劉建成,全厚德,趙宏志,唐友喜
(1.軍械工程學(xué)院信息工程系,河北石家莊 050003; 2.電子科技大學(xué)通信抗干擾技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室,四川成都 611731)
基于迭代變步長(zhǎng)LMS的數(shù)字域自干擾對(duì)消
劉建成1,全厚德1,趙宏志2,唐友喜2
(1.軍械工程學(xué)院信息工程系,河北石家莊 050003; 2.電子科技大學(xué)通信抗干擾技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室,四川成都 611731)
針對(duì)同時(shí)同頻全雙工(Co-frequency and Co-time Full Duplex,CCFD)系統(tǒng)已有的數(shù)字域干擾對(duì)消方法收斂速度慢和對(duì)消比低的問(wèn)題,本文提出了迭代變步長(zhǎng)最小均方(Least Mean Square,LMS)算法,利用該算法實(shí)現(xiàn)了快速收斂的高對(duì)消比數(shù)字域干擾對(duì)消.首先,改進(jìn)Logistic函數(shù),縮短其函數(shù)值由大至小的變化區(qū)間,再利用該非線(xiàn)性函數(shù)計(jì)算隨迭代次數(shù)變化的步長(zhǎng)因子值,從而加快干擾對(duì)消的收斂速度,高精度遞推估計(jì)自干擾信道參數(shù),即獲得高的對(duì)消比.最后,理論分析了該對(duì)消方法收斂性和計(jì)算復(fù)雜度,得到了穩(wěn)態(tài)條件下對(duì)消比的閉合表達(dá)式.仿真表明,該方法與已有變步長(zhǎng)LMS對(duì)消方法相比,對(duì)消比可增加6dB以上,收斂速度可提高1倍,與最小二乘信道估計(jì)干擾對(duì)消方法相比,對(duì)消比提高了至少10dB.
同時(shí)同頻全雙工;自干擾對(duì)消;變步長(zhǎng)LMS
目前無(wú)線(xiàn)頻譜資源日益緊張,傳統(tǒng)的頻分雙工(Frequency Division Duplexing,FDD)和時(shí)分雙工(Time Division Duplexing,TDD)由于頻譜和時(shí)間利用率低,傳輸速率受限[1],已不能滿(mǎn)足人們的需求.同時(shí)同頻全雙工(Co-frequency and Co-time Full Duplex,CCFD)技術(shù)在同等帶寬下,理論上具有兩倍于傳統(tǒng)雙工的傳輸速率[1,2],克服了傳統(tǒng)雙工頻譜資源浪費(fèi)和傳輸速率低的不足,已受到廣泛關(guān)注.CCFD技術(shù)實(shí)現(xiàn)必須建立在自干擾有效消除基礎(chǔ)上,需具有110dB以上的自干擾抑制能力[2],目前主要通過(guò)天線(xiàn)隔離抑制,模擬和數(shù)字域自干擾對(duì)消三種途徑解決.
天線(xiàn)隔離抑制主要是通過(guò)對(duì)收發(fā)天線(xiàn)位置和方向性的設(shè)計(jì),增加收發(fā)通道間的隔離度,降低自干擾信號(hào)與期望信號(hào)功率比值,可實(shí)現(xiàn)25~40dB的抑制比[3~5].模擬域自干擾對(duì)消是在接收天線(xiàn)至低噪放之間進(jìn)行干擾消除,能夠保證接收通道不被阻塞,同時(shí)降低對(duì)ADC(Analog Digital Convert)器件量化位數(shù)和動(dòng)態(tài)范圍的要求[6],減小ADC器件對(duì)期望信號(hào)的影響[7].但是由于模擬器件可控性受限,目前只能實(shí)現(xiàn)40~50dB的對(duì)消[8,9],并不能夠有效抑制,所以在數(shù)字域進(jìn)一步消除自干擾,提高最終的干擾對(duì)消比(Interference Cancellation Ratio,ICR),是實(shí)現(xiàn)CCFD技術(shù)必不可少的關(guān)鍵環(huán)節(jié)[10,11].
數(shù)字域自干擾對(duì)消主要有信道估計(jì)和自適應(yīng)濾波兩類(lèi)方法.文獻(xiàn)[1,2]均是基于信道估計(jì)進(jìn)行數(shù)字域干擾消除,文獻(xiàn)[1]采用常規(guī)時(shí)域等間隔導(dǎo)引序列估計(jì)信道響應(yīng),文獻(xiàn)[2]利用WiFi中OFDM信號(hào)每幀的導(dǎo)引序列估計(jì)出自干擾信號(hào)參數(shù),不過(guò)該方法受限于幀結(jié)構(gòu)中導(dǎo)引序列設(shè)置.文獻(xiàn)[11]給出了基于最小均方誤差的直通和共軛兩路信道參數(shù)估計(jì)方法,進(jìn)而實(shí)現(xiàn)寬帶自干擾信號(hào)的數(shù)字對(duì)消,不過(guò)該方法同樣需要導(dǎo)引信號(hào),且不能實(shí)時(shí)跟蹤信道的變化.文獻(xiàn)[12]針對(duì)中繼通信的CCFD,提出了基于譜成型LMS反饋干擾對(duì)消方法,但該方法計(jì)算復(fù)雜,收斂速度與對(duì)消比相互制約.
綜上所述,現(xiàn)有CCFD數(shù)字域自干擾對(duì)消方法多采用常規(guī)信道估計(jì),需進(jìn)行矩陣的求逆和分解運(yùn)算,計(jì)算復(fù)雜,且在一定持續(xù)時(shí)間內(nèi)不能實(shí)時(shí)跟蹤自干擾信道參數(shù)的變化.針對(duì)數(shù)字域自干擾對(duì)消存在的以上問(wèn)題,本文提出了基于迭代變步長(zhǎng)LMS(Iterative Variable Step-size LMS,IVSSLMS)算法的對(duì)消方法.該方法利用改進(jìn)Logistic非線(xiàn)性函數(shù),建立LMS步長(zhǎng)因子與時(shí)間(等價(jià)為算法的遞推次數(shù))的內(nèi)在關(guān)系,在保證穩(wěn)態(tài)失調(diào)誤差較小情況下(即高的ICR)有效提高算法收斂速度,實(shí)現(xiàn)數(shù)字域的自干擾對(duì)消.仿真結(jié)果顯示,在天線(xiàn)隔離和模擬域干擾對(duì)消基礎(chǔ)上,該方法可有效估計(jì)自干擾信道等效參數(shù),當(dāng)干噪比為50dB、35dB時(shí)ICR分別能夠達(dá)到45dB、34dB以上.
CCFD技術(shù)基本結(jié)構(gòu)如圖1所示[2],圖中模擬和數(shù)字域干擾對(duì)消是實(shí)現(xiàn)CCFD必不可少的環(huán)節(jié),其關(guān)鍵在于如何利用發(fā)送通道的射頻信號(hào)sRF(t)和數(shù)字基帶信號(hào)s(n)最大限度地消除接收端r(t)中的自干擾信號(hào)sI(t).
圖1所示的數(shù)字域自干擾對(duì)消是采用信道估計(jì)的方法.接收通道的數(shù)字基帶信號(hào)向量可表示為[1,2]:
r(n)=sI(n)+d(n)+ε(n)=s(n)hM+d(n)+ε(n)
(1)
其中,r(n)為模擬域干擾對(duì)消后的L×1維接收信號(hào)向量,sI(n)為模擬域干擾對(duì)消后殘余的L×1維自干擾信號(hào)向量,d(n)為期望信號(hào),ε(n)為加性噪聲,二者均為L(zhǎng)×1維.hM表示M階自干擾信道響應(yīng),為M×1維.s(n)為發(fā)送通道數(shù)字基帶信號(hào)構(gòu)成的L×M維Toeplitz矩陣[2].
(2)
(3)
其中,上標(biāo)H表示矩陣(向量)共軛轉(zhuǎn)置.
式(3)需矩陣相乘和求逆運(yùn)算,計(jì)算較復(fù)雜,通常需在時(shí)域或頻域插入導(dǎo)引序列,占用額外帶寬,且應(yīng)對(duì)信道突變的能力有限.所以,可采用計(jì)算簡(jiǎn)單的LMS算法遞推求解自干擾信道向量hM,進(jìn)而實(shí)現(xiàn)數(shù)字域自干擾消除.
(4)
(5)
其中,e(n)為對(duì)消后信號(hào),即LMS算法的反饋誤差,d(n)和ε(n)同式(1),分別為期望信號(hào)和加性噪聲,(-)表示取共軛,sI(n)表示接收的數(shù)字基帶干擾信號(hào),可等價(jià)于發(fā)送信號(hào)s(n)通過(guò)M階離散線(xiàn)性信道h(n),即:
(6)
由文獻(xiàn)[18,19]知,采用自適應(yīng)濾波方法估計(jì)自干擾信道響應(yīng)必須解決收斂速度和穩(wěn)態(tài)失調(diào)誤差相互制約的問(wèn)題.因此,本節(jié)提出迭代變步長(zhǎng)LMS算法,在保證獲得高ICR下,有效提高對(duì)消方法的收斂速度.
LMS算法收斂時(shí)間τ隨步長(zhǎng)因子μ的增大(滿(mǎn)足收斂條件)而減少,但穩(wěn)態(tài)失調(diào)誤差ξ會(huì)隨μ的增大而增大.因此,文獻(xiàn)[16,20~22]提出了變步長(zhǎng)方法,使得步長(zhǎng)因子μ在算法初始階段具有較大值以提高收斂速度,在接近收斂時(shí)變小以降低穩(wěn)態(tài)失調(diào)誤差.不過(guò),已有的變步長(zhǎng)方法容易受相關(guān)噪聲等因素影響.為彌補(bǔ)該不足,提出迭代變步長(zhǎng)方法,步長(zhǎng)因子μ隨遞推次數(shù)的增加逐漸迭代減小,不受控于反饋誤差信號(hào),從而有效提高ICR.
(7)
(8)
其中,Jmin為不可消除的外界干擾,比如系統(tǒng)噪聲等.
迭代變步長(zhǎng)LMS算法為使步長(zhǎng)因子μ滿(mǎn)足式(7)所示的收斂條件,且在收斂時(shí)具有小的穩(wěn)態(tài)失調(diào)誤差,對(duì)步長(zhǎng)因子取值加以限定.再依據(jù)改進(jìn)Logistic函數(shù)建立與遞推次數(shù)n間的非線(xiàn)性關(guān)系,如下所示:
(9)
其中,μmin是設(shè)定的最小值,μmax是由式(7)設(shè)定的最大值,κ為調(diào)整參數(shù),控制了μ(n)隨n變換的快慢,m是步長(zhǎng)因子改變的起始時(shí)刻,初始值為0.由表達(dá)式可知μ(n)隨n單調(diào)遞減,變換趨勢(shì)如圖3所示.
(10)
為IVSSLMS算法具有應(yīng)對(duì)自干擾信道hM突變的能力,步長(zhǎng)因子隨遞推次數(shù)迭代改變的同時(shí),通過(guò)檢測(cè)前后時(shí)刻對(duì)消后信號(hào)功率,判斷hM是否發(fā)生突變.在此基礎(chǔ)上,本文對(duì)消方法模型如圖4所示,基本流程如下:
(1)算法初始,根據(jù)已知發(fā)送信號(hào)s(n)及相應(yīng)先驗(yàn)知識(shí),設(shè)階數(shù)M′,保證M′不小于自干擾信道等效階數(shù)M,設(shè)步長(zhǎng)因子的最大值μmax、最小值μmin和κ,起始時(shí)刻m=0,即遞推次數(shù)n由0起始;
(2)將(1)中參數(shù)代入式(9),計(jì)算步長(zhǎng)因子μ(n),之后執(zhí)行式(4)和(10);
(3)估計(jì)當(dāng)前時(shí)刻誤差e(n)的功率大小,與前一時(shí)刻e(n-1)比較,若大于設(shè)定的門(mén)限值χ,則執(zhí)行步驟(4),小于則直接返回執(zhí)行步驟(2);
(4)將當(dāng)前的遞推次數(shù)n賦值給m,返回執(zhí)行步驟(2).其中,χ設(shè)為噪聲和期望信號(hào)功率之和的兩倍.誤差信號(hào)功率估計(jì)可等價(jià)求k個(gè)值的平均,計(jì)算如下:
(11)
本節(jié)將從理論上分析基于IVSSLMS數(shù)字域自干擾對(duì)消方法的收斂性和穩(wěn)態(tài)下對(duì)消比,推導(dǎo)步長(zhǎng)因子與收斂速度關(guān)系式,穩(wěn)態(tài)ICR的最終表達(dá)式.另外,對(duì)比了本文算法與已有VSSLMS及LS信道估計(jì)干擾對(duì)消法的復(fù)雜度.
4.1算法收斂性和對(duì)消比分析
(12)
(13)
e(n)=cH(n)s(n)+d(n)+ε(n)
(14)
將式(14)代入式(13)得:
+2cH(n)s(n)[d(n)+ε(n)]
(15)
由于ε(n)和d(n)統(tǒng)計(jì)獨(dú)立,且與信號(hào)向量s(n)不相關(guān),利用直接平均法[19]可得:
(16)
(17)
再令C(n)=UHc(n),根據(jù)式(10)和(14)可得:
C(n)=UHc(n-1)-μ(n-1)UHs(n-1)
·[sH(n-1)c(n-1)+d(n-1)+ε(n-1)]
=[I-μ(n-1)Λ]C(n-1)-μ(n-1)
·UHs(n-1)[d(n-1)+ε(n-1)]
(18)
由式(17)可得R=UΛUH,又因c(n)=UC(n),將二者代入式(16),可得:
(19)
因輸入信號(hào)向量s(n)與期望信號(hào)d(n)、白噪聲ε(n)不相關(guān),可化簡(jiǎn)得:E{|e(n)|2}=E{CH(n-1)Λ[I-μ(n-1)Λ]2C(n-1)}
(20)
其中tr(·)表示求矩陣的跡.以此類(lèi)推,有:
E{|e(n)|2}=E{CH(0)ψ(n)C(0)}
(21)
其中,
(22)
(23)
由于酉矩陣不改變矩陣的跡,整理得:
(24)
可等價(jià)于:
(25)
0≤j≤M-1(26)
0≤j≤M-1(27)
可見(jiàn)式(25)收斂條件為,對(duì)于任意i和j均有|1-μ(i)λj|<1,與式(7)所示的LMS收斂條件相符.下面根據(jù)式(25)~(27),與定步長(zhǎng)LMS(Fixed Step-size LMS,FXSSLMS)算法對(duì)比收斂性能.
由上述分析知,算法收斂性取決于式(26)中累積乘積取值的變化趨勢(shì),對(duì)于FXSSLMS算法μ(i)為定值,故本文算法和FXSSLMS的收斂因子分別為ρIVSS(n)和ρFXSS(n):
(28)
ρFXSS(n)=(1-μλ)2n
(29)
設(shè)最大特征λmax=1,F(xiàn)XSSLMS算法的步長(zhǎng)因子為μ=0.1/λmax,本文算法中μmax=8μ、μmin=0.5μ,則兩種算法的理論收斂曲線(xiàn)如圖5所示.對(duì)于一般情況,當(dāng)ρ(n)<10-30時(shí)均可近似為0,由圖可見(jiàn)本文算法的收斂速度明顯快于FXSSLMS算法.
(30)
(31)
又因n→∞時(shí)步長(zhǎng)因子μmin滿(mǎn)足:μminλmax<<1,即2-μminλmax≈2,故式(31)可進(jìn)一步近似為:
(32)
(33)
在上述分析基礎(chǔ)上,可由發(fā)送信號(hào)s(n)功率和信道響應(yīng)向量維數(shù)M估計(jì)出s(n)自相關(guān)矩陣的最大特征值,設(shè)定步長(zhǎng)因子最大值μmax=0.8/λmax,同時(shí)參考式(33)設(shè)定步長(zhǎng)因子最小值.另外,式(9)中參數(shù)κ值依據(jù)實(shí)際情況而定,過(guò)大和過(guò)小均易導(dǎo)致不能在最短時(shí)間內(nèi)收斂到最高ICR,降低算法的性能.當(dāng)ρIVSS(n)小于10-30可認(rèn)為算法處于收斂狀態(tài),結(jié)合圖5所示的其變化趨勢(shì)可知,若兼顧收斂速度和ICR,則算法收斂時(shí)刻,即ρIVSS(n)≤10-30時(shí)步長(zhǎng)因子應(yīng)處在變化最快的區(qū)域,即圖3中曲線(xiàn)斜率最大處.所以,迭代變步長(zhǎng)式(9)中的參數(shù)κ需滿(mǎn)足以下兩個(gè)關(guān)系式:
(34)
4.2復(fù)雜度分析
除算法收斂速度和穩(wěn)態(tài)ICR外,計(jì)算復(fù)雜度也是影響其應(yīng)用的重要因素.現(xiàn)分析IVSSLMS算法計(jì)算復(fù)雜度,并與文獻(xiàn)[21,22]中VSSLMS算法和基于LS信道估計(jì)對(duì)消方法進(jìn)行對(duì)比.假設(shè)算法中遞推估計(jì)變量的維數(shù)為M,式(9)的指數(shù)運(yùn)算一般采用查表法,可以暫不考慮其運(yùn)算量.對(duì)于LS信道估計(jì)對(duì)消方法,若式(2)中已知干擾信號(hào)矩陣為L(zhǎng)×M維,且設(shè)每間隔NL個(gè)信號(hào)數(shù)據(jù)進(jìn)行一次估計(jì),M×M維矩陣求逆需2(M3-M)/3次加法和2(M3-M)/3次乘法,則本文方法、文獻(xiàn)[21,22]方法和LS估計(jì)法輸出NL個(gè)期望信號(hào)數(shù)據(jù)所需的加、乘和除法次數(shù)如表1所示.
表1 不同方法所需的計(jì)算次數(shù)
本節(jié)將仿真所提出的數(shù)字域干擾對(duì)消方法,并與已有VSSLMS算法和基于常規(guī)信道估計(jì)對(duì)消方法進(jìn)行對(duì)比.仿真以速率為10Mbps的QPSK調(diào)制為例,暫不考慮非線(xiàn)性和ADC量化噪聲影響.參考文獻(xiàn)[2,17],假設(shè)接收通道噪聲限為-95dBm,自干擾信號(hào)經(jīng)天線(xiàn)隔離和模擬域?qū)ο鬄?45dBm,期望信號(hào)為-70dBm,即INR(Interference-to-Noise Ratio)和SIR(Signal-to-Interference Ratio)分別為50dB和-25dB,接收通道各信號(hào)頻譜如圖6所示.參考文獻(xiàn)[23,24],設(shè)仿真自干擾信道為萊斯信道,總傳播路徑個(gè)數(shù)為4,包括3條多徑,對(duì)應(yīng)K因子、路徑時(shí)間和損耗(dB)分別為:[1 2 0.5 0.02],[2.5 4 7 10]/fs,[-15 -29 -46 -53],其中fs為調(diào)制后的符號(hào)速率.為進(jìn)一步表示算法的收斂速度,將對(duì)消比ICR達(dá)到一定值所需的迭代次數(shù)n等價(jià)轉(zhuǎn)換為時(shí)間τ,根據(jù)設(shè)置的仿真條件計(jì)算一個(gè)基帶符號(hào)持續(xù)時(shí)間TΔ=1/fs,若忽略算法中向量相乘等運(yùn)算所需時(shí)間,則τ=nTΔ.另外,本節(jié)所有結(jié)果均是由200次蒙特卡羅仿真實(shí)驗(yàn)所得.
5.1與VSSLMS方法對(duì)比分析
在上述仿真條件下,對(duì)比本文IVSSLMS算法與文獻(xiàn)[21,22]的VSSLMS算法,分析其收斂性與穩(wěn)態(tài)的ICR.因干擾信道響應(yīng)hM等效階數(shù)未知,由先驗(yàn)條件設(shè)定算法的階數(shù)M′,保證M′≥M,取M′=26.設(shè)信號(hào)s(n)和r(n)功率已歸一化,同時(shí)為避免步長(zhǎng)因子過(guò)大和信號(hào)自相關(guān)矩陣特征值擴(kuò)散導(dǎo)致的算法發(fā)散[18],令本文算法和文獻(xiàn)[21]的μmax=0.02,文獻(xiàn)[22]VSSNLMS算法步長(zhǎng)因子最大值為1,其步長(zhǎng)因子最小值分別取0.005和0.05兩種情況.參考文獻(xiàn)[21,22]參數(shù)設(shè)置原則,三種算法具體參數(shù)如表2所示.
表2 不同方法對(duì)應(yīng)參數(shù)
統(tǒng)計(jì)平均200次獨(dú)立仿真結(jié)果,得三種算法ICR收斂曲線(xiàn),參數(shù)(1)、(2)對(duì)應(yīng)結(jié)果分別如圖7、8和表3所示.由圖7和表3可見(jiàn),參數(shù)(1)下本文IVSSLMS算法與文獻(xiàn)[22]相比,穩(wěn)態(tài)的ICR有略微提高,但I(xiàn)CR達(dá)到38dB所需收斂時(shí)間縮短了近一倍;與文獻(xiàn)[21]相比,38dB對(duì)消比所需收斂時(shí)間縮短了約十分之一,但穩(wěn)態(tài)的ICR提高了8dB以上.由圖8和表3可見(jiàn),參數(shù)(2)對(duì)應(yīng)的本文算法與文獻(xiàn)[22]相比,穩(wěn)態(tài)ICR相近,但I(xiàn)CR達(dá)到32dB所需收斂時(shí)間縮短了兩倍以上;與文獻(xiàn)[21]相比,在保證未降低收斂速度情況下,穩(wěn)態(tài)ICR提高了6dB以上.可見(jiàn),本文算法即具有快的收斂速度,又具有高的ICR,且與已有VSSLMS算法相比得到了明顯提升.另外,根據(jù)本文算法步長(zhǎng)因子最小值,圖7、圖8中收斂曲線(xiàn)變化趨勢(shì),和表3的穩(wěn)態(tài)ICR,可發(fā)現(xiàn)最終ICR將相差10dB(由于仿真時(shí)間較短,圖7并未達(dá)到完全收斂狀態(tài)),從而驗(yàn)證式(33)的正確性,步長(zhǎng)因子最小值也影響了收斂速度,與式(28)和(30)相對(duì)應(yīng).
表3 兩種參數(shù)仿真結(jié)果對(duì)比
另一方面,為分析參數(shù)κ對(duì)算法性能的影響,再分別以150,300,500和800進(jìn)行仿真對(duì)比,結(jié)果如圖9所示.結(jié)合圖5可知,當(dāng)κ較小時(shí)步長(zhǎng)因子較早變?yōu)棣蘭in,致使收斂速度降低,而當(dāng)κ過(guò)大時(shí)步長(zhǎng)因子較長(zhǎng)時(shí)間保持μmax,致使出現(xiàn)階段性收斂,影響了整體性能的提升.可見(jiàn)κ取值應(yīng)根據(jù)式(34)采取折中的原則,即能保證快速達(dá)到穩(wěn)態(tài),又可避免階段性收斂,在本文仿真條件下κ=200較為適宜.
5.2與基于LS信道估計(jì)對(duì)消方法的對(duì)比
在5.1節(jié)仿真條件基礎(chǔ)上,假定t1=1.195ms和t2=3.195ms時(shí)刻自干擾信道分別變?yōu)椋篕因子[0.5 0.05 1.5 0.2],時(shí)延[2 6 8 12]/fs,衰減[0 -20 -34 -40];K因子[0.01 3 0.8 0.01],時(shí)延[3 5 9 11]/fs,衰減[-3 -13 -30 -45].為與基于LS信道估計(jì)對(duì)消方法(簡(jiǎn)稱(chēng)LS估計(jì)法)對(duì)比,參考文獻(xiàn)[25,26]以疏狀形式插入導(dǎo)引序列,以子載波個(gè)數(shù)為32的OFDM為例,為避免期望信號(hào)影響自干擾信號(hào)的信道估計(jì),二者導(dǎo)頻插入不同子載波處,分別如圖10(a)和(b)所示.
本文方法設(shè)置與5.1節(jié)參數(shù)(1)相同,為對(duì)比不同情況下兩種對(duì)消方法性能,另增設(shè)仿真條件:接收通道噪聲限為-95dBm,自干擾信號(hào)為-60dBm,期望信號(hào)為-80dBm,即INR、SIR分別為35dB和-20dB.INR為50dB、35dB的仿真結(jié)果分別如圖11和12所示.由圖11和12可見(jiàn),LS估計(jì)法因信道突變引起的對(duì)消比惡化較本文方法推遲了一段時(shí)間,這是因?yàn)長(zhǎng)S估計(jì)法導(dǎo)引序列占用了相應(yīng)的時(shí)隙.對(duì)比t1和t2時(shí)刻對(duì)消比惡化持續(xù)時(shí)間,可以發(fā)現(xiàn)信道突變發(fā)生在不同時(shí)刻將導(dǎo)致LS估計(jì)法ICR惡化的持續(xù)時(shí)間不同,這是因?yàn)樾诺劳蛔冇绊懙氖窃摃r(shí)刻至下一個(gè)導(dǎo)引序列估計(jì)的這段時(shí)間,而本文方法的重新收斂并不受信道突變時(shí)間的影響.分析圖11,在高干噪比INR=50dB時(shí),本文方法在0.134ms后ICR高于LS估計(jì)法,穩(wěn)態(tài)ICR比LS估計(jì)法提高了約10dB.由圖12可知,干噪比INR=35dB時(shí),本文方法在0.036ms后ICR即高于LS估計(jì)法,LS估計(jì)法在該干噪比下性能下降明顯,達(dá)到的ICR只有約21.5dB,而本文方法的穩(wěn)態(tài)ICR仍達(dá)到34.42dB,提高了約13dB.由以上分析可見(jiàn),本文方法與LS估計(jì)法相比,能夠有效提高穩(wěn)態(tài)ICR,尤其是能夠克服低干噪比下ICR惡化的問(wèn)題.
由本節(jié)的仿真及分析可知,本文基于IVSSLMS的數(shù)字域自干擾對(duì)消方法即具有快的收斂速度,又能夠獲得高的穩(wěn)態(tài)ICR,且具有較好的跟蹤能力,優(yōu)于已有VSSLMS算法.與基于LS信道估計(jì)的對(duì)消方法相比,既降低了計(jì)算復(fù)雜度,又提高了ICR.
本文針對(duì)CCFD數(shù)字域自干擾消除問(wèn)題,給出了基于迭代變步長(zhǎng)LMS算法的對(duì)消方法,通過(guò)遞推次數(shù)迭代控制LMS算法步長(zhǎng)因子大小,既有效提高了對(duì)消方法的收斂速度,又獲得高的干擾對(duì)消比,同時(shí)計(jì)算復(fù)雜度也低于已有變步長(zhǎng)LMS算法.另外,與常規(guī)信道估計(jì)的對(duì)消方法相比,克服了低干噪比下對(duì)消比嚴(yán)重惡化的不足,能夠改善10dB以上.所以,本文提出的數(shù)字域干擾對(duì)消方法既具有快的收斂速度,又能夠獲得高的對(duì)消比,且有利于數(shù)字硬件實(shí)現(xiàn),具有較高的實(shí)際應(yīng)用價(jià)值.不過(guò),本文暫時(shí)未考慮ADC器件引起的非線(xiàn)性問(wèn)題,仍需進(jìn)行更為深入的研究.
[1]Melissa D,Chris D,Ashutosh S.Experiment-driven characterization of full-duplex wireless systems[J].IEEE Transactions on Wireless Communications,2012,11(12):4296-4307.
[2]Dinesh B,Emily M,Sachin K.Full duplex radios[J].ACM SIGCOMM Computer Communication Review,2013,43(4):375-386.
[3]Knox M E.Single antenna full duplex communications using a common carrier[A].Wireless and Microwave Technology Conference[C].Cocoa Beach:IEEE,2012.1-6.
[4]Radunovic B,Gunawardena D,Key P,et al.Rethinking indoor wireless mesh design:Low power,low frequency,full-duplex[A].IEEE Workshop on Wireless Mesh Networks[C].Boston:IEEE,2010.1-6.
[5]Choi J I,Jain M,Srinivasan K,et al.Achieving single channel,full duplex wireless communication[A].Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking[C].Chicago:ACM,2010.1-12.
[6]Riihonen T,Wichman R.Analog and digital self-interference cancellation in full-duplex MIMO-OFDM transceivers with limited resolution in A/D conversion[A].2012 Conference Record of the Forty-Sixth Asilomar Conference on Signals,Systems and Computers[C].Pacific Grove:IEEE,2012.45-49.
[7]張志亮,羅龍,邵世海,等.ADC量化對(duì)同頻全雙工數(shù)字自干擾消除的誤碼率性能分析[J].電子與信息學(xué)報(bào),2013,36(6):1331-1337.
Zhang Zhiliang,Luo Long,Shao Shihai,et al.Analysis of ADC quantizing affection on SER performance of self-interference canceling common-frequency full-duplex system[J].Journal of Electronics & Information Technology,2013,36(6):1331-1337.(in Chinese)
[8]Jain M,Choi J I,Kim T,et al.Practical,real-time,full duplex wireless[A].Proceedings of the 17th Annual International Conference on Mobile Computing and Networking[C].Las Vegas:ACM,2011.301-312.
[9]Zhaojun H,Shihai S,Ying S,et al.Performance analysis of RF self-interference cancellation in full-duplex wireless communications[J].IEEE Wireless Communications Letters,2014,3(4):405-408.
[10]Debaillie B,van den Broek D J,Lavin C,et al.Analog/RF solutions enabling compact full-duplex radios[J].IEEE Journal on Selected Areas in Communications,2014,32(9):1662-1673.
[11]Korpi D,Anttila L,Syrjala V,et al.Widely-linear digital self-interference cancellation in direct-conversion full-duplex transceiver[J].IEEE Journal on Selected Areas in Communications,2014,32(9):1674-1687.
[12]Lopez-Valcarce R,Antonio-Rodriguez E,Mosquera C,et al.An adaptive feedback canceller for full-duplex relays based on spectrum shaping[J].IEEE Journal on Selected Areas in Communications,2012,30(8):1566-1577.
[13]Schüldt C,Lindstrom F,Li H,et al.Adaptive filter length selection for acoustic echo cancellation[J].Signal Processing,2009,89(6):1185-1194.
[14]Wada T S,Juang B H.Enhancement of residual echo for robust acoustic echo cancellation[J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(1):175-189.
[15]Contan C,Kirei B S.Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation[J].Signal Processing,2013,93(5):1152-1161.
[16]Mader A,Puder H,Schmidt G U.Step-size control for acoustic echo cancellation filters-an overview[J].Signal Processing,2000,80(9):1697-1719.
[17]Melissa D.Full-duplex wireless:design,implementation and characterization[D].Houstin:Rice University,2012.
[18]Simon H.自適應(yīng)濾波器原理(第四版,鄭寶玉譯)[M].北京:電子工業(yè)出版社,2010.206-212.
[19]Zhang S,Zhang J.New steady-state analysis results of variable step-size LMS algorithm with different noise distributions[J].IEEE Signal Processing Letters,2014,21(6):653-657.
[20]Mayyas K.Performance analysis of the deficient length LMS adaptive algorithm[J].IEEE Transactions on Signal Processing,2005,53(8):2727-2734.
[21]Huang B,Xiao Y,Sun J,et al.A variable step-size FXLMS algorithm for narrowband active noise control[J].IEEE Transactions on Audio,Speech,and Language Processing,2013,21(2):301-312.
[22]Huang H C,Lee J.A new variable step-size NLMS algorithm and its performance analysis[J].IEEE Transactions on Signal Processing,2012,60(4):2055-2060.
[23]吳翔宇,沈瑩,唐友喜.室內(nèi)環(huán)境下2.6GHz同時(shí)同頻全雙工自干擾信道測(cè)量與建模[J].電子學(xué)報(bào),2015,43(1):1-6.Wu Xiangyu,Shen Ying,Tang Youxi.Measurement and modeling of co-time co-frequency full-duplex self-interference channel of the indoor environment at 2.6GHz[J].Acta Electronica Sinica,2015,43(1):1-6.(in Chinese)
[24]Hashemi H.The indoor radio propagation channel[J].Proceedings of the IEEE,1993,81(7):943-968.
[25]Arslan H.Channel estimation for wireless OFDM systems[J].IEEE Surveys and Tutorials,2007,9(2):18-48.
[26]Shen Y,Martinez E.Channel estimation in OFDM systems[J].Application Note,Freescale Semiconductor,2006.
劉建成男,1987年7月出生,河北邱縣人.2010年畢業(yè)于解放軍電子工程學(xué)院通信對(duì)抗工程專(zhuān)業(yè),并于本校攻讀碩士研究生,2013年考入解放軍軍械工程學(xué)院,攻讀導(dǎo)航制導(dǎo)與控制工程專(zhuān)業(yè)博士研究生,主要進(jìn)行超短波無(wú)線(xiàn)通信抗干擾的有關(guān)研究.
E-mail:liujiancheng1987@126.com
全厚德男,1963年生,遼寧人.現(xiàn)為解放軍軍械工程學(xué)院信息工程系教授,博士生導(dǎo)師.研究方向主要包括:無(wú)線(xiàn)通信技術(shù)、指揮控制系統(tǒng)、通信設(shè)備性能測(cè)試等.
Digital Self-Interference Cancellation Based on Iterative Variable Step-Size LMS
LIU Jian-cheng1,QUAN Hou-de1,ZHAO Hong-zhi2,TANG You-xi2
(1.Department of Information Engineering,Ordnance Engineering College of PLA,Shijiazhuang,Hebei 050003,China; 2.National Key Laboratory of Science and Technology on Communications,University of Electronic Science andTechnology of China,Chengdu,Sichuan 611731,China)
Recently,the co-frequency co-time full duplex (CCFD) has been widely studied for its higher spectral efficiency.However,it must avoid the strong co-channel self-interference to put this technology into practice,and the existing digital interference cancellation methods usually have slow convergence and small cancellation-ratio.Considering this obstacle,the digital cancellation method based on iterative variable step-size least mean square algorithm (IVSSLMS) is proposed in this paper.Firstly,the function of Logistic is modified to accelerate its tendency for value changing lower.Then,the iterative variable step-size is obtained through the modified nonlinear function.Consequently,convergence of interference cancellation is speeded up,and accurate parameters of self-interference channel are estimated to achieve high cancellation-ratio is derited.Finally,the convergence and complexity of this digital interference cancellation method are analyzed and the closed expression of steady-state cancellation-ratio is derived.Simulations verify that the cancellation-ratio of this method could achieve more than 6dB and 10dB in comparison with the existing variable step-size LMS methods and cancellation method based on least square channel estimation respectively,and the convergence speed could be enhanced doubled.
co-frequency and co-time full duplex;self-interference cancellation;variable step-size LMS
2015-02-25;
2015-09-23;責(zé)任編輯:李勇鋒
國(guó)家自然科學(xué)基金(No.61531009,No.61271164,No.61471108,No.61201266,No.61501093);重大專(zhuān)項(xiàng)(No.2014ZX03003001-002);國(guó)家863高技術(shù)研究發(fā)展計(jì)劃(No.2014AA01A704,No.2014AA01A706,No.2015AA01A701);國(guó)家電網(wǎng)公司科技項(xiàng)目(No.SGSCDKJLZJKJ1400099)
TN911.72
A
0372-2112 (2016)07-1530-09
??學(xué)報(bào)URL:http://www.ejournal.org.cn
10.3969/j.issn.0372-2112.2016.07.002