區(qū)曉琳,陳志彪,3?,陳志強(qiáng),3,姜超,趙紀(jì)濤,任天婧(1.濕潤(rùn)亞熱帶山地生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,350007,福州;2.福建師范大學(xué)地理科學(xué)學(xué)院,350007,福州; 3.福建師范大學(xué)地理研究所,350007,福州)
?
閩西南崩崗?fù)寥览砘再|(zhì)及可蝕性分異特征
區(qū)曉琳1,2,陳志彪1,2,3?,陳志強(qiáng)1,2,3,姜超1,2,趙紀(jì)濤1,2,任天婧1,2
(1.濕潤(rùn)亞熱帶山地生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,350007,福州;2.福建師范大學(xué)地理科學(xué)學(xué)院,350007,福州; 3.福建師范大學(xué)地理研究所,350007,福州)
摘要:崩崗是南方紅壤區(qū)侵蝕溝在水力和重力交互作用下溝頭遭受坍塌、陷蝕作用而形成的圍椅狀地貌,是該區(qū)域土壤侵蝕及生態(tài)系統(tǒng)退化的最高表現(xiàn)形式之一。為揭示崩崗侵蝕對(duì)土壤理化特性及可蝕性的影響,以福建省長(zhǎng)汀縣濯田鎮(zhèn)黃泥坑崩崗群內(nèi)植被蓋度分別為2%,20%,95%的3個(gè)典型崩崗為研究對(duì)象,分別對(duì)崩崗系統(tǒng)內(nèi)的集水坡面、崩壁、崩積體和溝口進(jìn)行采樣和理化特性的測(cè)定,并運(yùn)用EPIC模型測(cè)算土壤可蝕性(K)。結(jié)果表明:1)從集水坡面到崩壁、崩積體至溝口,3個(gè)崩崗的土壤砂粒質(zhì)量分?jǐn)?shù)、pH值和土壤密度呈升高趨勢(shì),粉粒、砂粒的質(zhì)量分?jǐn)?shù)和含水量呈下降趨勢(shì)。2)1號(hào)和2號(hào)崩崗,集水坡面的土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)最高,在崩壁最低;3號(hào)崩崗?fù)寥烙袡C(jī)質(zhì)質(zhì)量分?jǐn)?shù)在崩壁處急劇下降,在崩積體中又明顯上升。3)各崩崗中集水坡面、崩壁和崩積體的土壤顆粒組成、土壤密度和含水量差異較小,各土壤理化特性指標(biāo)在溝口與集水坡面、崩壁和崩積體之間存在顯著差異。4)崩崗系統(tǒng)內(nèi)的集水坡面、崩壁、崩積體和溝口4個(gè)子系統(tǒng)的K值差異顯著,1、2號(hào)崩崗呈現(xiàn)崩壁>崩積體>溝口>集水坡面的變化規(guī)律,而3號(hào)崩崗則表現(xiàn)為溝口 >崩積體>崩壁 >集水坡面的趨勢(shì)。5)崩崗系統(tǒng)內(nèi)的黏粒質(zhì)量分?jǐn)?shù)、pH值和有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)與土壤可蝕性關(guān)系密切,可以作為表征崩崗?fù)寥揽晌g性的有效指標(biāo)。崩崗侵蝕造成土壤理化特性不斷惡化,砂化嚴(yán)重,研究崩崗系統(tǒng)的土壤理化特性與可蝕性空間變化規(guī)律,對(duì)指導(dǎo)崩崗的恢復(fù)與重建具有重要意義。
關(guān)鍵詞:土壤可蝕性;崩崗;土壤理化性質(zhì);分異;南方紅壤區(qū)
項(xiàng)目名稱:國(guó)家科技支撐計(jì)劃“南方紅壤水土流失治理技術(shù)及示范”(2013BAC08B03);國(guó)家自然科學(xué)基金“南方紅壤侵蝕區(qū)芒萁散布及其時(shí)空模擬”(41171232),“南方離子型稀土礦區(qū)芒萁的蔓延格局與稀土遷聚響應(yīng)”(41371512)
“崩崗”最早用于描述一類“發(fā)生在南方紅壤區(qū)沖溝溝頭遭受坍塌、陷蝕作用而形成的圍椅狀地貌”[1 2],屬水力 重力復(fù)合侵蝕類型,逐漸發(fā)展成為坡地溝谷發(fā)育的最高階段,也是該區(qū)域土壤侵蝕及生態(tài)系統(tǒng)退化的最高表現(xiàn)形式[3 4]。絕大多數(shù)崩崗(>80%)發(fā)育在花崗巖風(fēng)化殼地帶[5],但在砂頁巖、砂礫巖、碳酸鹽巖、千枚巖和片麻巖等風(fēng)化區(qū)以及第四紀(jì)紅土及火山角礫巖等古坡積區(qū)亦有零星分布[6 7]。根據(jù)長(zhǎng)江水利委員會(huì)2005年崩崗普查結(jié)果[8],全國(guó)范圍內(nèi)崩崗分布約23.91萬處,侵蝕面積約1 200 km2,主要集中分布在長(zhǎng)江以南7省及自治區(qū),各省崩崗數(shù)目所占比例(%)和崩崗面積所占比例從大到小分別為廣東(45.1%,67.8%)、江西(20.1%,17.0%)、廣西 (11.6%,5.4%)、福建(10.9%,6.0%)、湖南 (10.8%,3.0%)、湖北(1.0%,0.5%)及安徽(0.5%,0.3%)。崩崗具有發(fā)展速度快、突發(fā)性強(qiáng)、侵蝕模數(shù)大、危害嚴(yán)重等特點(diǎn),其侵蝕過程破壞土地資源,造成大量泥沙淤積河道、農(nóng)田等,是造成區(qū)域生態(tài)環(huán)境惡化的重要根源,甚至制約當(dāng)?shù)亟?jīng)濟(jì)社會(huì)的可持續(xù)發(fā)展。
因此,關(guān)于崩崗侵蝕機(jī)制與防護(hù)措施的研究受到國(guó)內(nèi)有關(guān)學(xué)者持續(xù)關(guān)注。劉希林等[9 10]運(yùn)用三維激光掃描儀對(duì)五華縣蓮塘崗崩崗進(jìn)行3年侵蝕過程實(shí)時(shí)觀測(cè),得出:該崩崗年均侵蝕模數(shù)高達(dá)22萬2 408 t/(km2·a),在位于崩壁下緣的崩積體區(qū)域,40°~60°坡面侵蝕量最大,且崩崗侵蝕量與暴雨總量呈顯著正相關(guān)關(guān)系;蔣芳市等[11 12]通過人工降雨模擬試驗(yàn)研究不同侵蝕條件(坡度、降雨強(qiáng)度及場(chǎng)次)對(duì)崩積體侵蝕過程與泥沙顆粒特征的影響,為深入揭示崩積體再侵蝕過程提供了有力依據(jù);鄧羽松等[13 14]分析崩崗侵蝕區(qū)洪積扇土壤肥力空間分異規(guī)律:扇頂(撂荒地)→扇緣(農(nóng)田)各土壤肥力指標(biāo)基本表現(xiàn)出增加的趨勢(shì)。
土壤侵蝕的量化與率定長(zhǎng)期以來受到空間異質(zhì)效應(yīng)、尺度效應(yīng)及人為誤差等因素的困擾。研究[15 16]表明,土壤侵蝕與土壤的密度、含水量、機(jī)械組成及有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)等土壤理化性質(zhì)關(guān)系密切;因此,基于土壤理化特性的土壤可蝕性K值計(jì)算模型得到廣泛應(yīng)用,尤以 W.H.Wischmeier等[17]建立的諾謨方程(及后來的修正諾謨公式)、A.N.Sharply等[18]建立的 EPIC(Erosion Productivity Impact Calculator)模型、基于幾何平均粒徑 Shirazi公式[19]和基于土壤理化特性非線性最佳擬合 Torri公式[20]應(yīng)用廣泛。目前,關(guān)于崩崗?fù)寥览砘匦缘难芯恐饕性诒辣?、崩積體和洪積扇等侵蝕子系統(tǒng)[3,13,21 22,25 26],對(duì)不同植被蓋度崩崗各部位土壤理化特性以及可蝕性K值空間分異規(guī)律有待進(jìn)一步深入。筆者以福建省西南部長(zhǎng)汀縣黃泥坑崩崗群內(nèi)3處植被蓋度分別為2%、20%和95%的典型崩崗為研究對(duì)象,對(duì)不同侵蝕狀況崩崗?fù)寥赖睦砘匦赃M(jìn)行系統(tǒng)研究,并對(duì)比分析國(guó)內(nèi)其他典型侵蝕類型土壤可蝕性K值資料,為進(jìn)一步揭示崩崗侵蝕系統(tǒng)土壤退化演變與目前正大范圍實(shí)施的崩崗治理提供科學(xué)依據(jù)。
黃泥坑崩崗群(E 116°16'52″,N 25°31'49″)位于福建省長(zhǎng)汀縣濯田鎮(zhèn)中心西南部約20 km,205省道??宇^村段西側(cè)約1 km處。區(qū)內(nèi)屬中亞熱帶季風(fēng)性濕潤(rùn)氣候,年均氣溫18.5℃,年均降雨量1 710 mm,年均相對(duì)濕度80%,年均日照時(shí)間1 754 h,年均蒸發(fā)量1 403 mm。崩崗群內(nèi)分布崩崗34條,侵蝕面積約3萬7 500 m2,主溝長(zhǎng)度200.34 m,寬度4.87~12.10 m。研究區(qū)內(nèi)喬木僅有馬尾松(Pinus massoniana),灌木主要有崗松(Baeckea frutescens)、毛冬青(Ilex pubescens)、石斑木(Rhaphiolepis indica)、黃瑞木(Adinandra millettii)、輪葉蒲桃(Syzygium grijsii)、胡枝子(Lespedeza bicolor)、楓香樹(Liquidambar formosana)及木荷(Schima superba)等,草本主要有五節(jié)芒(Miscanthus floridulus)、芒萁(Dicranopteris dichotoma)等。土壤類型為由花崗巖風(fēng)化形成的酸性侵蝕性紅壤。3處試驗(yàn)崩崗的基本概況見表1。
表1 試驗(yàn)崩崗基本情況Tab.1 Basic situation of experimental collapse mound
2.1土樣采集與測(cè)定
野外調(diào)查與采樣在2014年7—8月進(jìn)行,根據(jù)典型性和代表性的原則,在全面勘查的基礎(chǔ)上,于黃泥坑崩崗群中選取成土母質(zhì)與地形條件(海拔、坡度及坡向)基本相同或相似,植被蓋度分別為2%、20%和95%的3條典型毗鄰崩崗。每一崩崗內(nèi)按集水坡面、崩壁、崩積體和溝口等部位采樣。在各樣點(diǎn)處5點(diǎn)混合取0~30 cm土壤約1 kg。同一位置按等高線設(shè)左、中、右3個(gè)重復(fù);同一重復(fù)內(nèi)且同一土層的土樣混合均勻后,按四分法取約1 kg裝入貼有標(biāo)簽聚乙烯自封袋中,樣品合計(jì)63份。
土樣剔除樹根、石礫等雜物。待自然風(fēng)干后,分別過25目和100目細(xì)篩,對(duì)理化特性指標(biāo)進(jìn)行測(cè)定。其中:顆粒組成用粒徑分析系統(tǒng)(SEDIMAT4 12,德國(guó))測(cè)定;有機(jī)碳采用碳氮元素分析儀(Vario MAX CN,Elementar,德國(guó))測(cè)定,由于土壤為花崗巖風(fēng)化形成,且pH值偏低(表2),土壤中無機(jī)碳質(zhì)量分?jǐn)?shù)可忽略不計(jì),有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)=有機(jī)碳質(zhì)量分?jǐn)?shù)×1.724;土壤密度及含水量采用環(huán)刀—鋁盒測(cè)定;酸堿度采用便攜式pH計(jì)(STARTER 300)測(cè)定。
2.2數(shù)據(jù)分析
目前,運(yùn)用EPIC公式估算土壤可蝕性K值研究較為普遍,謝紅霞等[23]采用 5種預(yù)測(cè)模型對(duì)花崗巖發(fā)育的紅壤可蝕性K值進(jìn)行估算,并與自然降雨法實(shí)測(cè)的數(shù)據(jù)(ULSE方程推算)比較后得出,EPIC公式估算法與實(shí)測(cè)法的相對(duì)誤差<4%,兩公式間絕對(duì)偏差極低;因此,在紅壤侵蝕區(qū) EPIC模型應(yīng)用具有一定的可適性。同時(shí),為便于與其他地區(qū)K值進(jìn)行比較,本文亦采用該模型,表達(dá)式如下:
式中:K為土壤可蝕性值;S1為砂粒質(zhì)量分?jǐn)?shù),%;S2為粉粒質(zhì)量分?jǐn)?shù),%;C1為黏粒質(zhì)量分?jǐn)?shù),%;C為有機(jī)碳質(zhì)量分?jǐn)?shù),%;S3=1-S1/100。
數(shù)據(jù)經(jīng)Excel 2003處理后,采用SPSS 19.0進(jìn)行統(tǒng)計(jì)分析。砂粒質(zhì)量分?jǐn)?shù)、粉粒質(zhì)量分?jǐn)?shù)、黏粒質(zhì)量分?jǐn)?shù)、土壤密度、含水量、有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)及可蝕性采用單因子方差分析(One-way ANOVA),各土壤理化特性指標(biāo)間的相關(guān)性采用Pearson相關(guān)分析,可蝕性與理化特性的相關(guān)性用偏相關(guān)分析,繪圖由Origin 9.0完成。
3.1崩崗?fù)寥览砘匦苑植继卣?/p>
3.1.1土壤顆粒組成如表2所示,崩崗侵蝕區(qū)土壤砂粒、粉粒和黏粒的質(zhì)量分?jǐn)?shù)分別介于41.47% ~74.76%、10.72% ~31.11%和10.15% ~27.41%,砂粒質(zhì)量分?jǐn)?shù)遠(yuǎn)高于粉粒及黏粒的質(zhì)量分?jǐn)?shù),黏粒質(zhì)量分?jǐn)?shù)偏低,表現(xiàn)出明顯粗骨質(zhì)化特征。1、2號(hào)崩崗集水坡面、崩壁、崩積體的砂粒質(zhì)量分?jǐn)?shù)差異較小(P>0.05),而溝口處砂粒質(zhì)量分?jǐn)?shù)達(dá)到最高,與前3個(gè)部位差異顯著(P<0.05),3號(hào)砂粒質(zhì)量分?jǐn)?shù)在各部位的排序?yàn)闇峡冢颈婪e體>崩壁>集水坡面,而粉粒、黏粒質(zhì)量分?jǐn)?shù)空間變化規(guī)律表現(xiàn)出相反的特征:從集水坡面、崩壁、崩積體至溝口呈現(xiàn)降低的趨勢(shì)。
3.1.2土壤密度及含水量由表2得知,各崩崗?fù)寥烂芏茸兓秶鸀?.21~1.63 g/cm3,1、2和3號(hào)崩崗?fù)寥烂芏绕骄捣謩e為(1.41±0.02)、(1.42± 0.03)和(1.31±0.04)g/cm3,即1號(hào)≈2號(hào)>3號(hào)。1、2號(hào)在集水坡面、崩壁和崩積體處土壤密度顯著低于溝口(P<0.05),3號(hào)崩崗4個(gè)部位中土壤密度變化幅度較小(P>0.05)。3處崩崗?fù)寥篮拷橛?.32%~11.32%,1、2和3號(hào)含水量平均值分別(9.28±0.96)%、(8.79±0.59)%、(7.51± 0.76)%,即1號(hào)>2號(hào)>3號(hào)。1、2號(hào)在集水坡面、崩壁和崩積體處其含水量8.05% ~11.59%明顯高于3號(hào)崩崗(6.98%~8.74%),而在溝口顯著降低(P<0.05)。
表2 3處崩崗不同部位土壤理化特性Tab.2 Soil physicochemical property of different position in three collapse mounds
3.1.3土壤pH值崩崗?fù)寥纏H值介于4.76~5.47之間,偏中—弱酸性(表2)。1、2和3號(hào)土壤pH平均值分別為(5.14±0.02)、(5.16±0.02)、(4.81±0.03),即2號(hào) >1號(hào) >3號(hào)。1、2號(hào)土壤pH值在集水坡面最低,其次是崩積體和崩壁,溝口最高,而3號(hào)大小次序依次為溝口>崩積體>集水坡面>崩壁。造成3處崩崗?fù)寥纏H值存在差異的原因是由于研究區(qū)位于中亞熱帶濕潤(rùn)地區(qū),物質(zhì)循環(huán)較為迅速,土壤風(fēng)化淋溶作用強(qiáng)烈[24],反映在本研究中表現(xiàn)為:1、2號(hào)表現(xiàn)在其植被稀疏,3號(hào)植被覆蓋較為完好,在馬尾松等針葉樹的枯落物分解過程中產(chǎn)生大量酸性成分。
3.2崩崗?fù)寥揽晌g性與有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)分布特征
對(duì)可蝕性K值進(jìn)行統(tǒng)計(jì)后得知(表3和圖1),研究區(qū)內(nèi)各崩崗?fù)寥?K值變化范圍為0.300~0.478,1、2和 3號(hào) K值平均值分別為(0.400± 0.03)≈(0.399±0.04)>(0.328±0.03),3號(hào)與1、2號(hào)差異顯著(P<0.05),3處崩崗K值變異系數(shù)僅為10%左右,變異程度較低;土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)介于(0.52~17.61)g·kg-1,1、2和3號(hào)有機(jī)質(zhì)平均值分別為(1.17±0.10)、(1.43±0.13)和(9.81±0.80)g·kg-1,3號(hào)顯著高于1、2號(hào)(P<0.05)。不同部位 K值差異明顯,1、2號(hào)崩崗呈崩壁>崩積體>溝口>集水坡面的變化,而3號(hào)崩崗則表現(xiàn)為溝口>崩積體>崩壁 >集水坡面,而土壤有機(jī)質(zhì)變化規(guī)律與之相反,3處崩崗?fù)寥烙袡C(jī)質(zhì)質(zhì)量分?jǐn)?shù)質(zhì)量分?jǐn)?shù)大小順序依次為集水坡面>崩積體>崩壁>溝口,除3號(hào)集水坡面與崩積體無顯著差異以外(P>0.05),其他各部位間均達(dá)到顯著性差異(P<0.05)。
表3 崩崗?fù)寥揽晌g性K值統(tǒng)計(jì)特征Tab.3 Statistical characteristics of soil erodibility K value in three collapse mounds
圖1 崩崗?fù)寥啦煌课豢晌g性K值及有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)Fig.1 Soil erodibility K value and organic matter content of different position in three collapse mounds
3.3崩崗?fù)寥揽晌g性影響因素
對(duì)可蝕性K值與土壤理化性質(zhì)進(jìn)行相關(guān)分析,結(jié)果(表4)表明:可蝕性K值與砂粒質(zhì)量分?jǐn)?shù)呈顯著正相關(guān)(P<0.05);但相關(guān)系數(shù)僅為0.161,與黏粒質(zhì)量分?jǐn)?shù)和有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)呈極顯著負(fù)相關(guān)(P<0.01),相關(guān)系數(shù)分別為0.383和0.585,與pH值呈極顯著正相關(guān)(P<0.01,R=0.762)。說明崩崗?fù)寥来至=M分(砂粒)和細(xì)粒組分(黏粒)質(zhì)量分?jǐn)?shù)變化可基本反映崩崗侵蝕狀況,較低的pH值是由于隨著植被逐漸改善,土壤腐殖質(zhì)質(zhì)量分?jǐn)?shù)增加,從而間接增強(qiáng)土壤結(jié)構(gòu)穩(wěn)定性;土壤有機(jī)質(zhì)通過與土壤黏土礦物等結(jié)合,以改善土壤結(jié)構(gòu),對(duì)調(diào)節(jié)可蝕性K值具有重要意義。土壤密度及含水量對(duì)可蝕性K值無明顯直接影響(P>0.05),這可能是因?yàn)?處崩崗?fù)寥篮考衅?,土壤密度相?duì)偏大,水分難以滲透至深層。從表4亦可知,各指標(biāo)間存在一定程度的相互影響,導(dǎo)致K值與理化性質(zhì)的相關(guān)系數(shù)難于真實(shí)反映可蝕性與土壤理化性質(zhì)的相關(guān)程度;因此,為確定影響K值的最基本因子,對(duì)K值與土壤理化性質(zhì)進(jìn)行偏相關(guān)分析。結(jié)果表明,K值與黏粒質(zhì)量分?jǐn)?shù)和有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)達(dá)到極顯著負(fù)相關(guān),與pH值呈極顯著正相關(guān),這3個(gè)指標(biāo)可以作為表征崩崗?fù)寥揽晌g性強(qiáng)弱的有效指標(biāo)。
表4 可蝕性K值與土壤理化特性間的相關(guān)性Tab.4 Correlation between soil erodibility K value and its influencing factors at P<0.01
崩崗侵蝕導(dǎo)致崩崗系統(tǒng)內(nèi)土壤理化特性的空間分異。除pH值和有機(jī)質(zhì)外,土壤顆粒組成、土壤密度和含水量在集水坡面、崩壁、崩積體差異較小,而溝口與上述3個(gè)部位差異明顯。其中砂粒質(zhì)量分?jǐn)?shù)高達(dá)70%以上,黏粒質(zhì)量分?jǐn)?shù)極低,占10%左右,土壤密度較大,而含水量偏低,含水量?jī)H為3%~4%,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)極低。這主要與崩崗侵蝕過程有關(guān)——崩崗侵蝕區(qū)內(nèi)植被稀疏,表土裸露,在降雨入滲、徑流沖刷等過程中,坡面巖土層內(nèi)水分逐漸達(dá)到飽和,土體最終因失重而發(fā)生塌陷與剝離,形成崩壁,原被剝蝕的大量土體陷落至下方溝道內(nèi),構(gòu)成崩積體的主要物質(zhì)來源,在不斷侵蝕過程中,崩崗侵蝕地貌逐漸形成,較粗顆粒在低凹處“聚集”,而較細(xì)顆粒被搬運(yùn)至更遠(yuǎn)處。從總體上看,3處崩崗顆粒組成基本一致,呈現(xiàn)出高砂粒、低黏粒,粉粒質(zhì)量分?jǐn)?shù)偏低的基本格局,與廣東蓮塘崗和江西龍回盆地等崩崗所測(cè)定的結(jié)果基本一致[3,25]。這反映出高強(qiáng)度的崩崗侵蝕對(duì)土壤結(jié)構(gòu)的破壞具有同質(zhì)效應(yīng),不僅對(duì)植被恢復(fù)前、中期的崩崗(1號(hào)和2號(hào))具有較大影響,對(duì)恢復(fù)后期植被覆蓋較高的3號(hào)崩崗的影響亦非常顯著。砂粒土主要以高質(zhì)量分?jǐn)?shù)的石英、云母為主,而以高嶺石與伊利石為主要組成成分的黏土礦物的質(zhì)量分?jǐn)?shù)則較低,其化學(xué)成分為>10% 的SiO2、Al2O3常量組分與 <5%的 Fe2O3、CaO、MgO、K2O和Na2O微量組分[25 26],導(dǎo)致崩崗系統(tǒng)土壤持水性能較差,含水量低且不利于有機(jī)質(zhì)的形成與保持,也對(duì)pH值調(diào)節(jié)酸堿環(huán)境造成不利影響。另外,本研究中3處崩崗?fù)寥纏H值明顯高于該地區(qū)地帶性植物群落土壤[27],有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)普遍偏低,這與劉希林等[3]、王艷忠等[21]和牛德奎[25]在分別在粵東、粵西和贛南等崩崗集中分布地區(qū)得出的結(jié)論基本一致,而3號(hào)崩崗有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)是1、2號(hào)的6~8倍。說明植被恢復(fù)對(duì)改善有機(jī)質(zhì)效果顯著,但對(duì)土壤結(jié)構(gòu)的改良存在明顯滯后效應(yīng)。
土壤可蝕性作為定量估算土壤侵蝕狀況的重要參數(shù),反映土壤自身對(duì)以剝離和搬運(yùn)為主要形式的侵蝕外營(yíng)力的敏感程度[28]。不同侵蝕類型區(qū)可蝕性K值差異明顯。處于地處黃土高原丘陵子午嶺林區(qū)[29]由于處于水蝕 風(fēng)蝕交錯(cuò)帶,除了較為強(qiáng)烈自然侵蝕外,已逾100年的開墾耕作史,人為侵蝕也極其嚴(yán)重,測(cè)算的K值略高于崩崗侵蝕區(qū)。本研究中崩崗系統(tǒng)土壤K值明顯高于其他地區(qū)[30 34],這亦在一定程度佐證“崩崗侵蝕是我國(guó)華南花崗巖丘陵山地最嚴(yán)重的侵蝕類型”[4,6]。據(jù)梁音等[33]和呂喜璽等[34]得出的結(jié)論,我國(guó)華南花崗巖紅壤K值約為0.21~0.23,實(shí)際上遠(yuǎn)低于同區(qū)域內(nèi)崩崗侵蝕區(qū)測(cè)得的數(shù)值,可能與研究區(qū)立地條件存在差異有關(guān)。另外,劉希林等[3]對(duì)蓮塘崗崩崗表層土壤K值進(jìn)行測(cè)算,得出其平均值為0.256,這可能與2處崩崗不同的侵蝕狀況、植被覆蓋及降雨等氣候條件因素有關(guān)。綜上所述,崩崗侵蝕導(dǎo)致區(qū)內(nèi)土壤理化性質(zhì)惡化、大量細(xì)粒組分?jǐn)y帶大部分養(yǎng)分被搬運(yùn)至沖積扇,掩埋下游農(nóng)田,而粗粒組分在崩積體及溝道發(fā)生沉積,導(dǎo)致崩崗系統(tǒng)土壤貧瘠,植物生長(zhǎng)極度困難;因此,崩崗侵蝕區(qū)生態(tài)恢復(fù),以改善土壤結(jié)構(gòu)、調(diào)節(jié)土壤pH值和提高土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)最為關(guān)鍵,在治理實(shí)踐過程中,應(yīng)根據(jù)不同部位侵蝕差異和養(yǎng)分狀況,“因地制宜”選擇不同治理模式,例如,針對(duì)區(qū)內(nèi)整體肥力較低,可在集水坡面種植草本植物,以快速覆蓋地表,降低徑流沖刷的可能性。
1)從集水坡面到崩壁、崩積體至溝口,土壤砂粒質(zhì)量分?jǐn)?shù)呈升高趨勢(shì),粉粒和砂粒質(zhì)量分?jǐn)?shù)與之相反,土壤密度、pH值有所增加,含水量有所下降,集水坡面、崩壁和崩積體的土壤顆粒組成、土壤密度和含水量差異較小,各土壤理化特性指標(biāo)在溝口與集水坡面、崩壁、崩積體差異明顯;1號(hào)和2號(hào)崩崗的土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)在集水坡面最高,崩壁處最低;3號(hào)崩崗在崩壁處急劇降低,崩積體明顯升高。
2)1、2號(hào)崩崗可蝕性 K值大于3號(hào)崩崗;崩崗系統(tǒng)內(nèi)的集水坡面、崩壁、崩積體和溝口4個(gè)子系統(tǒng)K值差異較大,其中1、2號(hào)崩崗呈崩壁 >崩積體 >溝口>集水坡面的分布特征,3號(hào)崩崗為溝口>崩積體>崩壁>集水坡面。
3)相關(guān)分析表明,崩崗?fù)寥揽晌g性K值與砂粒質(zhì)量分?jǐn)?shù)呈顯著正相關(guān),與黏粒質(zhì)量分?jǐn)?shù)和有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)呈極顯著負(fù)相關(guān),與pH值呈極顯著正相關(guān);進(jìn)一步對(duì)K值與理化性質(zhì)進(jìn)行偏相關(guān)分析表明,黏粒質(zhì)量分?jǐn)?shù)、有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)和pH值與可蝕性K值關(guān)系密切,這3個(gè)指標(biāo)可以作為崩崗?fù)寥揽晌g性強(qiáng)弱的有效指標(biāo)。
[1]曾昭璇.地形學(xué)原理:第1冊(cè)[M].廣州:華南師范大學(xué)出版社,1960:64 67. Zeng Zhaoxuan.The Principles of the topography:The first volume[M].Guangzhou:South China Normal University Press,1960:64 67.(in Chinese)
[2]Xu Jiongxin.Benggang erosion:the influencing factors [J].Catena,1996,27:249.
[3]劉希林,張大林,賈瑤瑤.崩崗地貌發(fā)育的土體物理性質(zhì)及其土壤侵蝕意義:以廣東省五華縣蓮塘崗崩崗為例[J].地球科學(xué)進(jìn)展,2013,28(7):802.Liu Xilin,Zhang Dalin,Jia Yaoyao.Soil physical properties of collapsing hill and gully and their indications for soil erosion:an example of Liantanggang collapsing hill and gully in Wuhua county of Guangdong[J].Advances in Earth Science,2013,28(7):802.(in Chinese)
[4]孫波.紅壤退化阻控與生態(tài)修復(fù)[M].北京:科學(xué)出版社,2011:309 310.Sun Bo.Control of red soil degradation and ecological restoration[M].Beijing:Science Press,2011:309 310.(in Chinese)
[5]陳曉安,楊潔,肖勝生,等.崩崗侵蝕分布特征及其成因[J].山地學(xué)報(bào),2013,31(6):716.Chen Xiaoan,Yang Jie,Xiao Shengsheng.Distribution characteristics and causes of collapse erosion[J].Journal of Mountain Science,2013,31(6):716.(in Chinese)
[6]丘世鈞.切割下墜:砂頁巖地區(qū)崩崗源頭墻壁后退方式之一[J].水土保持通報(bào),1999,19(6):20.Qiu Shijun.Cutting-toppling:one of patterns of slop disintegration erosion[J].Bulletin of Soil and Water Conservation,1999,19(6):20.(in Chinese)
[7]李思平.廣東省崩崗侵蝕規(guī)律和防治研究[J].自然災(zāi)害學(xué)報(bào),1992,1(3):68.Li Siping.Study on erosion law and control of slope disintegration in Guangdong province[J].Journal of Natural Disasters,1992,1(3):68.(in Chinese)
[8]馮明漢,廖純艷,李雙喜,等.我國(guó)南方崩崗侵蝕現(xiàn)狀調(diào)查[J].人民長(zhǎng)江,2009,40(8):66.Feng Minghan,Liao Chunyan,Li Shuangxi,et al.Investigation on status of hill collapsing and soil erosion in southern China[J].Yangtze River,2009,40(8):66.(in Chinese)
[9]劉希林,張大林.崩崗地貌侵蝕過程三維立體監(jiān)測(cè)研究:以廣東五華縣蓮塘崗崩崗為例[J].水土保持學(xué)報(bào),2015,29(1):26.Liu Xilin,Zhang Dalin.Study on erosion process of collapsing hill and gully by three-dimensional monitoring:an example of Liantanggang in Wuhua County of Guangdong Province[J].Journal of Soil and Water Conservation,2015,29(1):26.(in Chinese)
[10]劉希林,張大林.基于三維激光掃描的崩崗侵蝕的時(shí)空分析[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):204.Liu Xilin,Zhang Dalin.Temporal-spatial analyses of collapsed gully erosion based on three-dimensional laser scanning[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(4):204.(in Chinese)
[11]蔣芳市,黃炎和,林金石,等.坡度和雨強(qiáng)對(duì)崩崗崩積體侵蝕泥沙顆粒特征的影響[J].土壤學(xué)報(bào),2014,51(5):974.Jiang Fangshi,Huang Yanhe,Lin Jinshi,et al.Effects of slope gradient and rainfall intensity on particle size composition of erosion sediment from colluvial deposits of a Bengggang[J].Acta Pedologica sinica,2014,51 (5):974.(in Chinese)
[12]蔣芳市,黃炎和,林金石,等.多場(chǎng)次降雨對(duì)崩崗崩積體細(xì)溝侵蝕的影響[J].中國(guó)水土保持科學(xué),2014,12(6):1.Jiang Fangshi,Huang Yanhe,Lin Jinshi,et al.Effects of repetitive rainfalls on rill erosion of colluvial deposit in granite slope collapse[J].Science of Soil and Water Conservation,2014,12(6):1.(in Chinese)
[13]鄧羽松,丁樹文,蔡崇法,等.鄂東南崩崗洪積扇土壤物理性質(zhì)空間分異特征[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(24):4850.Deng Yusong,Ding Shuwen,Cai Congfa,et al.Spatial distribution of the collapsing alluvial soil physical properties in Southeastern Hubei[J].Scientia Agricultura Sinica,2014,47(24):4850.(in Chinese)
[14]鄧羽松,丁樹文,邱欣珍,等.贛縣崩崗洪積扇土壤肥力的空間分異規(guī)律[J].中國(guó)水土保持科學(xué),2015,13(1):47.Deng Yusong,Ding Shuwen,Qiu Xinzhen,et al.Spatial distribution of collapsing alluvial soil fertility in Ganxian county,Jiangxi province[J].Science of Soil and Water Conservation,2015,13(1):47.(in Chinese)
[15]李裕元,邵明安,陳紅松,等.水蝕風(fēng)蝕交錯(cuò)帶植被恢復(fù)對(duì)土壤物理性質(zhì)的影響[J].生態(tài)學(xué)報(bào),2010,30(16):4306.Li Yuyuan,Shao Ming'an,Chen Hongsong,et al.Impacts of vegetation recovery on soil physical properties in the cross area of wind-water erosion[J].Acta Ecologica Sinica,2010,30(16):4306.(in Chinese)
[16]何淑勤,宮淵波,鄭子成,等.山地森林 干旱河谷交錯(cuò)帶表層土壤侵蝕率與土壤物理性質(zhì)的關(guān)系[J].資源科學(xué),2013,25(4):824.He Shuqin,Gong Yuanbo,Zheng Zicheng,et al.Relationship between surface soil erosion rate and soil physical properties in a mountain forests-arid valley ecotone [J].Resources Science,2013,25(4):824.(in Chinese)
[17]Wischmeier W H,Johnson C B,Cross B V.A soil erodibility nomograph for farmland and construction sites [J].Journal of Soil and Water Conservation,1971,26 (5):189.
[18]Sharply A N,Williams J R.EPIC-erosion/productivity impact calculator 1:model documentation[M].U.S.Department of Agriculture Technical Bulletin,1990: 235.
[19]Shirazi M A.A unifying quantitative analysis of soil texture[J].Soil Science Society of America Journal,1984,48:142.
[20]Torri D,Poessen J,Borselli L.Predictability and uncertainty of the soil erodibility factor using global dataset [J].Catena,1997,31(1/2):1.
[21]王艷忠,胡耀國(guó),李定強(qiáng),等.粵西典型崩崗侵蝕剖面可蝕性因子初步分析[J].生態(tài)環(huán)境,2008,17 (1):403.Wang Yanzhong,Hu Yaoguo,Li Dingqiang,et al.The preliminary investigation of soil erosive factors in granitic weathering rinds in western Guangdong province[J].E-cology and Environment,2008,17(1):403.(in Chinese)
[22]蔣芳市,黃炎和,林金石,等.花崗巖崩崗崩積體顆粒組成及分形特征[J].水土保持研究,2014,21 (6):175.Jiang Fangshi,Huang Yanhe,Lin Jinshi,et al.Soil particle size distribution and fractal dimensions of colluvial deposits in granite Benggang[J].Research of Soil and Water Conservation,2014,21(6):175.(in Chinese)
[23]謝紅霞,陳瓊,李錦龍,等.長(zhǎng)沙市東郊不同母質(zhì)發(fā)育耕型紅壤的可蝕性因子K值估算[J].水土保持學(xué)報(bào),2012,32(3):133.Xie Hongxia,Chen Qiong,Li Jinlong,et al.Calculation of soil erodibility factor K value of cultivated red soil developed from two different parent materials in Eastern suburb of Changsha city[J].Bulletin of Soil and Water Conservation,2012,32(3):133.(in Chinese)
[24]陳志彪,陳志強(qiáng),岳輝.花崗巖紅壤侵蝕區(qū)水土保持綜合研究[M].北京:科學(xué)出版社,2013:197 Chen Zhibiao,Chen Zhiqiang,Yue Hui.Comprehensive research on soil and water conservation in granite red soil region[M].Beijing:Science Press,2013: 197.(in Chinese)
[25]牛德奎.華南紅壤丘陵區(qū)崩崗發(fā)育的環(huán)境背景與侵蝕機(jī)理研究[D].南京:南京林業(yè)大學(xué),2009:60 75.Niu Dekui.Research on the Environmental factors and erosive mechanism of collapsing hill in south China[D].Nanjing:Nanjing Forestry University,2009:6075.(in Chinese)
[26]吳志峰,王繼增.華南花崗巖風(fēng)化殼巖土特性與崩崗侵蝕關(guān)系[J].水土保持學(xué)報(bào),2000,14(2):31.Wu Zhifeng,Wang Jizeng.Relationship between slope disintegration and rock-soil characteristics of granite weathering mantle in south China[J].Journal of Soil and Water Conservation,2000,14(2):31.(in Chinese)
[27]熊麗,楊玉盛,朱錦懋,等.可溶性有機(jī)碳在米櫧天然林不同土層中的遷移特征[J].生態(tài)學(xué)報(bào),2015,33(17):1.Xiong Li,Yang Yusheng,Zhu Jinmao,et al.Transport characteristics of dissolved organic carbon in different soil horizons under natural Castanopsis canesii forest[J].Acta Ecologica Sinica,2015,33(17):1.(in Chinese)
[28]劉寶元,張科利,焦菊英.土壤可蝕性及其在侵蝕預(yù)報(bào)中的應(yīng)用[J].自然資源學(xué)報(bào),1999,14(4):45.Liu Baoyuan,Zhang Keli,Jiao Juying.Soil erodibility and its use in soil erosion prediction model[J].Journal of Natural resources,1999,14(4):45.(in Chinese)
[29]朱冰冰,李占斌,李鵬,等.土地退化/恢復(fù)中土壤可蝕性動(dòng)態(tài)變化[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(2): 56.Zhu Bingbing,Li Zhanbin,Li Peng,et al.Dynamic changes of soil erodibility during process of land degradation and restoration[J].Transactions of the CSAE,2009,25(2):56.(in Chinese)
[30]張金池,李海東,林杰,等.基于小流域尺度的土壤可蝕性 K值空間變異[J].生態(tài)學(xué)報(bào),2008,28(5): 2119.Zhang Jinchi,Li Haidong,Lin Jie,et al.Spatial variability of soil erodibility(K-factor)at a catchment scale in China[J].Acta Ecologica Sinica,2008,28(5): 2119.(in Chinese)
[31]王敬貴,亢慶,鄺高明,等.尖山河小流域土壤可蝕性K值空間變異研究[J].生態(tài)環(huán)境學(xué)報(bào),2014,23 (4):555.Wang Jinggui,Kang Qing,Kuang Gaoming,et al.Spatial variability of soil erodibility(K-factor)in Jianshan watershed of Yunnan province[J].Ecology and Environmental Sciences,2014,23(4):555.(in Chinese)
[32]宋春風(fēng),陶和平,劉斌濤,等.長(zhǎng)江上游地區(qū)土壤可蝕性空間分異特征[J].長(zhǎng)江流域資源與環(huán)境,2012,21(9):1123.Song Chunfeng,Tao Heping,Liu Bintao,et al.Spatial distribution characteristics of soil erodibility K value in the upper Yangtze river[J].Resources and Environment in the Yangtze Basin,2012,21(9):1123.(in Chinese)
[33]梁音,史學(xué)正.長(zhǎng)江以南東部丘陵山區(qū)土壤可蝕性K值研究[J].水土保持研究,1999,6(2):47.Liang Yin,Shi Xuezheng.Soil erodible K in east hillyfields of the southern Yangtze river[J].Research of Soil and Water Conservation,1999,6(2):47.(in Chinese)
[34]呂喜璽,沈榮明.土壤可蝕性因子 K值得初步研究[J].水土保持學(xué)報(bào),1992,6(1):63.Lyu Xixi,Shen Rongming.A Preliminary study on the values K of soil erodibility factor[J].Journal of Soil and Water Conservation,1992,6(1):63.(in Chinese)
Variation of soil physical-chemical property and erodibility in the area of collapse mound of southwestern Fujian
Ou Xiaolin1,2,Chen Zhibiao1,2,3,Chen Zhiqiang1,2,3,Jiang Chao1,2,Zhao Jitao1,2,Ren Tianjing1,2
(1.State Key Laboratory of Subtropical Mountain Ecology(Funded by Ministry of Science and Technology and Fujian Province),350007,F(xiàn)uzhou,China; 2.College of Geographical Sciences,F(xiàn)ujian Normal University,350007,F(xiàn)uzhou,China;3.Institute of Geographical Sciences,F(xiàn)ujian Normal University,350007,F(xiàn)uzhou,China)
Abstract:[Background]Collapsing mound,called“Benggang”by local residents which originated from Chinese geomorphic pictograph,has been known to describe an erosion phenomenon in hilly area in subtropical and some tropical climatic zone of southeast China where the edge of gully source collapses and develops a deep-seated shape landform with deep-cut concave.Under the pressure of loose and barren surface soil with high acidity,as well as low vegetation coverage by deforestation,a collapsing hill is vulnerable to degenerate into eroded badland.[Methods]To reveal the effect of soil physical-chemical property and erodibility from collapsing mound,three typical collapse mounds(No.1,No.2 and No.3 representing the vegetation coverage in the range of 2%,20%and 95%,respectively)being selected within Huangnikeng collapse mound group of Zhuotian Town,Changting County in southwestern Fujian Province,basic soil physical property from the system of collapse mound including upper catchment,collapsing wall,colluvial deposit and channel outlet were investigated and measured,and erodibility K value were also calculated applying the model of Erosion Productivity Impact Calculator (EPIC).[Results]1)For these three collapse mounds with different vegetation coverage,soil sand content,pH and bulk density had an increasing trend from upper catchment,collapsing wall,colluvial deposit till channel outlet,however,soil silt content,clay content and moisture content were descended.2)Soil organic matter content of collapse mound No.1 and No.2 were the highest at upper catchment,and the lowest at collapsing wall;soil organic matter content of collapse mound No.3 declined sharply at collapsing wall and increased significantly at colluvial deposit.3)Little variation of soil particle composition,bulk density and content existed in upper catchment,collapsing wall and colluvial deposit among three collapse mounds,and all indicators of soil physical properties existed obvious difference between channel outlet and upper catchment,collapsing wall,colluvial deposit.4)There were significant differences of K value among upper catchment,collapsing wall,colluvial deposit,channel outlet,and the K value of collapse mound No.1 and collapse mound No.2 declined in order of collapsing wall>colluvial deposit>channel outlet>upper catchment,but collapse mound No.3 declined in order of channel outlet>colluvial deposit>collapsing wall>upper catchment.5)The clay content,pH value,and organic matter content could be cited as the valid index to determine the intensity of soil erosion in the area of collapse mound,since they were close correlation with K value.[Conclusions]In summary,collapse mound erosion caused deterioration of soil physical properties and severe sandy associated with relative high magnitude of erodibility K value;studying the spatial differentiation on soil physical properties and erodibility in the eroded area of collapse mound erosion system presented important significance in the restoration and reconstruction in the degraded ecosystem of eroded red soil region.
Keywords:soil erodibility;collapse mound;soil physical-chemical property;variation;red soil region in southern China
中圖分類號(hào):S157.1
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-3007(2016)03-0084-09
DOI:10.16843/j.sswc.2016.03.011
收稿日期:2015 09 28修回日期:2016 04 28
第一作者簡(jiǎn)介:區(qū)曉琳(1991—),女,碩士研究生。主要研究方向:退化地生態(tài)恢復(fù)與重建。E-mail:xiaolinou123@163.com
通信作者?簡(jiǎn)介:陳志彪(1962—),男,博士,教授。主要研究方向:水土保持,資源與環(huán)境等。E-mail:chenzhib408@vip.163.com