李璐瑤,孫丕海,包鵬云,張叢堯,楊志平,馬悅欣
(1.大連海洋大學(xué)農(nóng)業(yè)部北方海水增養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,遼寧 大連116023;2.大連海洋大學(xué) 海珍品苗種培育基地,遼寧 大連116023;3.大連匯新鈦設(shè)備開發(fā)有限公司,遼寧大連116039)
?
飼料中添加混合益生菌對(duì)刺參幼參免疫反應(yīng)和抗氧化性能的影響
李璐瑤1,孫丕海2,包鵬云1,張叢堯1,楊志平3,馬悅欣1
(1.大連海洋大學(xué)農(nóng)業(yè)部北方海水增養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,遼寧 大連116023;2.大連海洋大學(xué) 海珍品苗種培育基地,遼寧 大連116023;3.大連匯新鈦設(shè)備開發(fā)有限公司,遼寧大連116039)
摘要:為探討混合益生菌對(duì)刺參Apostichopus japonicus幼參免疫反應(yīng)和抗氧化性能的影響,用添加梅奇酵母C14(濃度為1×105cells/g飼料)、紅酵母H26(濃度為1×105cells/g飼料)和芽孢桿菌BC26(濃度為1×107cells/g飼料)的混合益生菌飼料,投喂體質(zhì)量為(0.54 g±0.06 g)的幼參,記為益生菌組,并設(shè)只投喂基礎(chǔ)飼料的對(duì)照組,投喂4周和8周后,測(cè)定幼參免疫指標(biāo)和抗氧化指標(biāo)的變化。結(jié)果表明:飼養(yǎng)4周時(shí),益生菌組幼參體腔細(xì)胞吞噬活力和呼吸爆發(fā),體腔液 (CF)和體腔細(xì)胞裂解液 (CLS)溶菌酶、酚氧化酶活力均顯著高于對(duì)照組 (P<0.05);飼養(yǎng)8周時(shí),益生菌組除CF和CLS酚氧化酶活力與對(duì)照組無(wú)顯著性差異外(P>0.05),其他免疫指標(biāo)仍顯著高于對(duì)照組(P<0.05);飼養(yǎng)4周時(shí),益生菌組幼參CF、腸道和體壁超氧化物歧化酶(SOD)活力,CF、CLS、腸道、呼吸樹和體壁過氧化氫酶(CAT)活力,總抗氧化能力(TAOC),以及腸道和呼吸樹谷胱甘肽(GSH)含量均顯著高于對(duì)照組(P<0.05);飼養(yǎng)8周時(shí),益生菌組幼參腸道、呼吸樹和體壁SOD活力,所有組織CAT活力,CLS和腸道T-AOC,CF、腸道和呼吸樹GSH含量均顯著高于對(duì)照組(P<0.05)。研究表明,飼料中補(bǔ)充混合益生菌可促進(jìn)幼參免疫反應(yīng)和影響其抗氧化性能。
關(guān)鍵詞:刺參;益生菌;免疫反應(yīng);抗氧化性能
刺參Apostichopus japonicus是中國(guó)北方地區(qū)重要的海珍品養(yǎng)殖種類。但多種傳染性疾病給刺參養(yǎng)殖業(yè)造成了巨大的經(jīng)濟(jì)損失,限制了該產(chǎn)業(yè)的可持續(xù)發(fā)展[1-3]。近年來(lái),益生菌在刺參養(yǎng)殖業(yè)中的應(yīng)用受到一些學(xué)者的關(guān)注。將乳酸菌L-2和芽孢桿菌Bacillus sp.K-3混合添加到飼料中養(yǎng)殖幼參,可提高幼參腸道超氧化物歧化酶 (SOD)活力[4];枯草芽孢桿菌Bacillus subtilis T13和芽孢桿菌Bacillus sp.BC26能促進(jìn)幼參體腔細(xì)胞吞噬和/或呼吸爆發(fā)[5-6];馬氏副球菌Paracoccus marcusii DB11可提高幼參體腔液 (含細(xì)胞)、呼吸樹SOD和過氧化氫酶 (CAT)活力[7];假交替單胞菌Pseudoalteromonas elyakovii HS1、希瓦氏菌Shewanella japonica HS7和塔斯馬尼亞弧菌Vibrio tasmaniensis HS10可增強(qiáng)幼參體腔細(xì)胞呼吸爆發(fā)和吞噬活力,以及體腔細(xì)胞裂解液 (CLS)溶菌酶和SOD活力[8];梅奇酵母Metschnikowia sp.C14和仙人掌有孢漢遜酵母Hanseniaspora opuntiae C21可刺激幼參體腔細(xì)胞吞噬活力,以及體腔液 (CF)溶菌酶、酚氧化酶、CLS溶菌酶和SOD活力[9-10];海洋紅酵母Rhodotorula benthica D30可顯著增加幼參體腔細(xì)胞的吞噬活力,以及CF的溶菌酶、酚氧化酶和SOD活力[11]。但混合酵母菌和細(xì)菌對(duì)幼參免疫反應(yīng)和抗氧化性能的影響目前尚未見報(bào)道,本研究中,分析了由梅奇酵母C14、紅酵母 H26和芽孢桿菌BC26[6,12]組成的混合菌對(duì)幼參免疫指標(biāo)和抗氧化性能的影響,旨在為混合益生菌在刺參養(yǎng)殖中的應(yīng)用提供參考。
1.1材料
試驗(yàn)用健康刺參幼參購(gòu)自大連市某刺參養(yǎng)殖場(chǎng)?;A(chǔ)飼料配方同文獻(xiàn)[9]。
1.2方法
1.2.1含菌飼料的制備 將梅奇酵母C14菌株和紅酵母H26菌株接種于酵母膏胨葡萄糖 (YPD)液體培養(yǎng)基中,將芽孢桿菌BC26菌株接種于胰蛋白胨大豆肉湯 (TSB)培養(yǎng)基中,在25℃下震蕩培養(yǎng)16 h,將菌懸液離心,用生理鹽水重懸細(xì)胞,并用血球計(jì)數(shù)板計(jì)數(shù),然后添加到幼參基礎(chǔ)飼料中,制備成含C14菌株 (1×105cells/g飼料)+ H26菌株 (1×105cells/g飼料)+BC26菌株 (1× 107cells/g飼料)的飼料,菌株劑量依據(jù)文獻(xiàn)[6,9]確定,飼料每天制備一次以保證菌株活力。
1.2.2試驗(yàn)設(shè)計(jì) 將幼參暫養(yǎng)2周后,選擇大小相近的幼參(0.54 g±0.06 g)隨機(jī)分配到6個(gè)盛有過濾海水的塑料桶中,每桶200頭,用含菌飼料和基礎(chǔ)飼料分別投喂3桶幼參,分別記為益生菌組和對(duì)照組。每日投喂一次,投喂量為其體質(zhì)量的5%,每2 d換水1/2,吸底,用氣石充氣。試驗(yàn)期間,溫度為16~24℃,pH為7.8~8.2,鹽度為30。
1.2.3樣品的采集 養(yǎng)殖4周和8周時(shí),分別從每個(gè)平行隨機(jī)取10頭幼參,饑餓20 h,使腸道內(nèi)容物排空。用無(wú)菌海水沖洗幼參體表,斷尾解剖,取其體腔液500 μL加入等體積抗凝劑[13],混合均勻,取400 μL進(jìn)行體腔細(xì)胞計(jì)數(shù)、呼吸爆發(fā)和吞噬活力測(cè)定,剩余體腔液在4℃下離心,取上清液即CF;沉淀用體腔細(xì)胞等滲液[13]重懸,將重懸液在冰浴中用超聲波破碎儀破碎,在4℃下離心,上清液即CLS,測(cè)定CF和CLS的免疫指標(biāo)和抗氧化指標(biāo)。
取腸道、呼吸樹和體壁組織迅速用液氮冷凍后于超低溫冰箱 (-80℃)中保存;將各組織勻漿液在4℃下離心,取上清液測(cè)定其抗氧化指標(biāo)。
1.2.4蛋白含量的測(cè)定 采用考馬斯亮藍(lán)法[14]測(cè)定CF、CLS、腸道、呼吸樹和體壁勻漿液上清液中總蛋白含量。
1.2.5免疫指標(biāo)的檢測(cè) 體腔細(xì)胞吞噬活力的測(cè)定依據(jù)Ma等[10]的方法進(jìn)行,以50 μL樣品中每毫克蛋白吞噬的酵母細(xì)胞數(shù)量表示吞噬活力。參考Song等[15]的方法略加修改,進(jìn)行體腔細(xì)胞呼吸爆發(fā)的測(cè)定。具體如下:于1.5 mL離心管中加入100 μL 0.1%多聚賴氨酸,然后加入100 μL抗凝體腔液,離心,去上清液,再加入100 μL佛波醇PMA,室溫 (20~24℃)下孵育30 min;加入100 μL 0.3%氯化硝基四氮唑藍(lán)NBT,室溫下孵育30 min,孵育結(jié)束后于4℃下離心10 min,去上清液,加入200 μL甲醇中止反應(yīng)10 min,4℃下離心10 min,去上清液,用70%甲醇洗滌,室溫下晾干;加入120 μL KOH和140 μL二甲基亞砜DMSO,充分溶解后將液體加入酶標(biāo)板,利用Epoch酶標(biāo)儀(美國(guó)BioTek公司)測(cè)定630 nm波長(zhǎng)處的吸光值,呼吸爆發(fā)以每106cells的OD值表示。
溶菌酶活力的測(cè)定以溶壁微球菌凍干粉為底物,依據(jù)Hultmark等[16]的方法進(jìn)行并加以改進(jìn)。用0.1 mol/L pH 6.4的磷酸鹽緩沖液配制成底物(OD570 nm=0.2~0.3),取300 μL該懸液加入5 μL CF或CLS,對(duì)照以等體積PBS代替樣品。混合后于室溫 (20~24℃)下孵育30 min,冰浴1 h,測(cè)定570 nm處的吸光值,對(duì)照記為A0,樣品記為A,溶菌酶活力=(A0-A)/A。
酚氧化酶活力的測(cè)定參考文獻(xiàn) [6,17]的方法進(jìn)行。酚氧化酶活力單位定義為:在試驗(yàn)條件下,每分鐘 OD490 nm值增加0.001為一個(gè)酶活力單位 (U)。
1.2.6抗氧化指標(biāo)的檢測(cè) CF、CLS、腸道、呼吸樹和體壁的 SOD、CAT活力、總抗氧化能力(T-AOC)和還原型谷胱甘肽 (GSH)含量均采用試劑盒 (購(gòu)于南京建成科技有限公司)檢測(cè),利用Epoch酶標(biāo)儀進(jìn)行測(cè)定,檢測(cè)方法參照說(shuō)明書(將反應(yīng)溫度37℃修改為室溫20~24℃)。
1.3數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用平均值±標(biāo)準(zhǔn)差 (mean±S.D.)表示,用SPSS 16.0軟件進(jìn)行獨(dú)立樣本t檢驗(yàn),置信度設(shè)為95%。
2.1益生菌對(duì)刺參幼參免疫指標(biāo)的影響
從圖1-A、B可見:飼養(yǎng)4周和8周時(shí),益生菌組幼參體腔細(xì)胞吞噬活力和呼吸爆發(fā)均顯著高于對(duì)照組 (P<0.05);對(duì)照組和益生菌組體腔細(xì)胞吞噬活力在4周時(shí)均顯著高于8周 (P<0.05),益生菌組體腔細(xì)胞呼吸爆發(fā)在8周時(shí)顯著高于4周時(shí)(P<0.05),而對(duì)照組體腔細(xì)胞呼吸爆發(fā)在4周和8周時(shí)無(wú)顯著性差異 (P>0.05)。
從圖1-C、D可見:飼養(yǎng)4周和8周時(shí),益生菌組幼參CF和CLS溶菌酶活力均顯著高于對(duì)照組(P<0.05);益生菌組CF、CLS溶菌酶活力和對(duì)照組CLS溶菌酶活力均在8周時(shí)顯著高于4周時(shí)(P<0.05),而對(duì)照組CF溶菌酶活力在4周和8周時(shí)無(wú)顯著性差異 (P>0.05)。
從圖1-E、F可見:飼養(yǎng)4周時(shí),益生菌組幼參CF和CLS酚氧化酶活力均顯著高于對(duì)照組(P<0.05),飼養(yǎng)8周時(shí),益生菌組與對(duì)照組的CF 和CLS酚氧化酶活力均無(wú)顯著性差異 (P>0.05);對(duì)照組CF和CLS酚氧化酶活力在8周時(shí)顯著高于4周時(shí) (P<0.05),而益生菌組CF和CLS酚氧化酶活力在4周和8周時(shí)無(wú)顯著性差異 (P>0.05)。
圖1 益生菌對(duì)幼參體腔細(xì)胞吞噬活力和呼吸爆發(fā)以及對(duì)體腔液和體腔細(xì)胞裂解液的溶菌酶、酚氧化酶活力的影響Fig.1 Effects of probiotics on phagocytic activity and respiratory burst in coelomocytes,and on lysozyme and phenoloxidase activities in coelomic fluid(CF)and coelomocyte cell lysate supernatant(CLS)of juvenile sea cucumber Apostichopus japonicus
2.2益生菌對(duì)刺參幼參抗氧化指標(biāo)的影響
從表1可見:飼養(yǎng)4周時(shí),僅益生菌組幼參CF、腸道和體壁SOD活力顯著高于對(duì)照組 (P<0.05),飼養(yǎng)8周時(shí),僅益生菌組幼參腸道、呼吸樹和體壁SOD活力顯著高于對(duì)照組 (P<0.05),其余組織SOD活力在4周和8周時(shí)與對(duì)照組均無(wú)顯著性差異 (P>0.05);對(duì)照組幼參CF、CLS和腸道SOD活力在4周時(shí)顯著高于8周時(shí) (P<0.05),益生菌組CF、腸道和體壁SOD活力在4周時(shí)顯著高于8周時(shí) (P<0.05),其余組織SOD活力在4周和8周時(shí)無(wú)顯著性差異 (P>0.05)。
從表1可見:飼養(yǎng)4周和8周時(shí),益生菌組幼參CF、CLS、腸道、呼吸樹和體壁CAT活力均顯著高于對(duì)照組 (P<0.05);對(duì)照組和益生菌組幼參CF、CLS、腸道和呼吸樹CAT活力在8周時(shí)顯著高于4周時(shí) (P<0.05),但體壁CAT活力在4周時(shí)顯著高于8周時(shí) (P<0.05)。
從表1可見:飼養(yǎng)4周時(shí),益生菌組幼參CF、 CLS、腸道、呼吸樹和體壁T-AOC均顯著高于對(duì)照組 (P<0.05),飼養(yǎng)8周時(shí),僅益生菌組CLS和腸道T-AOC顯著高于對(duì)照組 (P<0.05),其余組織T-AOC與對(duì)照組均無(wú)顯著性差異 (P>0.05);對(duì)照組幼參 CF、CLS、腸道、呼吸樹和體壁 TAOC在8周時(shí)顯著高于4周時(shí) (P<0.05),而益生菌組僅腸道和體壁T-AOC在8周時(shí)顯著高于4周時(shí) (P<0.05),其余組織T-AOC在4周和8周時(shí)均無(wú)顯著性差異 (P>0.05)。
從表1可見:飼養(yǎng)4周時(shí),益生菌組幼參僅腸道和呼吸樹GSH含量顯著高于對(duì)照組 (P<0.05),其余組織GSH含量與對(duì)照組無(wú)顯著性差異 (P>0.05),飼養(yǎng)8周時(shí),益生菌組僅CF、腸道和呼吸樹GSH含量顯著高于對(duì)照組 (P<0.05),其余組織GSH含量與對(duì)照組無(wú)顯著性差異 (P>0.05);對(duì)照組幼參僅CF、腸道和呼吸樹GSH含量在4周時(shí)顯著高于8周時(shí) (P<0.05),而益生菌組幼參CF的GSH含量在8周時(shí)顯著高于4周時(shí) (P<0.05),腸道和呼吸樹GSH含量在4周時(shí)顯著高于8周時(shí) (P<0.05),其余組織GSH含量在4周和8周時(shí)均無(wú)顯著性差異 (P>0.05)。
綜上所述,飼料中添加混合益生菌可增強(qiáng)幼參體腔細(xì)胞吞噬活力、呼吸爆發(fā),以及CF、CLS的溶菌酶活力和酚氧化酶活力;可提高幼參CF、腸道、呼吸樹和體壁的SOD活力,以及CF、CLS、腸道、呼吸樹、體壁的CAT活力和T-AOC;還可提高CF、腸道和呼吸樹的GSH含量;但不影響幼參CLS的SOD活力以及提高CLS和體壁的GSH含量。
表1 益生菌對(duì)幼參不同組織SOD、CAT活力、T-AOC和GSH含量的影響Tab.1 Effects of probiotics on activities of superoxide dismutase(SOD)and catalase(CAT),T-AOC,and glutathione (GSH)content in different tissues of juvenile sea cucumber Apostichopus japonicus U/mg
刺參非特異性免疫防御系統(tǒng)主要包括細(xì)胞免疫系統(tǒng)和體液免疫系統(tǒng),單一菌株酵母菌和細(xì)菌可作為幼參免疫增強(qiáng)劑,刺激機(jī)體免疫反應(yīng)[5-7,9-11]。
體腔細(xì)胞是棘皮動(dòng)物抵御感染和損傷的第一道防線,起著吞噬、誘捕和包裹入侵微生物的作用[6,18]。與Macey等[19]報(bào)道的混合菌 (2株酵母菌+1株細(xì)菌)對(duì)南非鮑Haliotis midae血細(xì)胞吞噬活力的影響結(jié)果類似,本研究中用添加混合菌(梅奇酵母C14、紅酵母H26和芽孢桿菌BC26)的飼料投喂幼參,可使幼參體腔細(xì)胞的吞噬活力顯著增強(qiáng)。溶菌酶作為特異性免疫分子抵抗細(xì)菌病原侵入的作用機(jī)制,主要是催化細(xì)菌尤其是G+菌細(xì)胞壁中肽聚糖組分N-乙酰葡萄糖胺和N-乙酰胞壁酸之間β-1,4糖苷鍵的水解[20]。溶菌酶除了抵抗細(xì)菌病原侵入作用外,還可直接促進(jìn)吞噬作用或作為調(diào)理素,這可能與混合菌增強(qiáng)吞噬作用有關(guān)聯(lián)[21]。本研究中,投喂混合益生菌飼料可顯著增加幼參CF和CLS的溶菌酶活力。酚氧化酶系統(tǒng)是幼參免疫防御的重要組成部分[6,9-10,22]。本研究中,給幼參投喂混合益生菌4周時(shí)其CF和CLS的酚氧化酶活力顯著提高。前期研究表明,口服β-葡聚糖可以增強(qiáng)幼參體腔細(xì)胞的吞噬活力和CLS酚氧化酶活力[22],肽聚糖能激活斑節(jié)對(duì)蝦Penaeus japonicus粒細(xì)胞的吞噬作用[23],推測(cè)本研究中酵母菌和細(xì)菌的作用機(jī)理可能是通過菌體細(xì)胞壁成分刺激幼參非特異性免疫反應(yīng)。
活性氧 (ROS)伴隨吞噬作用中的呼吸爆發(fā)過程,由細(xì)胞膜上的NAD(P)H-氧化酶催化分子氧的單價(jià)還原產(chǎn)生。產(chǎn)生的ROS包括超氧陰離子(O-2),如過氧化氫和羥基自由基等,這些代謝產(chǎn)物對(duì)廣泛大分子的高反應(yīng)性,使它們成為非常有效的殺菌劑和細(xì)胞毒性劑[24-25]。用添加枯草芽孢桿菌T13的飼料投喂幼參,可提高其體腔細(xì)胞的呼吸爆發(fā)[5]。本研究表明,投喂混合益生菌飼料可以顯著提高幼參體腔細(xì)胞的呼吸爆發(fā)。眾所周知,如果ROS過多積累對(duì)生物體可能是非常有害的,而SOD和CAT是海參體腔細(xì)胞和組織中參與ROS脫毒的抗氧化酶[7,25]。SOD可以催化超氧自由基生成H2O2和O2;CAT可以催化過氧化氫分解成H2O 和O2,從而清除細(xì)胞代謝產(chǎn)生的H2O2;T-AOC代表體內(nèi)酶性和非酶性抗氧化物的總體水平,是反映機(jī)體總抗氧化系統(tǒng)功能狀態(tài)的綜合性指標(biāo);GSH是水生無(wú)脊椎動(dòng)物體內(nèi)重要的清除自由基的非酶性抗氧化物[26]。目前,關(guān)于投喂益生菌對(duì)刺參抗氧化能力影響的報(bào)道較少[7]。本研究中,混合益生菌可提高幼參腸道、呼吸樹和體壁SOD的活力,提高CF、CLS、腸道、呼吸樹和體壁的CAT活力和T-AOC,增加腸道和呼吸樹的GSH含量。海洋紅酵母D30能提高幼參CF的SOD活力[11];Rhodosporidium paludigenum KGO2可使凡納濱對(duì)蝦Litopenaeus vannamei肝胰腺和血清SOD活力,血清和肌肉CAT活力,以及T-AOC顯著增加[27];枯草芽孢桿菌能提高凡納濱對(duì)蝦血清SOD活力和TAOC[28];海洋酵母能積累蝦青素和類胡蘿卜素[29-30],攝食添加適量β-胡蘿卜素和蝦青素飼料的刺參,其體腔液中的T-AOC均顯著高于對(duì)照組[31]。由此推測(cè),本研究中混合益生菌影響幼參的抗氧化性能可能與紅酵母含類胡蘿卜素有關(guān),其具體作用機(jī)理有待進(jìn)一步研究。
參考文獻(xiàn):
[1]馬悅欣,徐高蓉,張恩鵬,等.仿刺參幼參急性口圍腫脹癥的細(xì)菌性病原[J].水產(chǎn)學(xué)報(bào),2006,30(3):377-382.
[2]Deng Huan,He Chongbo,Zhou Zunchun,et al.Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus[J].Aquaculture,2009,287(1-2):18-27.
[3]Li Hua,Qiao Guo,Li Qiang,et al.Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infecting sea cucumber,Apostichopus japonicus[J].Journal of Fish Disease,2010,33(11):865-877.
[4]張濤,白嵐,李蕾,等.不同添加量的益生菌組合對(duì)仿刺參消化和免疫指標(biāo)的影響[J].大連水產(chǎn)學(xué)院學(xué)報(bào),2009,24(S):64-68.
[5]Zhao Yancui,Zhang Wenbing,Xu Wei,et al.Effects of potential probiotic Bacillus subtilis T13 on growth,immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus[J].Fish&Shellfish Immunology,2012,32(5):750-755.
[6]劉姣,韓華,孫飛雪,等.餌料中添加芽孢桿菌BC26對(duì)刺參幼參消化酶、免疫反應(yīng)和抗病力的影響[J].大連海洋大學(xué)學(xué)報(bào),2013,28(6):568-572.
[7]Yan Fajun,Tian Xiangli,Dong Shuanglin,et al.Growth performance,immune response,and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a supplementary diet of the potential probiotic Paracoccus marcusii DB11[J].Aquaculture,2014,420-421:105-111.
[8]Chi Cheng,Liu Jiayan,F(xiàn)ei Shizhou,et al.Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus)on immune response and growth of A.japonicus[J].Fish&Shellfish Immunology,2014,38(2):367-373.
[9]Liu Zhiming,Ma Yuexin,Yang Zhiping,et al.Immune responses and disease resistance of the juvenile sea cucumber Apostichopus japonicus induced by Metschnikowia sp.C14[J].Aquaculture,2012,368-369:10-18.
[10]Ma Yuexin,Liu Zhiming,Yang Zhiping,et al.Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus[J].Fish&Shellfish Immunology,2013,34(1):66-73.
[11]Wang Jihui,Zhao Liuqun,Liu Jinfeng,et al.Effect of potential probiotic Rhodotorula benthica D30 on the growth performance,digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus[J].Fish&Shellfish Immunology,2015,43(2):330-336.
[12]李明,馬悅欣,劉志明,等.刺參機(jī)體酵母菌組成及其拮抗活性的研究[J].大連海洋大學(xué)學(xué)報(bào),2012,27(5):436-440.
[13]Xing Jun,Leung M F,Chia F S.Quantitative analysis of phagocytosis by amebocytes of a sea cucumber,Holothuria leucospilota [J].Invertebrate Biology,1998,117(1):67-74.
[14]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemstry,1976,72(1-2):248-254.
[15]Song Y L,Hsieh Y T.Immunostimulation of tiger shrimp(Penaeus monodon)hemocytes for generation of microbicidal substances:analysis of reactive oxygen species[J].Developmental& Comparative Immunology,1994,18(3):201-209.
[16]Hultmark D,Steiner H,Rasmuson T,et al.Insect immunity.Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. European Journal of Biochemistry,1980,106(1):7-16.
[17]Smith V J,S?derh?ll K.A comparison of phenoloxidase activity in the blood of marine invertebrates[J].Developmental&Comparative Immunology,1991,15(4):251-261.
[18]Gliński Z,Jarosz J.Immune phenomena in echinoderms[J].Archivum Immunologiae et Therapiae Experimentalis,2000,48(3):189-193.
[19]Macey B M,Coyne V E.Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment[J]. Aquaculture,2005,245(1-4):249-261.
[20]Jollès P,Jollès J.What's new in lysozyme research?Always amodel system,today as yesterday[J].Molecular and Cellular Biochemistry,1984,63(2):165-189.
[21]Saurabh S,Sahoo P K.Lysozyme:an important defence molecule of fish innate immune system[J].Aquaculture Research,2008,39(3):223-239.
[22]Zhao Yancui,Ma Hongming,Zhang Wenbing,et al.Effects of dietary β-glucan on the growth,immune responses and resistance of sea cucumber,Apostichopus japonicus against Vibrio splendidus infection[J].Aquaculture,2011,315(3-4):269-274.
[23]Itami T,Asano M,Tokushige K,et al.Enhancement of disease resistance of kuruma shrimp,Penaeus japonicus,after oral administration of peptidoglycan derived from Bifidobacterium thermophilum[J].Aquaculture,1998,164(1-4):277-288.
[24]Coteur G,Warnau M,Jangoux M,et al.Reactive oxygen species (ROS)production by amoebocytes of Asterias rubens(Echinodermata)[J].Fish&Shellfish Immunology,2002,12(3):187-200.
[25]Dolmatova L S,Eliseikina M G,Romashina V V.Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix[J].Journal of Evolutionary Biochemistry and Physiology,2004,40(2):126-135.
[26]Canesi L.Pro-oxidant and antioxidant processes in aquatic invertebrates[J].Annals of the New York Academy of Sciences,2015,1340(1):1-7.
[27]Yang Shiping,Wu Zaohe,Jian Jichang,et al.Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei[J].Aquaculture,2010,309 (1-4):62-65.
[28]Shen Wenying,F(xiàn)u Linglin,Li Weifen,et al.Effect of dietary supplementation with Bacillus subtilis on the growth performance,immune response and antioxidant activities of the shrimp(Litopenaeus vannamei)[J].Aquaculture Research,2010,41(11):1691-1698.
[29]Frengova G I,Beshkova D M.Carotenoids from Rhodotorula and Phaffia:yeasts of biotechnological importance[J].Journal of Industrial Microbiology&Biotechnology,2009,36(2):163-180.
[30]Ushakumari U N,Ramanujan R.Isolation of astaxanthin from marine yeast and study of its pharmacological activity[J].International Current Pharmaceutical Journal,2013,2(3):67-69.
[31]王吉橋,樊瑩瑩,徐振祥,等.飼料中β-胡蘿卜素和蝦青素添加量對(duì)仿刺參幼參生長(zhǎng)及抗氧化能力的影響[J].大連海洋大學(xué)學(xué)報(bào),2012,27(3):215-220.
中圖分類號(hào):Q939.9;S968.9
文獻(xiàn)標(biāo)志碼:A
DOI:10.16535/j.cnki.dlhyxb.2016.03.007
文章編號(hào):2095-1388(2016)03-0266-06
收稿日期:2015-09-24
基金項(xiàng)目:國(guó)家 “863”計(jì)劃重大項(xiàng)目 (2012AA10A412);農(nóng)業(yè)部北方海水增養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室開放課題 (2014-MSENC-KF-06)
作者簡(jiǎn)介:李璐瑤 (1990—),女,碩士研究生。E-mail:405852333@qq.com
通信作者:馬悅欣 (1963—),女,博士,教授。E-mail:mayuexin@dlou.edu.cn
Effects of dietary supplementation of probiotcs on immune response and antioxidant performance in juvenile sea cucumber Apostichopus japonicus
LI Lu-yao1,SUN Pi-hai2,BAO Peng-yun1,ZHANG Cong-yao1,YANG Zhi-ping3,MA Yue-xin1
(1.Key Laboratory of Mariculture&Stock Enhancement in North China’s Sea,Ministry of Agriculture,Dalian Ocean University,Dalian 116023,China;2.Seafood Seedling Breeding Base,Dalian Ocean University,Dalian 116023,China;3.Dalian Huixin Titanium Equipment Development Co. Ltd.,Dalian 116039,China)
Abstract:A feeding trial was conducted to evaluate effects of probiotics on immune response and antioxidant performance in juvenile sea cucumber Apostichopus japonicus.The juvenile sea cucumber with body weight of(0.54± 0.06)g were fed basal diet or diet supplemented with probiotics containing Rhodotorula sp.H26(1×105cells/g diet),Metschnikowia sp.C14(1×105cells/g diet)and Bacillus sp.BC26(1×107cells/g diet)for 4 and 8 weeks. Results showed that there were significantly higher phagocytic activity and respiratory burst in coelomocytes and significantly higher lysozyme and phenoloxidase activities in coelomic fluid(CF)and coelomocytes cells lysate supernatant(CLS)in the sea cucumber fed the diet containing probiotics than those in the control(P<0.05)in 4 weeks. All immune parameters mentioned above were siginificantly enhanced by probiotcs administration compared to the animals in the control(P<0.05)in 8 weeks except for phenoloxidase activity.Superoxide dismutase(SOD)acivity in CF,intestine and body wall,catalase(CAT)acivity and total antioxidant capacity(T-AOC)in all tissues and glutathione(GSH)content in intestine and respiratory tree in sea cucumber fed the diet supplemented with probiotics were shown to be significantly higher than those in the animals fed basal diet(P<0.05)in 4 weeks.SOD activity in intestine,respiratory tree and body wall,CAT activity in all tissues,T-AOC in CLS and intestine and GSH content in CF,intestine and respiratory tree were significantly elevated in the sea cucumber fed the diet supplemented with probiotcs compared to those in the control(P<0.05)in 8 weeks.The findings revealed that diet supplemented with probiotics improved immune response and antioxidant performance in sea cucumber juveniles.
Key words:Apostichopus japonicus;probiotics;immune response;antioxidant performance