王興龍 王立海 岳小泉 葛曉雯 劉澤旭
(東北林業(yè)大學(xué),哈爾濱,150040) (福建農(nóng)林大學(xué)) (東北林業(yè)大學(xué))
?
弦向角對(duì)立木圓盤(pán)無(wú)損檢測(cè)中電阻的影響1)
王興龍王立海岳小泉葛曉雯劉澤旭
(東北林業(yè)大學(xué),哈爾濱,150040)(福建農(nóng)林大學(xué))(東北林業(yè)大學(xué))
摘要研究了電流在不同樹(shù)種圓盤(pán)橫截面上傳導(dǎo)時(shí)電阻的變化情況,以期進(jìn)一步認(rèn)識(shí)其傳導(dǎo)規(guī)律及影響因素,為利用電阻法進(jìn)行木材缺陷檢測(cè)提供理論依據(jù)。選擇白樺(Betula platyphylla)、紅松(Pinus koraiensis)、落葉松(Larix gmelinii)、青楊(Populus davidiana)和杉木(Cunninghamia lanceolata)5種樹(shù)種的10個(gè)圓盤(pán)為試驗(yàn)材料,在圓盤(pán)的橫截面上,測(cè)試不同弦向角下的圓盤(pán)電阻,并討論其變化規(guī)律。結(jié)果表明:徑向?qū)ΨQ弦向角對(duì)圓盤(pán)電阻值的影響無(wú)顯著性差異(P>0.05),其它弦向角對(duì)圓盤(pán)電阻值的影響差異極其顯著(P<0.01);電流在圓盤(pán)橫截面上傳導(dǎo)時(shí)電阻值隨弦向角的增大先增大后減小,徑向電阻值最大。不同弦向角下圓盤(pán)電阻值擬合曲線為一條開(kāi)口向下的拋物線,相關(guān)系數(shù)均高于0.9;不同樹(shù)種的試樣在相同弦向角下的電阻值不同,但變化趨勢(shì)相同。
關(guān)鍵詞木材無(wú)損檢測(cè);電阻法;弦向角
我國(guó)的森林資源和木材需求之間存在著巨大的結(jié)構(gòu)性矛盾,而木材的利用率卻偏低。進(jìn)行木材無(wú)損檢測(cè)研究,是提高木材利用率的重要手段[1]。目前應(yīng)用到木材性質(zhì)檢測(cè)的無(wú)損檢測(cè)技術(shù)已達(dá)幾十種[2],但是很多檢測(cè)技術(shù)只能在室內(nèi)對(duì)木材材質(zhì)、特性和缺陷等進(jìn)行檢測(cè),且研究主要局限于板材,能夠在野外對(duì)活立木進(jìn)行檢測(cè)的儀器并不多[3-5]。應(yīng)用廣泛的有生長(zhǎng)錐、阻抗儀和應(yīng)力波,其中生長(zhǎng)錐取樣雖然最直觀,但是對(duì)樹(shù)木損傷最大,且只能檢測(cè)單一方向;阻抗儀雖然降低了對(duì)樹(shù)木的損傷,但也只能檢測(cè)單一方向[6-8];應(yīng)力波是較為成熟的一項(xiàng)技術(shù),實(shí)現(xiàn)了對(duì)活立木斷層的檢測(cè),但在實(shí)際使用中也暴露了許多問(wèn)題,比如受人為和受外界因素的影響比較大、檢測(cè)耗時(shí)效率低、野外攜帶不方便、對(duì)輕度腐朽甚至未能顯示異常、對(duì)面積較小的孔洞往往僅給出是小面積腐朽的結(jié)果等問(wèn)題[9-11]。鑒于電阻法具有操作簡(jiǎn)單、工作便捷、受干擾小、對(duì)早期腐朽靈敏度高、空洞和腐朽檢測(cè)圖像區(qū)別明顯等優(yōu)點(diǎn)[12-14],可將其引進(jìn),以彌補(bǔ)現(xiàn)有技術(shù)存在的不足。
利用電阻法對(duì)立木或者原木的內(nèi)部缺陷進(jìn)行無(wú)損檢測(cè),主要是通過(guò)分析電流在其橫截面上傳導(dǎo)時(shí)電阻的變化,進(jìn)而對(duì)其健康情況進(jìn)行評(píng)估。國(guó)外已經(jīng)采用電阻法對(duì)活立木內(nèi)部缺陷檢測(cè)進(jìn)行了一系列研究,從針式探測(cè)法、四點(diǎn)測(cè)試法到電阻層析成像技術(shù),實(shí)現(xiàn)了點(diǎn)、線、面的應(yīng)用研究[15-17]。國(guó)內(nèi)也已采用電阻法進(jìn)行木材缺陷檢測(cè),并從初期僅研究木材的直流電、交流電基本特性,發(fā)展到探討木材解剖分子和化學(xué)結(jié)構(gòu)等構(gòu)造因子和含水率、溫度、頻率、紋理等因子對(duì)木材電學(xué)性質(zhì)參數(shù)的影響機(jī)制,以及介電弛豫的分子論等[18-21];但研究對(duì)象一直局限于小試件和單個(gè)影響因子分析,沒(méi)有對(duì)立木或原木的內(nèi)部缺陷檢測(cè)進(jìn)行研究。因此,有必要以圓盤(pán)為研究對(duì)象,研究電流在其橫截面上傳導(dǎo)時(shí)弦向角對(duì)電阻的影響。筆者在實(shí)驗(yàn)室內(nèi)針對(duì)杉木等圓盤(pán)試樣,測(cè)量激勵(lì)信號(hào)以不同弦向角在圓盤(pán)橫截面上傳導(dǎo)時(shí)的電阻值,研究弦向角對(duì)電阻值的影響,分析原木徑向和弦向的電學(xué)性質(zhì)差異,以期進(jìn)一步認(rèn)識(shí)電流在圓盤(pán)橫截面的傳導(dǎo)規(guī)律及其影響因素,為利用電阻法進(jìn)行木材缺陷無(wú)損檢測(cè)提供理論依據(jù)。
1材料與方法
1.1材料
杉木(Cunninghamia lanceolata)試樣取自福建省長(zhǎng)汀縣樓子壩林場(chǎng),白樺(Betula platyphylla)、紅松(Pinus koraiensis)、落葉松(Larix gmelinii)、青楊(Populus davidiana)試樣取自松花江中游南岸的黑龍江省方正林業(yè)局。立木樣本被伐倒后,立即制成原木;然后再將原木鋸切加工成圓盤(pán),圓盤(pán)試樣均無(wú)節(jié)子、腐朽和開(kāi)裂,直徑為20~35cm,厚度5cm,心材與邊材的比例為24%~68%。各樹(shù)種圓盤(pán)均為2個(gè),依次標(biāo)記為S1(1號(hào)杉木圓盤(pán))、S2(2號(hào)杉木圓盤(pán))、B3(3號(hào)白樺圓盤(pán))、B4(4號(hào)白樺圓盤(pán))、H5(5號(hào)紅松圓盤(pán))、H6(6號(hào)紅松圓盤(pán))、L7(7號(hào)落葉松圓盤(pán))、L8(8號(hào)落葉松圓盤(pán))、Q9(9號(hào)青楊圓盤(pán))、Q10(10號(hào)青楊圓盤(pán))。其中杉木是主要實(shí)驗(yàn)樹(shù)種,用于弦向角的分析,其它樹(shù)種用來(lái)做對(duì)比分析。為減少樣本含水率變化,在運(yùn)輸過(guò)程中,采用密封袋把樣本包好,運(yùn)回實(shí)驗(yàn)室后立即測(cè)試,實(shí)驗(yàn)室內(nèi)環(huán)境溫度25 ℃,空氣相對(duì)濕度56%。
1.2儀器
激勵(lì)信號(hào)源來(lái)自深圳驛生勝利科技有限公司生產(chǎn)的VC2002函數(shù)信號(hào)發(fā)生器,使用北京普源精電科技有限公司生產(chǎn)的DS1025型示波器對(duì)激勵(lì)信號(hào)進(jìn)行監(jiān)控和校準(zhǔn);用深圳鴻昌濱江電子儀器有限公司生產(chǎn)的DT9206型數(shù)字式萬(wàn)用表測(cè)量試件的負(fù)載電壓,另外使用10kΩ的定值電阻;含水率的測(cè)量?jī)x器是上海佳實(shí)電子科技有限公司生產(chǎn)的FD-100B型高周波木材水分儀;用鋼卷尺測(cè)量圓盤(pán)周長(zhǎng)及弦長(zhǎng)。
1.3方法
1.3.1含水率和弦長(zhǎng)的測(cè)定
首先,在生長(zhǎng)輪方向上,使用高周波數(shù)字水分儀分別對(duì)心材和邊材的含水率進(jìn)行重復(fù)測(cè)量,并計(jì)算其平均值,精確至0.1%[22];然后,在圓盤(pán)中間橫截面四周隨機(jī)選取一點(diǎn),布置釘子將該點(diǎn)標(biāo)記為1號(hào)點(diǎn),再在與1號(hào)位置以弦向角(θ)每隔7.5°的方式布置一個(gè)釘子(見(jiàn)圖1),逆時(shí)針依次標(biāo)記為2、3、4、…、24號(hào)點(diǎn),這些點(diǎn)即為電阻試驗(yàn)測(cè)試點(diǎn)。用鋼卷尺測(cè)量所有點(diǎn)任意兩點(diǎn)的弦長(zhǎng)。弦向角是指在圓盤(pán)橫截面上,以圓周上某一點(diǎn)為切點(diǎn),通過(guò)這一切點(diǎn)的弦向線與切線之間的夾角[23-24]。在本試驗(yàn)中,弦向角實(shí)指激勵(lì)信號(hào)兩電極之間的連線與以負(fù)極位置為切點(diǎn)的切線之間的夾角。角度等于兩電極連線對(duì)應(yīng)的圓心角的一半,和為180°的兩個(gè)弦向角稱為關(guān)于徑向?qū)ΨQ的弦向角;反之,稱為其它弦向角。
圖1 激勵(lì)電極在圓盤(pán)端面的弦向分布
圖2 試驗(yàn)電路圖
1.3.2測(cè)量組數(shù)量的確定
如果繞圓盤(pán)四周布置的測(cè)試點(diǎn)數(shù)為奇數(shù),將無(wú)法測(cè)得弦向角為90°的徑向電阻,所以選擇偶數(shù)測(cè)試點(diǎn)繞圓盤(pán)四周進(jìn)行布置;測(cè)試點(diǎn)數(shù)量越多,則圓盤(pán)周長(zhǎng)劃分得越精細(xì),故選擇24個(gè)測(cè)試點(diǎn)進(jìn)行24組數(shù)據(jù)測(cè)量,并將相同弦向角下的電阻值求取平均值以減小圓盤(pán)截面形狀不規(guī)則對(duì)電阻值的影響。
1.3.3電阻值的測(cè)定
本研究在進(jìn)行圓盤(pán)電阻測(cè)量時(shí),觀察的重點(diǎn)是圓盤(pán)電阻的變化趨勢(shì),而不是電阻值本身,對(duì)精度的要求有限;試驗(yàn)數(shù)量也比較大,單次測(cè)量電阻的時(shí)間不宜太長(zhǎng),故相對(duì)于電橋法,伏安法更適于本研究中的圓盤(pán)電阻測(cè)量。根據(jù)以往研究經(jīng)驗(yàn),選用1 000Hz、3V的正弦波作為激勵(lì)信號(hào)[25]。試驗(yàn)電路如圖2所示,一方面為減小溫度的影響,另一方面為求出電路電流,試驗(yàn)時(shí)圓盤(pán)試件先與10kΩ的定值電阻(RR)串聯(lián),再與交流電源相連,在定值電阻和圓盤(pán)試樣兩端各用一個(gè)萬(wàn)用電表測(cè)量負(fù)載電壓以計(jì)算圓盤(pán)試樣的電阻值。具體試驗(yàn)步驟為:①1號(hào)測(cè)試點(diǎn)接電源一端,2—24號(hào)測(cè)試點(diǎn)依次接電源另一端,讀出每次圓盤(pán)試樣兩端萬(wàn)用電表1的示數(shù),記為UD;定值電阻兩端萬(wàn)用電表2的讀數(shù)記為UR,1號(hào)測(cè)試點(diǎn)測(cè)量結(jié)束。②2號(hào)測(cè)試點(diǎn)接電源一端,1、3—24號(hào)測(cè)試點(diǎn)依次接電源另一端,記錄UD和UR,2號(hào)測(cè)試點(diǎn)測(cè)量結(jié)束。③以此類推,完成3—24號(hào)測(cè)試點(diǎn)的測(cè)量,至此結(jié)束對(duì)一個(gè)圓盤(pán)試件的測(cè)量。這樣24個(gè)測(cè)試點(diǎn)可獲得552個(gè)獨(dú)立的測(cè)量值。圓盤(pán)的電阻值(RD)可用如下公式計(jì)算:
RD=UD/ID=UD/IR=UD/(UR/RR)=(UDRR)/UR。
表1圓盤(pán)S1每個(gè)測(cè)量點(diǎn)電阻值與弦向角之間的一元二次回歸模型
測(cè)量點(diǎn)y=A+Bθ+Cθ2FR21y=15.243+1.573θ-0.008θ2321.7790.9702y=17.642+1.456θ-0.008θ2197.2810.9523y=17.261+1.477θ-0.008θ2224.7360.9574y=17.706+1.452θ-0.008θ2210.0200.9555y=17.440+1.552θ-0.008θ2240.6930.9606y=15.561+1.525θ-0.008θ2469.1540.9797y=16.939+1.536θ-0.008θ2476.2490.9798y=6.146+1.570θ-0.008θ2919.2190.9899y=6.723+1.544θ-0.008θ2854.9780.98810y=9.077+1.497θ-0.008θ2973.1790.99011y=14.965+1.449θ-0.008θ2817.7970.98812y=12.004+1.380θ-0.008θ2651.3550.98513y=17.074+1.263θ-0.007θ2781.4100.98714y=23.137+1.178θ-0.007θ2705.6470.98615y=29.946+1.079θ-0.006θ2522.9380.98116y=29.118+1.005θ-0.006θ2178.8200.94717y=25.209+0.924θ-0.005θ2154.6570.93918y=23.232+0.867θ-0.005θ2177.2980.94719y=20.985+0.894θ-0.005θ294.6550.90420y=12.684+1.041θ-0.005θ2139.5600.93321y=13.831+0.999θ-0.005θ2130.5180.92922y=14.284+0.958θ-0.005θ2153.3430.93923y=13.749+0.941θ-0.005θ2191.1250.95024y=11.565+0.952θ-0.005θ2243.0520.960
2結(jié)果與分析
2.1弦長(zhǎng)隨弦向角的變化
圖3顯示的是圓盤(pán)S1各測(cè)量點(diǎn)的弦向角與激勵(lì)信號(hào)兩極間距離的關(guān)系,即各測(cè)量點(diǎn)不同弦向角下的弦長(zhǎng)、電流信號(hào)在杉木內(nèi)部傳導(dǎo)的直線距離,圖形呈現(xiàn)出隨著弦向角的增大傳導(dǎo)距離先增大后減小的趨勢(shì)。進(jìn)一步采用二次多項(xiàng)式擬合,以弦向角(θ)為自變量,傳導(dǎo)距離(d)為因變量,建立各測(cè)試點(diǎn)θ與d的擬合方程。擬合方程的相關(guān)系數(shù)R2=0.99,擬合效果非常好,表明試樣的圓周上沒(méi)有大的凸起或者凹陷變化,圓周比較平滑且測(cè)試點(diǎn)分布比較均勻。因此可以認(rèn)為單個(gè)試樣的24組數(shù)據(jù)中剩余的23組數(shù)據(jù)也都是每隔7.5°測(cè)量得到的。
2.2激勵(lì)電壓隨弦向角的變化
圖4顯示的是測(cè)量圓盤(pán)S1不同弦向角下激勵(lì)電壓的實(shí)際輸出值,采用二次多項(xiàng)式擬合,以θ為自變量,電壓(U)為因變量,建立每個(gè)測(cè)試點(diǎn)下θ與U的擬合方程??芍?,雖然多項(xiàng)式擬合也大致呈現(xiàn)了激勵(lì)電壓隨著弦向角的增大先增大后減小的趨勢(shì),但是相關(guān)系數(shù)R2=0.7,表示擬合效果一般,并且回歸系數(shù)均接近于0。弦向角很小和弦向角很大時(shí)電壓變化較大,中間大部分都變化不顯著,電壓幅值大多在1.89~1.9V。24組數(shù)據(jù)的方差分析表明,弦向角對(duì)電壓輸出值的影響非常不顯著(P=0.999),即不同弦向角間電壓的實(shí)際輸出值并無(wú)顯著差異。鮑震宇曾對(duì)山楊木材電阻測(cè)量的研究發(fā)現(xiàn),2~16V交流信號(hào)激勵(lì)下的電阻值幾乎不隨著電壓的變化而變化[25]??芍?lì)電壓的變化對(duì)電阻測(cè)量的影響不顯著,即本實(shí)驗(yàn)激勵(lì)電壓的差異不會(huì)引起電阻值的較大差異。
圖3 圓盤(pán)S1各測(cè)試點(diǎn)不同弦向角下的弦長(zhǎng)變化曲線
圖4 圓盤(pán)S1不同弦向角下的激勵(lì)電壓實(shí)際輸出值
2.3弦向角對(duì)立木圓盤(pán)電阻的影響
2.3.1對(duì)杉木圓盤(pán)電阻的影響
圖5顯示的是不同弦向角下杉木圓盤(pán)電阻值變化趨勢(shì),該圖由12條折線組成(原圖有24條折線,為便于顯示選取其中12條),每條折線上有23個(gè)電阻值,分別代表了每個(gè)測(cè)量點(diǎn)23個(gè)不同弦向角下的電阻值變化趨勢(shì)??芍弘S著弦向角的增大電阻呈先增大后減小的趨勢(shì),且最大值出現(xiàn)在90°附近;方向角相同電阻不相同時(shí),它會(huì)在一定范圍內(nèi)波動(dòng),但電阻總的變化趨勢(shì)是一樣的。徑向?qū)ΨQ的弦向角對(duì)電阻值影響的單因素方差分析表明,它對(duì)電阻值的影響不顯著(P=0.995)。徑向非對(duì)稱的弦向角對(duì)電阻值影響的單因素方差分析表明,它對(duì)電阻值的影響極顯著(P<0.01)。將24個(gè)測(cè)量點(diǎn)的每個(gè)弦向角與電阻值進(jìn)行擬合(見(jiàn)表1),回歸系數(shù)均在一定范圍內(nèi)波動(dòng)。這種差異是由木材構(gòu)造的各向異性導(dǎo)致的,因此為解決單個(gè)檢測(cè)點(diǎn)的電阻模型隨機(jī)性較大的問(wèn)題,提高模型的擬合優(yōu)度,減小單個(gè)點(diǎn)檢測(cè)時(shí)電阻誤差,取平均電阻值作為實(shí)驗(yàn)分析的數(shù)據(jù),從而控制實(shí)驗(yàn)誤差。可知,隨著弦向角的增大平均電阻值呈現(xiàn)先增大后減小的趨勢(shì),整體上呈顯著的二次函數(shù)關(guān)系,擬合方程為y=-0.006 9θ2+1.254 6θ+16.73,相關(guān)系數(shù)R2=0.99(P<0.01),說(shuō)明擬合效果很好。θ<90°時(shí),平均電阻值隨著弦向角的增大逐漸增大;θ=90°時(shí),電流通過(guò)圓盤(pán)橫截面直徑時(shí)平均電阻值達(dá)到最大;θ>90°時(shí),平均電阻值隨著弦向角的增大逐漸的減小。進(jìn)一步建立θ對(duì)Rθ/R90的回歸模型Rθ/R90=-0.000 1θ2+0.017 2θ+0.236 8,相關(guān)系數(shù)R2=0.99(P<0.01)。其中:Rθ為沿弦向角θ的電阻值;R90為徑向電阻值,即弦向角θ為90°時(shí)的電阻值。模型更具普遍性。
這是因?yàn)槟静氖歉飨虍愋缘姆蔷鶆蚪橘|(zhì)材料,在圓盤(pán)的橫截面上,木材的密度、含水率、生長(zhǎng)輪寬度、早晚材比率和木射線組織比率等影響電流在圓盤(pán)橫截面上傳導(dǎo)的因子隨著弦向角的變化而變化。弦向角對(duì)圓盤(pán)電阻值的影響原因有3點(diǎn)。其一,當(dāng)弦向角較小時(shí),激勵(lì)信號(hào)的兩極距離較近,電勢(shì)在激勵(lì)電極處取得最大值后,在激勵(lì)電極周圍迅速降低接近為零,電流密度集中于此;而這樣對(duì)遠(yuǎn)離激勵(lì)電極的區(qū)域來(lái)說(shuō),電流很少流過(guò)。所以此時(shí)電流流經(jīng)圓盤(pán)橫截面區(qū)域較小,產(chǎn)生的電阻也就較小。當(dāng)弦向角較大時(shí),電勢(shì)同樣在兩個(gè)激勵(lì)電極處取得最大值;但是沿著圓盤(pán)中心位置逐漸降低,電流密度隨著與激勵(lì)電極的距離增大呈由快到慢的非線性下降趨勢(shì)。從激勵(lì)點(diǎn)出發(fā),要形成通路,電流流經(jīng)激勵(lì)電極之間的區(qū)域圓盤(pán)橫截面區(qū)域變大,產(chǎn)生的電阻也就較大[26-30]。其二,木材的密度沿著髓心向外呈直線或者曲線減小,密度小的木材比密度大的具有稍微高的電阻率;而木材密度對(duì)電阻率的影響與含水率對(duì)電阻率的影響相比是沒(méi)有意義的,隨著含水率的增加電阻逐漸減小。本試驗(yàn)圓盤(pán)試件的邊材含水率均高于心材含水率,弦向角較小時(shí)電流主要流經(jīng)圓盤(pán)邊材,邊材含水率較高,電阻較小。隨著弦向角增大,電流流經(jīng)圓盤(pán)路徑的含水率逐漸減小,電阻相應(yīng)增大。其三,如果將激勵(lì)電極兩點(diǎn)間的電阻抽象為兩點(diǎn)之間所有連線電阻的并聯(lián)電阻,根據(jù)并聯(lián)后的等效電阻小于并聯(lián)的最小電阻,則兩點(diǎn)弦長(zhǎng)上的電阻最能代表所對(duì)應(yīng)弦向角的電阻。隨著弦向角的增加,激勵(lì)電極之間的弦長(zhǎng)逐漸增大(見(jiàn)圖3),弦長(zhǎng)上的電阻也就不斷累加,弦向電阻值也相應(yīng)地變大。將圖6中各個(gè)弦向角的平均電阻值與圖3對(duì)應(yīng)的弦長(zhǎng)相除,得到各弦向角下的平均電阻率。電阻率隨著弦向角的增大先減小后增大,弦向電阻率大于徑向電阻率,這與李堅(jiān)、白同仁等人的研究結(jié)果是一致的[31],從而也證明了本研究建立的平均電阻與弦向角之間的擬合模型是有效的。
圖5 不同測(cè)量點(diǎn)下的圓盤(pán)S1電阻值變化曲線
2.3.2對(duì)其它樹(shù)種立木圓盤(pán)電阻的影響
圖7a顯示的是S1號(hào)杉木和S2號(hào)杉木樣品在各個(gè)相同弦向角下電阻值之間的關(guān)系?;貧w分析表明,兩者之間的線性關(guān)系極為顯著(R2=0.998 1);隨著弦向角的變化,橫截面積不同的同種樹(shù)種也會(huì)有著相同的電阻變化規(guī)律,弦向角對(duì)圓盤(pán)電阻的影響不受圓盤(pán)橫截面面積的影響。同理對(duì)其它相同樹(shù)種不同截面面積的樣品進(jìn)行分析,結(jié)果也是線性關(guān)系極其顯著。圖7b—圖7e依次顯示的是S1號(hào)杉木與B3號(hào)樺木、H5紅松、L7落葉松、Q9青楊樣品在各相同弦向角下電阻值之間的關(guān)系。從回歸結(jié)果來(lái)看,不同樹(shù)種在相同方向角的電阻值不同,但變化規(guī)律基本相同。弦向角對(duì)圓盤(pán)電阻的影響規(guī)律不受樹(shù)種的影響,結(jié)合2.3.1的結(jié)論可知,隨著弦向角的增大,不同活立木圓盤(pán)電阻均呈現(xiàn)先增大后減小的趨勢(shì),徑向電阻最大,整體趨勢(shì)為一條開(kāi)口向下的拋物線。
圖6 不同弦向角下的圓盤(pán)S1平均電阻和平均電阻率變化曲線
圖7 不同立木圓盤(pán)相同弦向角下的電阻值關(guān)系
3結(jié)論
徑向?qū)ΨQ的弦向角對(duì)電阻值影響不顯著,其它弦向角對(duì)電阻值影響顯著,且隨著弦向角的增加,電流在杉木等樹(shù)種圓盤(pán)橫截面上傳導(dǎo)時(shí)電阻值均呈曲線趨勢(shì),先增加后減小。所建立的電流在杉木圓盤(pán)橫截面上傳導(dǎo)時(shí)電阻值與弦向角間的二次多項(xiàng)式擬合模型擬合效果比較好。擬合曲線呈現(xiàn)類似開(kāi)頭向下的近拋物線形式,相關(guān)系數(shù)均在0.9以上;當(dāng)弦向角為90°時(shí),電流在杉木圓盤(pán)橫截面上傳導(dǎo)時(shí)電阻值達(dá)到最大值。不同橫截面面積和不同樹(shù)種的試樣在相同弦向角下的電阻值大小不同,但變化趨勢(shì)均相同。
其它樹(shù)種圓盤(pán)橫截面上弦向角對(duì)電流傳導(dǎo)時(shí)電阻的影響:弦向角對(duì)電流傳導(dǎo)時(shí)的電阻有一定影響,不同樹(shù)種的影響程度不同,但是趨勢(shì)相同。因此,利用電阻法進(jìn)行木材缺陷檢測(cè)時(shí)需要考慮弦向角對(duì)電阻的影響,比如傳導(dǎo)路徑的延長(zhǎng)和弦向角的改變都是空洞缺陷電阻增大的原因。本研究結(jié)果可為通過(guò)電阻差異及規(guī)律,對(duì)原木分級(jí)、立木健康檢測(cè)等提供理論依據(jù)。
參考文獻(xiàn)
[1]王立海,楊學(xué)春,徐凱宏.木材無(wú)損檢測(cè)技術(shù)的研究現(xiàn)狀與進(jìn)展[J].森林工程,2001,17(6):1-3.
[2]王欣,申世杰.木材無(wú)損檢測(cè)研究概況與發(fā)展趨勢(shì)[J].北京林業(yè)大學(xué)學(xué)報(bào),2009,31(S1):202-205.
[3]余觀夏,張愛(ài)珍,史伯章,等.用應(yīng)力波頻譜分析技術(shù)檢測(cè)原木中的腐朽[J].東北林業(yè)大學(xué)學(xué)報(bào),2007,35(10):22-25.
[4]安源,殷亞方,姜笑梅,等.應(yīng)力波和阻抗儀技術(shù)勘查木結(jié)構(gòu)立柱腐朽分布[J].建筑材料學(xué)報(bào),2008,11(4):457-463.
[5]楊慧敏,王立海.立木與原木內(nèi)部腐朽二維成像檢測(cè)技術(shù)研究進(jìn)展[J].林業(yè)科學(xué),2010,46(7):170-175.
[6]吳福社,吳貽軍,邵卓平.應(yīng)力波儀和阻力儀用于雪松立木內(nèi)部材性檢測(cè)的研究[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,38(1):127-130.
[7]劉澤旭,王立海,鮑震宇,等.紅松活立木內(nèi)部腐朽程度的定量檢測(cè)[J].東北林業(yè)大學(xué)學(xué)報(bào),2015,43(6):89-92,106.
[8]孫天用,王立海,侯捷建,等.木材含水率和地形條件對(duì)紅松活立木腐朽程度的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2015,26(2):349-355.
[9]梁善慶,王喜平,蔡智勇,等.彈性波層析成像技術(shù)檢測(cè)活立木腐朽[J].林業(yè)科學(xué),2008,44(5):109-114.
[10]劉光林.樹(shù)木內(nèi)部應(yīng)力波傳播速度模型研究[D].臨安:浙江農(nóng)林大學(xué),2014.
[11]劉豐祿,張厚江,姜芳,等.人工林活立木材質(zhì)應(yīng)力波無(wú)損檢測(cè)研究進(jìn)展[J].林業(yè)機(jī)械與木工設(shè)備,2015,43(3):8-12.
[12]OLIVAJ,ROMERALOC,STENLIDJ.AccuracyoftheRotfinderinstrumentindetectingdecayonNorwayspruce(Picea abies)trees[J].ForestEcologyandManagement,2011,262(8):1378-1386.
[13]鮑震宇,王立海.電阻測(cè)試法在立木腐朽檢測(cè)中的應(yīng)用研究進(jìn)展[J].森林工程,2013,29(6):47-51.
[14]王興龍,王立海.電極數(shù)量對(duì)ERT技術(shù)檢測(cè)原木缺陷效果的影響[J].林業(yè)科技開(kāi)發(fā),2015,29(6):99-103.
[15]SHIGOAL,SHIGOA.Detectionofdiskcolorationanddecayinlivingtreesandutilitypoles[J].ForestServiceoftheUSDepartmentofAgriculture,1974,29(4):3-10.
[16]ROMERALOC.ReliabilityofRotfinderinstrumentfordetectingdecayinstandingtrees[D].Uppsala:SwedishUniversityofAgriculturalScience,2010.
[17]MartinT.Complexresistivitymeasurementsonoak[J].EuropeanJournalofWoodandWoodProducts,2012,70(1/2/3):45-53.
[18]顧錫爵,周曼.微波頻率下木材介電常數(shù)和損耗的測(cè)量[J].南京林業(yè)大學(xué)學(xué)報(bào),1987,11(3):95-99.
[19]殷祥源.木材真實(shí)電阻的測(cè)量[J].南京林業(yè)大學(xué)學(xué)報(bào),1988,12(1):91-95.
[20]池玉杰.木材腐朽與木材腐朽菌[M].北京:科學(xué)出版社,2002.
[21]李堅(jiān).木材科學(xué)[M].北京:高等教育出版社,2002.
[22]徐華東,王立海.溫度和含水率對(duì)紅松木材中應(yīng)力波傳播速度的影響[J].林業(yè)科學(xué),2011,47(9):123-128.
[23]王立海,王洋,徐華東.弦向角對(duì)應(yīng)力波在原木橫截面?zhèn)鞑ニ俣鹊挠绊慬J].林業(yè)科學(xué),2011,47(8):139-142.
[24]劉光林,李光輝,孫曄,等.樹(shù)木內(nèi)部應(yīng)力波傳播速度模型[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2015,32(1):18-24.
[25]鮑震宇,王立海.激勵(lì)信號(hào)對(duì)山楊木材電阻測(cè)量的影響[J].林業(yè)科技開(kāi)發(fā),2015,29(1):79-82.
[26]鄒璐.電阻層析成像系統(tǒng)仿真建模研究[D].北京:清華大學(xué),2002.
[27]余金華.電阻層析成像技術(shù)應(yīng)用研究[D].杭州:浙江大學(xué),2005.
[28]燕增偉.32電極電阻層析成像系統(tǒng)仿真研究[D].北京:北京交通大學(xué),2009.
[29]張彥俊,陳宇,陳德運(yùn),等.電阻層析成像系統(tǒng)敏感場(chǎng)特性分析及圖像重建[J].計(jì)算機(jī)科學(xué),2010,37(8):257-261.
[30]王湃.電阻層析成像(ERT)技術(shù)及其在兩相流檢測(cè)中的應(yīng)用[D].西安:西安電子科技大學(xué),2013.
[31]白同仁,陳森,曾其蘊(yùn).馬尾松木材介電性質(zhì)的測(cè)試[J].木材工業(yè),1987,1(4):1-5.
第一作者簡(jiǎn)介:王興龍,男,1992年1月生,東北林業(yè)大學(xué)工程技術(shù)學(xué)院,碩士研究生。E-mail:823390979@qq.com。 通信作者:王立海,東北林業(yè)大學(xué)工程技術(shù)學(xué)院,教授。E-mail:wanglihai2012@126.com。
收稿日期:2016年1月20日。
分類號(hào)S781.51
EffectsofTangentialAnglesonElectricalResistanceofStandingTreeDisk//
WangXinglong,WangLihai
(NortheastForestryUniversity,Harbin150040,P.R.China);YueXiaoquan(FujianAgricultureandForestryUniversity);GeXiaowen,LiuZexu(NortheastForestryUniversity)//JournalofNortheastForestryUniversity,2016,44(8):78-82,107.
Weselecteddifferentspeciesassamplestostudytheresistancesandthoseinfluencesfactorsindisk’scrosssectionandimprovethetheoreticalbasisofelectricalresistancetestingmethodinwoodnon-destructivetesting.DisksofBetula platyphylla SukaczevandCunninghamia lanceolatawerechosenastestmaterialstomeasuretheresistancesofdiskatdifferenttangentialangles.Theresistancesofdiskwerenotsignificantlyaffectedbytangentialangleofradicalsymmetric.Othersweresignificantaffectedbytangentialangles.Inthecrosssectionofdisk,theresistanceofdiskwasincreasedwiththeincreasingoftangentialanglebefore90°,andtheresistanceofdiskalongtheradialdirectionwasthemaximum.Whenradialdirectionanglewasincreasedgradually,thestresswavevelocitywouldbecomesmaller.Forthesamedirectionangle,theresistanceofdiskwasdifferentindifferentspecies.
KeywordsWood non-destructive testing; Electrical resistance test; Tangential angle
1)國(guó)家林業(yè)局“948”項(xiàng)目(2014-4-78)。
責(zé)任編輯:戴芳天。