患者心身健康具有重要意義。
[1]Association AP.Diagnostic and Statistical Manual of Mental Disorders,4,in Washington DC,1994.
[2]王昆,劉詩翔.睡眠障礙與常見內(nèi)科疾病關(guān)系的研究進展[J].現(xiàn)代生物醫(yī)學(xué)進展,2012,9:1722-1774.
[3]Berro LF,F(xiàn)russa-Filho R,Tufik S,et al.Relationships between sleep and addiction:the role of drug-environment conditioning[J].Med Hypotheses,2014,82(3):374-376.
[4]Kim JD,Leyva S,and Diano S.Hormonal regulation of the hypothalamic melanocortin system[J].Front Physiol,2014,5:480.
[5]Sullivan EL,Nousen EK,and Chamlou KA.Maternal high fat diet consumption during the perinatal period programs offspring behavior[J].Physiol Behav,2014,123:236-242.
[6]Chang HF,Su CL,Chang CH,et al.The beneficial effects of leptin on REM sleep deprivation-induced cognitive deficits in mice[J].Learn Mem,2013,20(6):328-335.
[7]Boeke CE,Storfer-Isser A,Redline S,et al.Childhood sleep duration and quality in relation to leptin concentration in two cohort studies[J].Sleep,2014,37(3):613-620.
[8]Hakim F,Wang Y,Carreras A,et al.Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice[J].Sleep,2015,38(1):31-40.
[9]Simon C,Gronfier C,Schlienger JL,et al.Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition:relationship to sleep and body temperature[J].J Clin Endocrinol Metab,1998,83(6):1893-1899.
[10]Stern JH,Grant AS,Thomson CA,et al.Short sleep duration is associated with decreased serum leptin,increased energy intake and decreased diet quality in postmenopausal women[J].Obesity (Silver Spring),2014,22(5):E55-61.
[11]Spiegel K,Tasali E,Leproult R,et al.Twenty-four-hour profiles of acylated and total ghrelin:relationship with glucose levels and impact of time of day and sleep[J].J Clin Endocrinol Metab,2011,96(2):486-493.
[12]Weikel JC,Wichniak A,Ising M,et al.Ghrelin promotes slow-wave sleep in humans[J].Am J Physiol Endocrinol Metab,2003,284(2):E407-415.
[13]Kimura M,Muller-Preuss P,Lu A,et al.Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep[J].Mol Psychiatry,2010,15(2):154-165.
[14]Szentirmai E,Kapas L,Sun Y,et al.Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice[J].Am J Physiol Regul Integr Comp Physiol,2007,293(1):R510-517.
[15]Schuessler P,Uhr M,Ising M,et al.Nocturnal ghrelin levels——relationship to sleep EEG,the levels of growth hormone,ACTH and cortisol——and gender differences[J].J Sleep Res,2005,14(4):329-336.
[16]Nattie E and Li A.Respiration and autonomic regulation and orexin[J].Prog Brain Res,2012,198:25-46.
[17]Matsuki T,Takasu M,Hirose Y,et al.GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice[J].Neuroscience,2015,284:217-224.
[18]Garcia-Garcia F,Juarez-Aguilar E,Santiago-Garcia J,et al.Ghrelin and its interactions with growth hormone,leptin and orexins:implications for the sleep-wake cycle and metabolism[J].Sleep Med Rev,2014,18(1):89-97.
[19]Sinton CM,F(xiàn)itch TE,and Gershenfeld HK.The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation[J].J Sleep Res,1999,8(3):197-203.
[20]Khalyfa A,Mutskov V,Carreras A,et al.Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice[J].Diabetes,2014,63(10):3230-3241.
[21]Simpson NS,Banks S,Arroyo S,et al.Effects of sleep restriction on adiponectin levels in healthy men and women[J].Physiol Behav,2010,101(5):693-698.
[22]de Mattos AB,Pinto MJ,Oliveira C,et al.Dietary fish oil did not prevent sleep deprived rats from a reduction in adipose tissue adiponectin gene expression[J].Lipids Health Dis,2008,7:43.
[23]Argoff CE.Recent management advances in acute postoperative pain[J].Pain Pract,2014,14(5):477-487.
[24]Ma J,Yuan X,Qu H,et al.The role of reactive oxygen species in morphine addiction of SH-SY5Y cells[J].Life Sci,2015,124:128-135.
[25]Lim G,Kim H,McCabe MF,et al.A leptin-mediated central mechanism in analgesia-enhanced opioid reward in rats[J].J Neurosci,2014,34(29):9779-9788.
[26]Hu F,Cui Y,Guo R,et al.Spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the STAT3-NMDA receptor pathway in rats[J].Mol Med Rep,2014,10(2):923-930.
[27]Sustkova-Fiserova M,Jerabek P,Havlickova T,et al.Ghrelin receptor antagonism of morphine-induced accumbens dopamine release and behavioral stimulation in rats[J].Psychopharmacology (Berl),2014,231(14):2899-2908.
[28]Zeng P,Chen JX,Yang B,et al.Attenuation of systemic morphine-induced analgesia by central administration of ghrelin and related peptides in mice[J].Peptides,2013,50:42-49.
[29]Baimel C and Borgland SL.Orexin Signaling in the VTA Gates Morphine-Induced Synaptic Plasticity[J].J Neurosci,2015,35(18):7295-7303.
[30]Ahmadi-Soleimani SM,Ghaemi-Jandabi M,Azizi H,et al.Orexin type 1 receptor antagonism in Lateral Paragigantocellularis nucleus attenuates naloxone precipitated morphine withdrawal symptoms in rats[J].Neurosci Lett,2014,558:62-6.
[31]Hosztafi S.[Heroin addiction][J].Acta Pharm Hung,2011,81(4):173-183.
[32]Shi J,Li SX,Zhang XL,et al.Time-dependent neuroendocrine alterations and drug craving during the first month of abstinence in heroin addicts[J].Am J Drug Alcohol Abuse,2009,35(5):267-272.
[33]Maric T,Tobin S,Quinn T,et al.Food deprivation-like effects of neuropeptide Y on heroin self-administration and reinstatement of heroin seeking in rats[J].Behav Brain Res,2008,194(1):39-43.
[34]Zhou Y,Leri F,Cummins E,et al.Individual differences in gene expression of vasopressin,D2 receptor,POMC and orexin:vulnerability to relapse to heroin-seeking in rats[J].Physiol Behav,2015,139:127-135.
[35]Smith RJ and Aston-Jones G.Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking[J].Eur J Neurosci,2012,35(5):798-804.
[36]Karila L,Petit A,Lowenstein W,et al.Diagnosis and consequences of cocaine addiction[J].Curr Med Chem,2012,19(33):5612-5618.
[37]Levandowski ML,Viola TW,Tractenberg SG,et al.Adipokines during early abstinence of crack cocaine in dependent women reporting childhood maltreatment[J].Psychiatry Res,2013,210(2):536-540.
[38]Cepko LC,Selva JA,Merfeld EB,et al.Ghrelin alters the stimulatory effect of cocaine on ethanol intake following mesolimbic or systemic administration[J].Neuropharmacology,2014,85:224-231.
[39]Jang JK,Kim WY,Cho BR,et al.Microinjection of ghrelin in the nucleus accumbens core enhances locomotor activity induced by cocaine[J].Behav Brain Res,2013,248:7-11.
[40]Rao Y,Mineur YS,Gan G,et al.Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice[J].J Physiol,2013,591(Pt 7):1951-1966.
[41]Prince CD,Rau AR,Yorgason JT,et al.Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1[J].ACS Chem Neurosci,2015,6(1):138-146.
[42]Martin-Fardon R and Weiss F.Blockade of hypocretin receptor-1 preferentially prevents cocaine seeking:comparison with natural reward seeking[J].Neuroreport,2014,25(7):485-488.
[43]Crowley WR,Ramoz G,Keefe KA,et al.Differential effects of methamphetamine on expression of neuropeptide Y mRNA in hypothalamus and on serum leptin and ghrelin concentrations in ad libitum-fed and schedule-fed rats[J].Neuroscience,2005,132(1):167-173.
[44]Kobeissy FH,Jeung JA,Warren MW,et al.Changes in leptin,ghrelin,growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats[J].Addict Biol,2008,13(1):15-25.
[45]Yoon SJ,Pae CU,Lee H,et al.Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population[J].Neurosci Res,2005,53(4):391-395.
[46]Rusyniak DE,Zaretsky DV,Zaretskaia MV,et al.The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress[J].Physiol Behav,2012,107(5):743-750.
[47]Zhang H,Lian Z,Yan S,et al.Different levels in orexin concentrations and risk factors associated with higher orexin levels:comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities[J].Biomed Res Int,2013,2013:282641.
[48]Cornish JL,Hunt GE,Robins L,et al.Regional c-Fos and FosB/DeltaFosB expression associated with chronic methamphetamine self-administration and methamphetamine-seeking behavior in rats[J].Neuroscience,2012,206:100-114.
[49]Reinstatler L and Youssef NA.Ketamine as a potential treatment for suicidal ideation:a systematic review of the literature[J].Drugs R D,2015,15(1):37-43.
[50]Xu J and Lei H.Ketamine-an update on its clinical uses and abuses[J].CNS Neurosci Ther,2014,20(12):1015-1020.
[51]Wang D,Zhang X,Ye JN,et al.Effect of orexin-A on recovery from ketamine anesthesia in aged rats[J].Nan Fang Yi Ke Da Xue Xue Bao,2009,29(5):936-938.
[52]Tose R,Kushikata T,Yoshida H,et al.Orexin A decreases ketamine-induced anesthesia time in the rat:the relevance to brain noradrenergic neuronal activity[J].Anesth Analg,2009,108(2):491-495.
Research Development of Metabolism-related Factors in Sleep Disorders of Substance Dependence
Tao Ying1, Wang Fan2, Kang Yimin1, Li Haojun3, Liu Zhiyue1
(1.InnerMongoliaMedicalUniversity,Hohhot010110; 2.BeijingHuilongguanHospital,Beijing100096; 3.InnerMorgoliaMentalHealthCenter,Hohhot, 010010)
Substance dependence is a kind of chronic encephalopathy.Sleep disorders are kinds dysfunction syndromes caused by alterations in sleep timing and quality.Metabolism-related factors play an important role in sleep-wake regulation,and at the same time participate in development of substance dependence.Here we focused on the research development of metabolism-related factors in sleep disorders of substance dependence.
Metabolism-related factors; Substance dependence; Sleep disorders
R338.63;R971.3
A
2095-7130(2016)03-180-186