李翔宇,王助乾,孫春玉,張美萍,王 義
(吉林農(nóng)業(yè)大學(xué)人參基因資源工程研究中心,吉林長春 130118)
?
植物細(xì)胞色素P450s及其在植物新陳代謝中的作用
李翔宇,王助乾,孫春玉,張美萍,王 義*
(吉林農(nóng)業(yè)大學(xué)人參基因資源工程研究中心,吉林長春 130118)
摘要對(duì)目前已知功能的CYP450s進(jìn)行了概述,綜述了CYP450s在植物基礎(chǔ)代謝和非基礎(chǔ)代謝中的重要功能和作用,為進(jìn)一步研究該基因家族及各成員間的功能提供參考。
關(guān)鍵詞細(xì)胞色素P450s;新陳代謝;功能
細(xì)胞色素P450s(CytochromeP450s,CYP450s)是一個(gè)古老的多成員超基因家族。CYP450s是一種單加氧催化蛋白酶,與還原態(tài)CO結(jié)合后,在450 nm處吸光值最高,故命名為細(xì)胞色素P450s[1]。CYP450s是參與生物代謝的最龐大蛋白酶超家族,包括超過1 000個(gè)家族和2 500個(gè)亞家族[2],廣泛存在于生物界中。在動(dòng)物、植物、真菌、原生生物、細(xì)菌、古生菌和病毒中都發(fā)現(xiàn)了CYP450s。CYP450s在原核生物中為可溶性蛋白酶;在真核生物中,CYP450s錨定于膜結(jié)構(gòu)細(xì)胞器,在細(xì)胞質(zhì)中行使催化功能。自1958年從小鼠肝臟中發(fā)現(xiàn)CYP450s以來,隨著技術(shù)的發(fā)展和大數(shù)據(jù)時(shí)代的到來,研究者從不同生物基因組中分離了大量的CYP450s。
CYP450s是一種單加氧酶,通過在底物的特異性位點(diǎn)引入氧原子完成底物位點(diǎn)的加氧原子修飾,豐富的成員產(chǎn)生了多樣的功能。一方面,CYP450s家族成員之間同源性很低,不同生物的CYP450s同源性可以低至16%[3]。對(duì)于同源性高的CYP450s,單個(gè)氨基酸的改變會(huì)導(dǎo)致其功能的改變[4],CYP450s在進(jìn)化過程中通常出現(xiàn)亞功能化和新功能化。另一方面,CYP450s蛋白空間結(jié)構(gòu)類似,此種結(jié)構(gòu)的保守對(duì)于其催化功能具有重要意義。大部分CYP450s蛋白序列折疊彎曲成相似的結(jié)構(gòu)構(gòu)象,由meander卷曲、2個(gè)α螺旋結(jié)構(gòu)(J螺旋和K螺旋)、2組β折疊組成的亞鐵血紅素結(jié)合環(huán)(Heme-bindingloop)結(jié)構(gòu)可結(jié)合催化必需的輔因子——亞鐵血紅素。CYP450s蛋白有3個(gè)極為保守的殘基,分別是Heme-bindingloop(FXXGXXXCXG)、電子傳遞通道殘基(PERF)和K螺旋中的EXXR殘序。FXXGXXXCXG中極為保守的C(半胱氨酸殘基)是血紅素5-C的結(jié)合位點(diǎn)。K-helix的E(谷氨酸)和R(精氨酸)與PERF中的R(精氨酸)在構(gòu)象上形成E-R-R的三聯(lián)體結(jié)構(gòu),此種結(jié)構(gòu)造成的鹽橋效應(yīng)保證C(半胱氨酸殘基)位置與方向的穩(wěn)定,保證亞鐵血紅素與半胱氨酸殘基牢固的結(jié)合。筆者綜述了CYP450s在植物基礎(chǔ)代謝和非基礎(chǔ)代謝中的功能和作用,為進(jìn)一步研究該基因家族及各成員間的功能提供參考。
1CYP450s的進(jìn)化與分類
植物CYP450s包含多個(gè)亞家族成員,包括CYP51、CYP71~CYP99和CYP701~CYP736。CYP450s的命名是基于序列的同源性與進(jìn)化關(guān)系。當(dāng)2條序列同源性達(dá)40%以上,則將他們歸類于同一個(gè)基因家族,否則屬于2個(gè)不同的家族;當(dāng)序列同源性在40%~55%,則他們屬于同一個(gè)家族中的不同亞家族;當(dāng)同源性大于55%時(shí),序列是同一亞家族中的不同成員。1969年,F(xiàn)rear等[5]鑒定了植物中第一條CYP450s(棉花)。截至2013年12月,在植物中被注釋的CYP450s已達(dá)7 512條[6],這種簡單命名方法已無法滿足爆發(fā)性增長的CYP450s序列信息。
根據(jù)進(jìn)化關(guān)系,可將植物CYP450s分成11個(gè)Clan。每個(gè)Clan根據(jù)其命名號(hào)最小的家族進(jìn)行命名,最終將龐大的CYP450s分為7個(gè)單基因家族Clan(Single-family clans)和4個(gè)多基因家族Clan(Multi-family clans)。單基因家族Clan分別是CYP51 clan、CYP74 clan、CYP97 clan、CYP710 clan、CYP711 clan、CYP727 clan和CYP746 clan;多基因家族Clan包括CYP71 clan、CYP72 clan、CYP85 clan和CYP86 clan[2]。在家族進(jìn)化過程中,通過祖先基因的重復(fù)與變異,CYP450s家族成員多態(tài)性極為豐富,同時(shí)產(chǎn)生了多樣性的功能。不同Clan與Clan之間不僅是序列信息上的差異與聚類,同時(shí)也是功能上的協(xié)調(diào)與分化。
2CYP450s與基礎(chǔ)代謝
CYP450s是一種廣譜性生物催化酶,廣泛分布于生物界中,參與多種代謝反應(yīng)。它不僅參與內(nèi)源物質(zhì)的新陳代謝過程,如脂肪酸代謝[7-8]、植物激素的生物合成與降解[9-10]、次生代謝產(chǎn)物的合成[11-14],還參與外源物質(zhì)的降解過程,如除草劑降解[15-18]。參與植物基礎(chǔ)代謝的CYP450s見表1。
CYP450s在植物生命活動(dòng)中具有重要作用,參與細(xì)胞基
表1 參與植物基礎(chǔ)代謝的CYP450s
礎(chǔ)生命物質(zhì)的合成,CYP51s和CYP710s參與植物甾醇的合成[19-20],甾醇是細(xì)胞半透膜的重要組成物質(zhì)。CYP97s通過參與類胡蘿卜素的合成,對(duì)植物光合作用有重要貢獻(xiàn)。類胡蘿卜素包含2種色素,分別是葉黃素和胡蘿卜素,它們參與光合作用中能量的吸收和轉(zhuǎn)移。CYP97A和CYP97C分別參與類胡蘿卜素β環(huán)和ε環(huán)的羥基化修飾[21-23],在葉黃素的生物合成過程中起重要作用。
CYP450s對(duì)維持植物內(nèi)源激素的平衡具有至關(guān)重要的作用,它不僅參與植物激素的合成代謝,還參與植物激素的分解代謝。多種植物激素的生物合成與降解都需要CYP450s的作用。脫落酸(ABA,Abscisic Acid)是一種重要的植物內(nèi)源激素,具有促進(jìn)休眠、引起氣孔關(guān)閉、調(diào)節(jié)種子胚的發(fā)育和增加抗逆性等作用。CYP707A編碼8′-脫落酸羥基化酶,該酶在ABA降解過程起重要作用(圖1)[24]。CYP735A以異戊烯腺苷單磷酸為底物合成反式玉米素單磷酸,參與細(xì)胞分裂素的合成[25]。赤霉素(GA,Gibberellin)是一種雙萜類植物激素,通過甲羥戊酸途徑(Mevalonic Acid Pathway,MVA Pathway)合成。CYP701A經(jīng)過三步氧化催化貝殼杉烯合成貝殼杉烯酸[26],貝殼杉烯酸經(jīng)過CYP88A催化合成GA12[27](圖1),CYP714A是一種環(huán)氧酶,通過環(huán)氧作用使GA失活[28]。蕓薹素內(nèi)酯(BRs,Brassinosteroid)是一種固醇類植物激素,CYP85A[29]、CYP90B[30]、CYP90C和CYP90D[31]參與BRs的生物合成(圖1)。這些基因在進(jìn)化上同屬于CYP85 clan,說明參與蕓薹素內(nèi)酯合成的基因可能起源于同一個(gè)祖先基因。獨(dú)腳金內(nèi)酯(Strigolactones,SLs)是一種普遍存在的新型植物激素,具有促進(jìn)共生真菌菌絲生長的作用,可作為植物根圍與叢枝菌根共生真菌信號(hào)連接必不可少的化學(xué)分子。據(jù)報(bào)道,擬南芥CYP711A1(MAX1)可能參與了獨(dú)腳金內(nèi)酯的合成[32]。
3CYP450s與次生代謝產(chǎn)物的合成
次生代謝產(chǎn)物是由植物次生代謝產(chǎn)生的一類結(jié)構(gòu)不同的有機(jī)化合物,它非植物生長所必需,但間接參與了植物的生長與發(fā)育。次生代謝產(chǎn)物可分為萜類、酚類和含氮化合物三大類。多種次生代謝產(chǎn)物在植物抗病反應(yīng)中起重要作用,如多種酚類物質(zhì)在植物抗病反應(yīng)中起傳遞信號(hào)的作用。此外,次生代謝產(chǎn)物由于具有抗菌活性,對(duì)人類生產(chǎn)及生活有重要價(jià)值,如皂苷類、黃酮類。多種植物次生代謝產(chǎn)物是天然的藥用活性物質(zhì),具有重要的經(jīng)濟(jì)價(jià)值,可用于農(nóng)業(yè)、食品、保健和醫(yī)療等行業(yè)。
CYP74A編碼丙二烯氧合酶(AlleneOxide Synthase,AOS),參與茉莉酸類(Jasmonates,JAs)物質(zhì)的生物合成[33]。茉莉酸類是一種重要的傷信號(hào)分子,在植物防御反應(yīng)中起至關(guān)重要的作用。CYP74s在脂氧合酶(Lipoxygenase,LOX)信號(hào)傳遞通路中起關(guān)鍵作用。CYP74B亞家族是氫過氧化物裂解酶,CYP74B16(LuDES)可降解脂肪酸產(chǎn)生小分子物質(zhì),參與到植物抗病信號(hào)通路中[34]。
CYP450s參與催化合成多種具有藥用價(jià)值的次生代謝產(chǎn)物,如青蒿素[11,35]、皂苷[36-37]、莨菪堿[38]、黃酮類化合物[39]、紫杉酚[40]。
萜烯是植物中一類天然的碳?xì)浠衔?,?個(gè)異戊二烯單元構(gòu)成,通式為C15H24的烯烴類化合物??汞懥妓帯噍锼厥且环N倍半萜內(nèi)酯。AaCYP71AV1(Artemisiaannua)催化合成青蒿素(Artemisinin)(圖2)。2006年,Ro等[35]將AaCYP71AV1轉(zhuǎn)入構(gòu)建酵母工程菌實(shí)現(xiàn)青蒿素的生物發(fā)酵生產(chǎn),AaCYP71AV1將紫穗槐-4,11-二烯(amorpha-4,11-diene)經(jīng)過三步氧化成青蒿素,產(chǎn)率達(dá)100 mg/L,克服了傳統(tǒng)生產(chǎn)中青蒿素含量低、萃取困難、萃取量低等難題?;ń?Zerumbone)是紅球姜(Zingiberzerumbet)的內(nèi)源次生代謝產(chǎn)物,具有抗炎、抗HIV、抗腫瘤的功效,花姜酮的合成需要中間產(chǎn)物8-羥基-α-蛇麻烯(8-hydroxy-α- humulene)的合成。在大腸桿菌中共表達(dá)包括CYP71BA1和ZSS1等4個(gè)甲羥戊酸途徑關(guān)鍵酶,檢測到8-羥基-α-8-蛇麻烯合成[41]。此外,CYP450s還參與圓柚酮(Nootkatone)[42]、螺巖蘭草酮(Solavetivone)[43]、木香烯內(nèi)酯(Costunolide)[44]等次生代謝物的合成。
雙萜類化合物由4個(gè)異戊二烯單元構(gòu)成,通式為C20H32。鐵銹醇(Ferruginol)是一種二萜酸類化合物,能夠有效治療病毒性皰疹和登革熱癥狀。SmCYP76AH1(丹參,Salviamiltiorrhiza)催化次丹參酮二烯合成鐵銹醇[45](圖2)。紫杉酚(Taxol)為一種雙萜類化合物,是一種有效的抗腫瘤藥,同時(shí)也是銷量最大的抗癌藥物之一。CYP716B參與紫杉烷(Taxoid)的9-α-羥基化過程[46](圖2)。
圖1 參與植物激素合成與代謝的CYP450sFig.1 CYP450s involving in phytohormone biosynthesis
圖2 參與單萜雙萜合成的CYP450sFig.2 CYP450s involving in monoterpene biosynthesis and diterpenoid biosynthesis
大豆GmCYP93E1(Glycinemax)是最早被證實(shí)的催化三萜化合物合成的CYP450s,GmCYP93E1基因催化合成齊墩果-12-烯-3,24-二醇(olean-12-ene-3β-24-diol)[36]。在隨后的研究中,一系列的三萜類化合物合成途徑的CYP450s被分離鑒定。甘草(Glycyrrhizaspp.)的GsCYP88D6和GsCYP72A154基因催化合成甘草次酸,參與甘草酸苷的生物合成[47-48](圖3)。靈芝(Ganoderma)的GlCYP450基因參與靈芝酸的合成[49](圖3)。葡萄(Vitisvinifera)的VvCYP716A15和VvCYP716A17基因不僅可以催化β-香樹脂合成齊墩果酸,還可催化羽扇豆醇合成燁木酸[50]。蒺藜狀苜蓿(Medicagotruncatula)的MtCYP716A12基因催化齊墩果酸的合成[51-52](圖3)。人參(Panaxginseng)的PgCYP716A47、PgCYP716A52v2和PgCYP716A53v2基因參與人參皂苷合成途徑[12-14],其中,PgCYP716A47催化達(dá)瑪烯二醇合成原人參二醇;PgCYP716A53v2催化原人參二醇合成原人參三醇;PgCYP716A52v2催化合成齊墩果酸型皂苷。西洋參(Panaxquinquefolius)的PqCYP6H(屬于CYP716A)基因參與齊墩果酸型皂苷的合成(圖3)[53]。
注:(1)2,3-環(huán)氧化鯊烯,(2)達(dá)瑪烯二醇,(3)原人參二醇,(4)原人參三醇,(5)β-香樹脂,(6)11-酮-香樹脂,(7)甘草次酸,(8)齊墩果-12-烯-3,24-二醇,(9)α-香樹脂,(10)烏索酸,(11)羽扇豆醇,(12)樺木酸。Note:(1) 2,3-oxidosqualene;(2)Dammarenediol-II;(3)Protopanaxadiol;(4)Protopanaxatriol;(5)β-Amyrin;(6)11-oxo-β-amyrin;(7)Glycyrrhetinic acid;(8)Olean-12-ene-3β-24-diol;(9)α-Amyrin;(10)Ursolic acid;(11)Lupeol;(12)Betulinic acid. 圖3 參與三萜合成的CYP450sFig.3 CYP450s involving in triterpenes biosynthesis
4CYP450s與外源物質(zhì)的代謝
CYP450s具有解除除草劑對(duì)植物毒害作用的功能。H?fer等[15]研究發(fā)現(xiàn),擬南芥CYP76s家族成員CYP76C1、CYP76C2和CYP76C4參與苯脲類除草劑的代謝,解除除草劑的毒害作用。Pan等[54]利用圖位克隆技術(shù)從水稻中克隆得到可提高水稻苯達(dá)松抗性的基因CYP81A6。此外,在不同物種中都有CYP450s參與除草劑的代謝,如CYP71B1、CYP71A10、CYP71C6v1和CYP76B1等都可有效降解除草劑(表2)。這些降解外源物質(zhì)的CYP450s通常屬于CYP71clan,CYP71clan是包含最多家族和最多成員的Clan,是相對(duì)進(jìn)化較晚的家族Clan,同樣也是功能多樣化的Clan。CYP71clan的爆發(fā)性進(jìn)化極大地豐富和補(bǔ)充了CYP450s的功能。此外,CYP71clan多樣性功能還包括催化類苯基丙烷、黃酮和類黃酮、生物堿的新陳代謝過程。CYP71clan的爆發(fā)性進(jìn)化增強(qiáng)了植物的抗性和對(duì)環(huán)境的適應(yīng)性。
5結(jié)語
CYP450s參與多種內(nèi)源化合物的生物合成與降解過程,研究CYP450s的功能與分布對(duì)于學(xué)習(xí)和了解生命具有重要意義。隨著后基因組時(shí)代的到來,越來越多生命信息將被解密,龐大的CYP450s家族信息將被挖掘和整理。隨著越來越多植物CYP450s信息的挖掘,相關(guān)功能的鑒定是目前植物CYP450s研究的重點(diǎn)。CYP450s起源古老,在動(dòng)物、植物、真菌、原生生物、細(xì)菌、古生菌和病毒中都發(fā)現(xiàn)了CYP450s。從家族的角度對(duì)CYP450s進(jìn)行研究與闡明,對(duì)于研究基因分化和物種進(jìn)化具有重要意義。多種CYP450s參與了藥用化合物的合成過程。生長周期長、藥用成分含量低以及提取困難等因素限制了這些藥用活性成分的開發(fā)與利用,而通過轉(zhuǎn)基因技術(shù)構(gòu)建生長周期短、生產(chǎn)性能高的工程菌株,利用現(xiàn)代發(fā)酵技術(shù)異源生產(chǎn)藥用成分,不僅可以節(jié)省土地資源,還降低生產(chǎn)成本。雖然,初步研究已經(jīng)成功,但利用微生物發(fā)酵進(jìn)行工業(yè)化生產(chǎn)仍需進(jìn)一步研究。
表2 參與除草劑代謝的CYP450s
參考文獻(xiàn)
[1] DENISOV I G,MAKRIS T M,SLIGAR S G,et al.Structure and chemistry of cytochrome P450[J]. Chemical reviews,2005,105(6):2253-2278.
[2] NELSON D,WERCK-REICHHART D.A P450-centric view of plant evolution[J].The plant journal,2011,66(1):194-211.
[3] DANIELE W R,F(xiàn)EYEREISEN R.Cytochromes P450:A success story[J].Genome biology,2000,1(6):3003.
[4] SCHALK M,CROTEAU R.A single amino acid substitution(F363I)converts the regiochemistry of the spearmint(-)-limonene hydroxylase from a C6-to a C3-hydroxylase[J].Proceedings of the national academy of sciences,2000,97(22):11948-11953.
[5] FREAR DS,SWANSON H R,TANAKA F S.N-demethylation of substituted 3-(phenyl)-1-methylureas:Isolation and characterization of a microsomal mixed function oxidase from cotton[J].Phytochemistry,1969,8(11):2157-2169.
[6] RENAULT H,BASSARD J E,HAMBERGER B,et al.Cytochrome P450-mediated metabolic engineering:Current progress and future challenges[J].Current opinion in plant biology,2014,19:27-34.
[7] PINOT F,BEISSON F.Cytochrome P450 metabolizing fatty acids in plants:Characterization and physiological roles[J].Febs journal,2011,278(2):195-205.
[8] SPECTOR A A,KIM H Y.Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism[J].Biochimicaet biophysica acta(BBA)-Molecular and cell biology of lipids,2015,1851(4):356-365.
[9] MCLEAN K,HANS M,MUNRO A.Cholesterol,an essential molecule:Diverse roles involving cytochrome P450 enzymes[J].Biochemical society transactions,2012,40(3):587.
[10] TAMIRU M,UNDAN J R,TAKAGI H,et al.A cytochrome P450,OsDSS1,is involved in growth and drought stress responses in rice(OryzasativaL.)[J].Plant molecular biology,2015,88(1/2):85-99.
[11] PADDON C J,WESTFALL P,PITERA D,et al.High-level semi-synthetic production of the potent antimalarial artemisinin[J].Nature,2013,496(7446):528-532.
[12] HAN J Y,KIM M J,BAN Y W,et al.Theinvolvement of β-amyrin 28-oxidase(CYP716A52v2)in oleanane-type ginsenoside biosynthesis inPanaxginseng[J].Plant and cell physiology,2013,54(12):2034-2046.
[13] HAN J Y,KIM H J,KWON Y S,et al.The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J].Plant and cell physiology,2011,52(12):2062-2073.
[14] HAN J Y,HWANG H S,CHOI S W,et al.Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis inPanaxginseng[J].Plant and cell physiology,2012,53(9):1535-1545.
[15] H?FER R,BOACHON B,RENAULT H,et al.Dual function of the cytochrome P450 CYP76 family fromArabidopsisthalianain the metabolism of monoterpenols and phenylurea herbicides[J].Plant physiology,2014,166(3):1149-1161.
[16] OHKAWA H,INUI H.Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants[J].Pest management science,2015,71(6):824-828.
[17] HAYASHI E,F(xiàn)UZIMOTO K,IMAISHI H.Expression ofArabidopsisthalianacytochrome P450 monooxygenase,CYP71A12,in yeast catalyzes the metabolism of herbicide pyrazoxyfen[J].Plant biotechnology,2007,24(4):393-396.
[18] HAN H,YU Q,VILA-AIUB M,et al.Genetic inheritance of cytochrome P450-mediated metabolic resistance to chlorsulfuron in a multiple herbicide resistantLoliumrigidumpopulation[J].Crop protection,2014,65:57-63.
[19] SCHALLER H.Sterol and steroid biosynthesis and metabolism in plants and microorganisms[M]// MANDER L,LUI H W.Comprehensive natural products II.Oxford:Elsevier,2010:755-787.
[20] MORRISON A M S,GOLDSTONE J V,LAMB D C,et al.Identification,modeling and ligand affinity of early deuterostome CYP51s,and functional characterization of recombinant zebrafish sterol 14α-demethylase[J].Biochimica et biophysica acta(BBA)-General subjects,2014,1840(6):1825-1836.
[21] KIM J,DELLAPENNA D.Defining the primary route for lutein synthesis in plants:The role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3[J].Proceedings of the national academy of sciences of the United States of America,2006,103(9):3474-3479.
[22] KIM J E,CHENG K M,CRAFT N E,et al.Over-expression ofArabidopsisthalianacarotenoid hydroxylases individually and in combination with a β-carotene ketolase provides insight into in vivo functions[J].Phytochemistry,2010,71(2):168-178.
[23] TIAN L,MUSETTI V,KIM J,et al.TheArabidopsisLUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity[J].Proc Natl Acad Sci USA,2004,101:402-407.
[24] MIZUTANI M,TODOROKI Y.ABA 8’-hydroxylase and its chemical inhibitors[J].Phytochemistry reviews,2006,5(2/3):385-404.
[25] TAKEI K,YAMAYA T,SAKAKIBARA H.ArabidopsisCYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin[J].Journal of biological chemistry,2004,279(40):41866-41872.
[26] HELLIWELL C A,SHELDON C C,OLIVE M R,et al.Cloning of theArabidopsisent-kaurene oxidase gene GA3[J].Proc Natl Acad Sci USA,1998,95:9019-9024.
[27] HELLIWELL C A,CHANDLER P M,POOLE A,et al.The CYP88A cytochrome P450,ent-kaurenoic acid oxidase,catalyzes three steps of the gibberellin biosynthesis pathway[J].Proc Natl Acad Sci USA,2001,98:2065-2070.
[28] ZHANG Y,ZHANG B,YAN D,et al.Two Arabidopsis cytochrome P450 monooxygenases,CYP714A1 and CYP714A2,function redundantly in plant development through gibberellin deactivation[J].Plant J,2011,67:342-353.
[29] NOMURA T,KUSHIRO T,YOKOTA T,et al.The last reaction producing brassinolide is catalyzed by cytochrome P450s,CYP85A3 in tomato and CYP85A2 inArabidopsis[J].J Biol Chem,2005,280:17873-17879.
[30] FUJITA S,OHNISHI T,WATANABE B,et al.Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27,C28 and C29 sterols[J].Plant J,2006,45:765-774.
[31] OHNISHI T,SZATMARI A M,WATANABE B,et al.C-23 hydroxylation byArabidopsisCYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis[J].Plant cell,2006,18:3275-3288.
[32] BOOKER J,SIEBERER T,WRIGHT W,et al.MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J].Developmental cell,2005,8(3):443-449.
[33] LAUDERT D,PFANNSCHMIDT U,LOTTSPEICH F,et al.Cloning,molecular and functional characterization ofArabidopsisthalianaallene oxide synthase(CYP 74),the first enzyme of the octadecanoid pathway to jasmonates[J].Plant molecular biology,1996,31(2):323-335.
[34] GOGOLEV Y V,GORINA S S,GOGOLEVA N E,et al.Green leaf divinyl ether synthase:Gene detection,molecular cloning and identification of a unique CYP74B subfamily member[J].Biochimicaet biophysica Acta(BBA)-Molecular and cell biology of lipids,2012,1821(2):287-294.
[35] RO D K,PARADISE E M,OUELLET M,et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J].Nature,2006,440(7086):940-943.
[36] SHIBUYA M,HOSHINO M,KATSUBE Y,et al.Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay[J].Febs journal,2006,273(5):948-959.
[37] CARELLI M,BIAZZI E,PANARA F,et al.Medicagotruncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins[J].The plant cell,2011,23(8):3070-3081.
[38] LI R,REED D W,LIU E,et al.Functional genomic analysis of alkaloid biosynthesis in Hyoscyamusniger reveals a cytochrome P450 involved in littorine rearrangement[J].Chemistry & biology,2006,13(5):513-520.
[39] YAN Y,KOHLI A,KOFFAS M A.Biosynthesis of natural flavanones in Saccharomyces cerevisiae[J].Applied and environmental microbiology,2005,71(9):5610-5613.
[40] KASPERA R,CROTEAU R.Cytochrome P450 oxygenases of Taxol biosynthesis[J].Phytochem Rev,2006,5:433-444.
[41] YU F,OKAMOTO S,HARADA H,et al.Zingiberzerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis[J].Cell Mol Life Sci,2011,68:1033-1040.
[42] FRAATZ M A,BERGER R G,ZORN H.Nootkatone-A biotechnological challenge[J].Applied microbiology and biotechnology,2009,83(1):35-41.
[43] TAKAHASHI S,YEO Y S,ZHAO Y,et al.Functional characterization of premnaspirodieneoxygenase a cytochrome P450 catalyzing region and stereo-specific hydroxylation of diverse sesquiterepene substrates[J].J Biol Chem,2007,282:31744-31754.
[45] GUO J,ZHOU Y J,HILLWIg M L,et al.CYP76H1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeast[J].Proc Natl Acad Sci USA,2013,110:12108-12113.
[46] ZHANG N,HAN Z,SUN G,et al.Molecular cloning and characterization of a cytochrome P450 taxoid 9a-hydroxylase inGinkgobilobacells[J].Biochemical and biophysical research communications,2014,443(3):938-943.
[47] SEKI H,OHYAMA K,SAWAI S,et al.Licorice β-amyrin 11-oxidase,a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J].Proceedings of the national academy of sciences,2008,105(37):14204-14209.
[48] SEKI H,SAWAI S,OHYAMA K,et al.Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J].The plant cell,2011,23(11):4112-4123.
[49] GUO X,SUN C,SONG J,et al.Construction of the coexpression vector containing key element GLCYP450 involved in Ganodermatriterpene biosynthesis and its reductase gene GLNADPH[J].Yaoxuexuebao actapharmaceutica sinica,2013,48(2):206-210.
[50] FUKUSHIMA E O,SEKI H,OHYAMA K,et al.CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J].Plant and cell physiology,2011,52(12):2050-2061.
[51] CARELLI M,BIAZZI E,PANARA F,et al.Medicagotruncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins[J].The plant cell,2011,23(8):3070-3081.[52] FUKUSHIMA E O,SEKI H,OHYAMA K,et al.CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J].Plant and cell physiology,2011,52(12):2050-2061.
[53] WANG L,ZHAO S J,LIANG Y L,et al.Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis inPanaxquinquefolius[J].Functional & integrative genomics,2014,14(3):559-570.
[54] PAN G,ZHANG X,LIU K,et al.Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides[J].Plant molecular biology,2006,61(6):933-943.
[55] ROBINEAU T,BATARD Y,NEDELKINA S,et al.The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics[J].Plant physiology,1998,118(3):1049-1056.
[56] WERCK-REICHHART D,HEHN A,DIDIERJEAN L.Cytochromes P450 for engineering herbicide tolerance[J].Trends in plant science,2000,5(3):116-123.
[57] XIANG W,WANG X,REN T.Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides[J].Pesticide biochemistry and physiology,2006,85(1):1-6.
[58] LIU C,LIU S,WANG F,et al.Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in bothArabidopsisand tobacco[J].Plant cell,tissue and organ culture,2012,109(3):419-428.
[59] LAMB S B,LAMB D C,KELLY S L,et al.Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis[J].FEBS letters,1998,431(3):343-346.
基金項(xiàng)目“十二五”農(nóng)村領(lǐng)域國家科技計(jì)劃項(xiàng)目(2013AA102604-3)。
作者簡介李翔宇(1991-),男,山西臨汾人,碩士研究生,研究方向:植物細(xì)胞工程與細(xì)胞全能型表達(dá)。*通訊作者,教授,博士,碩士生導(dǎo)師,從事藥用植物細(xì)胞工程研究。
收稿日期2016-04-13
中圖分類號(hào)S 188+.2
文獻(xiàn)標(biāo)識(shí)碼A
文章編號(hào)0517-6611(2016)13-129-06
CytochromeP450sand Their Function in Plant Metabolism
LI Xiang-yu, WANG Zhu-qian, SUN Chun-yu, WANG Yi*et al
(Research Center for Ginseng Genetic Resources, Jilin Agricultural University, Changchun, Jilin 130118)
AbstractWe summarized the known functions of cytochrome P450s, reviewed the important functions of cytochrome P450s in plant basic metabolism and non-basic metabolism. This research provided references for the further research on this gene family and the function of each member.
Key wordsPlant; Cytochrome P450s; Metabolism; Function