亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        PredictionoftheDischargePathsofTwo-PhaseMixturesunderDCVoltage

        2016-07-14 02:00:42YaoWenjunHeZhenghaoDengHeming
        關鍵詞:仿真預測

        Yao Wenjun, He Zhenghao, Deng Heming

        (1HubeiKeyLaboratoryofIntelligentWirelessCommunications,CollegeofElectronicsandInformationEngineering,South-CentralUniversityforNationalities,Wuhan430074,China;2CollegeofElectricalandElectronicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074,China)

        直流電壓下兩相體放電路徑預測

        ?

        PredictionoftheDischargePathsofTwo-PhaseMixturesunderDCVoltage

        Yao Wenjun1, He Zhenghao2, Deng Heming2

        (1HubeiKeyLaboratoryofIntelligentWirelessCommunications,CollegeofElectronicsandInformationEngineering,South-CentralUniversityforNationalities,Wuhan430074,China;2CollegeofElectricalandElectronicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074,China)

        AbstractThepredictionoftheDischargePathsofTwo-phaseMixturesunderDCVoltagehasbeeninvestigatedbytheexperiment.Fromtheexperimentalresultstheprobabilityofselectingtheairorthetwo-phasemixturesisgovernedbythelocaldistortedelectricfield,whichishighlycorrelatedwiththemacroparticlesizes.Inordertoexplainthephenomena,anewstochasticmodelhasbeenputup.Onthebasisofthestreamertheoryandprobabilityandstatisticstheory,thepaperusesthestrengthofanelectricfieldfromthePoisson'sequationasthecriterionofthestreamerdevelopment.ThebreakdowntimeofthestreamerdevelopmentmeetsWeibulldistributionandthedistortedfieldvaluedecidesthedirectionforthestreamerdevelopmentintheTPMDspace.ThedevelopmentoftheDCdischargepathcanbeaffectedbythelocalelectricfield.Theobjectivefunction(optimalpath)correspondstotheenergyfunctionoftheHopfieldneuralnetwork.Thecomparisonofthesimulationwiththeexperimentshowsthatthestochasticmodelhasgivenagoodapproximation.

        Keywordsprediction;dischargepath;two-phasemixture;electricfielddistortion;imulation

        直流電壓下兩相體放電路徑預測

        Thedischargeinlongairgapsisahotissueinthestudyontheoutdoorinsulationofpowersystem.Atthesametimeitisalsoafoundationofthemechanismoflightningdischargeandtheresearchonthelightningprotection.Intheaboveresearchthedispersionandrandomnessofdischargepathsarethetypicalcharacteristicsofthedischargeinlongairgaps.Thelightningstrikeandlightningshieldingfailurearealsocloselyrelatedtotherandomnessofdischargepaths.Sotheinvestigationoftherandomnessofdischargepathsisakeyissue.

        Thesparkpathsinthepoint/planeandpoint/two-rodairgapshavebeenpredictedbyMacAlpineetalbasedontheexperimentaldata[1-4].Theyfoundthatthedevelopmentofsparkpathsinairisbysuccessivestepsandinadirectionsuggestedbyanangularprobabilitydistributionwhichisrelatedtothefieldatthetipofthepropagatingleader.Inthe[5]AgorisD.P.usedanewstochasticmodelforthesimulationoflightningandbreakdowninlongairgaps.Thecomparisonofthesimulationwiththeexperimentalresultsshowsthatthestochasticmodelhasgivenagoodapproximationinthecaseoflargedistancesbetweentheactiveelectrodeandtheground.Thefractaltheoryhasalsobeenappliedtothesimulationoftheprocessofinceptionandpropagationinthelightningdischarges.Xudiscoveredthatafractalcoefficientη=2candeliveracrediblemodeloflightningstrikes,andprovedtheconsistencyofthestrikingprobabilityandshieldingeffectbetweensimulationresultsandobservations[6].

        Theaboveinvestigationonthepredictionofthedischargepathsisonlyintheair.Howabouttheinvestigationinthetwo-phasemixtureThetwo-phasemixture(TPM)isamixtureofgasandmacroparticlesofhighconcentration[7-9],suchasdust,aerosolandrain,etc. (Toavoidconfusion,thetermmacroparticlesisusedtorepresenttheseparticles.)Itisofsignificantinterestinmanytechnicalapplicationsandnaturalphenomena,suchastheformationofthunderstorms,themacroparticle-contaminatedinsulatedsystem,flashoverinrainyweatherandsandstorm,dustplasmaandlightingshieldingfailureinrain,mistorsandstorm.Thesephenomenaarerelativetotwo-phasemixturedischarges(TPMDs).Grigor,evA.I.reportedthatthecoacervationofm-sizedraindropsisincreasingundertheperiodicvariationofenvironmentalelectricalfieldunderlightningdischarge,andthecoacervationiscloselyrelevanttothechargeabilityofraindrops[10].Somestudieshavereportedthatasignificantincreaseintheflashovervoltageisproducedbysupplyingthetetrachloroethylenemistintothegas[11].Liquiddropletsarelikelytostronglymodifytheclassicaldevelopmentoffilamentarydischargeinanon-uniformfieldgeometry[12].

        ThepredictionofthedischargepathsofTPMsisoneofthemostimportantscientificquestions.Yetfewpeoplehaveinvestigatedtheproblem.InthispapertheselectionofthedischargepathinTPMsisemployedasthestudyobject.ThepercentagesofthedischargesinTPMSorairaremadecomparativeanalysesfromtheexperimentandsimulation,whichrevealthatthesizesofTPMmacroparticlesdecidethepredictionofthedischargepathsofTPMs.

        1Experimental

        1.1Experimentalarrangement

        Fig.1 Schematic of the experimental setup圖1 實驗裝置圖

        ThesketchoftheexperimentalequipmentisshowninFig.1.Theexperimentalarrangementandmethodsisthesameasthepaper[9].TPMsandairaresimultaneouslyjettedintoeachhalfofthedischargechamberataboutthesameflowvelocity,whichcanpreventtheparticlesfromdeposingontheelectrodes.Theexperimentalprocedureisasfollows:

        1)Adjustthelocationoftherodandlocalizingelectrode:AddthevoltagetothecriticalbreakdownandputdownthelargernumericalvaluesasU1.Theadjustedtimesisabove50times.Whenthepercentagesoftheselectionoftwolocalizingelectrodesareequal(50±5%),theadjustmentoftheelectrodesiscompleted.

        2)JetairandTPMscontinuouslyatthesameflowvelocity:Jettheairintotheleftdischargechamber.AtthesametimejettheTPMsintotherightdischargechamberandaddthevoltagetothecriticalbreakdownandputdownthelargernumericalvaluesasU2.Writedownthebreakdowntimesfromtherodtotheleftortherightlocalizingelectrodeandgettheirdischargetimes.

        3)Exchangejetorientation:ExchangethejetorientationofairandTPM.Thenrepeat2).

        4)Reducetheinfluenceofthetwolocalizingelectrodes:ExchangejetorientationofairandTPMafterwerepeattheexperiment10times,repeat2)and3).Intheexperimentaltherepeatedfrequencyshouldsurpass100times.

        5)TheeffectsofmacroparticlesizesonTPMDs:Whenwecomparethepercentageofthedischargeselectionfromtherodtotheleftlocalizingelectrodewiththerightone,theeffectsofmacroparticlesizesonTPMDarepresent.

        1.2Propertiesoftheexperimentalmaterials

        3kindsofsolidmaterialsandatobaccoareusedtoproduceparticlesinairasgas-solidTPMs.Waterisusedtoproducedropletssuspendedinairasgas-liquidTPMs,whichformatwatermistwiththreedropletsizes.Total7kindsofdifferentdielectricmaterialshavebeenusedtodemonstratetheeffectsofmacroparticlesizesonTPMDsinthispaper.TheirmaterialpropertiesfortheexperimentareshowninTab. 1.IntheTab. 1εristherelativedielectricconstant.

        Tab.1 PropertiesofExperimentalMaterials

        2Results

        2.1Photographofthepredictiononthe

        dischargepath

        Fig.2  Photograph of the discharge path of the macroparticleswith different diameters圖2 不同粒徑顆粒的放電路徑圖片

        Theexperimentalmaterialsare7kindsofdielectricmacroparticleswithdifferentaveragediameters.ThedischargepathinTPMsisshowninFig. 2.Thegapsbetweentherodandtheplaneelectrodeappliedinourworkare40cm, 44cmand48cm,respectively.Theresultsofthreegapsindicatetheeffectsarequitesimilar.Fig. 2istaken40cmandabout200kVasanexample.Whend<0.01mm,U-mist(d =0.0066mm),underpositiveornegativeDCvoltage,thepercentageissmallerthan50%andthedischargepathselectstheairbutTPM.ThephotographisshowninFig. 2a;Whend>0.1mm,thequartzsand(d=0.12mm)underpositiveornegativeDCvoltage,thepercentageishigherthan50%andthedischargepathselectstheTPMbutair.ThephotographisshowninFig. 2b;When0.01mm

        Fig.3 Effect of the macroparticle diameters on the probabilityof selecting the TPM圖3 兩相體顆粒粒徑大小對放電路徑的影響

        2.2Processofthepredictiononthedischargepath

        TheN-mist(d=0.040mm)wasusedtotheexperiment.TheprocessofthedischargepathisshowninFig.4.

        Fig.4 Process on the selection of the discharge path of the N-mist圖4 噴射水霧的放電路徑選擇過程

        TheFig.4a-4frepresentsthesixdifferentimportantstages.TheFig.4ashowsthatthewaterwassprayedtothedischargeroomandwasgeneratedthespaceofTPM.TheFig.4band4cshowsthecoronadischargeunderDCvoltage.Theblue-purplehaloneartherodelectrodegetsstrongerwiththedischarge.TheFig.4dto4fshowsthebreakdowninthegapsbetweentherodandtheplaneelectrode.Thedischargepath

        selectstheairandtheshapesofthepathsaremoreandmorecomplex.

        2.3Effectofthesprayangleonthepredictionofdischargepath

        TheU-mist(d=0.0066mm)andN-mist(d=0.040mm)aretwokindsofmacroparticleswiththedifferentdiameter.TheirsprayangleisdifferentandtheprobabilityofselectingtheTPMisalsodifferent.Fig. 5showstheeffectofthesprayangleonthepredictionofdischargepath.UnderthesameDCvoltagepolaritytheTPMsareinjectedtothedischargechamberatthesameangle.TheeffectoftheU-mistonthedischargepathismoreremarkablethantheN-mist.Astheangleisfromthefronttothebackunderthepositivevoltage,thepercentageofthedischargepathinselectingtheU-mistisabout40%higherthanthatoftheN-mist.Simultaneouslythepercentagehaschangedverylittleasthevoltagerisesandunderthenegativevoltagethepercentagedecreasesasthevoltagerises.Intheexperimentthemistisrepelledbytherodelectrodeandrepulsedtotheplaneelectrode.Theappearanceismoreobviousasthevoltagerises.

        Fig.5 Effect of the spray angle on the prediction of discharge path圖5 噴射角度對放電路徑的影響

        2.4Effectofthemacroparticlediameteronthepredictionofdischargepath

        TheFig. 6showsthephotographofthedischargepathonthequartzsandswiththedifferentdiameters.Thediameteroffinesandis0.15mmandthediameterofcoarsesandis0.80mm.Inthefigurethepositivevoltageis120kVandthenegativevoltageis240kVforthepureairanddusttwo-phasemixture.Fromthepicturetheobviousdischargepathscanbeseenandthebreakdownvoltageisdifferentunderthepositiveandnegativevoltage.Underthepositivevoltagethebreakdownislowerandthewidthsofthedischargepathsarefiner.Underthenegativevoltagethebreakdownvoltageishigherandthewidthsandbrightnessofthedischargepathsarebigger.Atthesamethewidthofdusttwo-phasemixtureisslightlywiderthanthatofpureair.Thewidthofcoarsesandtwo-phasemixtureisslightlywiderthanthatoffinesand.Thereasonisthatthedustmacroparticlesdistorteelectricalfieldandthedistributionofelectricfieldismorenon-uniform.Theionizationbetweenthecoarsesandmacroparticlesisstrongerthanthatofthefinesandmacroparticles.

        (Left: positive voltage, Right: negative voltage )Fig.6 Photograph of the discharge path on different quartz sands under the different voltage polarity圖6 不同石英砂在不同電壓極性下的放電路徑圖片

        3Discussion

        Becausetherearemanynon-uniformdielectricinthedischargespace,TPMDsmusthavesomenewmechanismbesidesthatofgasdischarge.Themechanismincludes: 1)theinteractionsbetweenthemacroparticlesandtheelectricalfield,theelectronsandionsorthephotoionization; 2)thesurfacetrapsofthemacroparticlescapturetheelectronsandions; 3)thesemacroparticlesinTPMsdistorttheelectrostaticfield,interactwithions,electronsorphotonsandarechargedbydiffusion.Sothepredictionofthedischargepathsoftwo-phasemixtureisprimarilydeterminedbythedistortedelectricalfield.Thenewstochasticmodelisbasedontheselectionofpositivedischargepath.ThedevelopmentoftheDCdischargepathcanbeaffectedbythelocalelectricfield.

        3.1Calculationofdistortedelectricalfield

        Tocomputetheelectricalfieldinthedischargespacethetwo-phasemacroparticlesareprocessedwithidealmethods.Supposethat(1)Themacroparticlesaresphereswiththesamephysicalproperties; (2)Theyareevenlydistributedandhavesamesizesinthedischargespace; (3)Thespacingbetweenthespheresisverylargeandhasnocharge.Thecalculationmethodsisthesameasthepaper[5].Thedischargeroomistakingplaceinatwo-dimensionalsquareareawithameshoflatticepointsupto200×200points.Eightpermissibledirection(includingdiagonals)ofstreamerpropagationareallowed.Thedistancebetweentwopointsofthelatticeisequaltoh,or1.41hfordiagonals.Therod-planeconfigurationisusedforthesimulation.Theupperelectrodeisarodwhosetopishemisphericandatpotentialφ=V0,whereV0istheappliedvoltage.Thelowerelectrodeisaplanewhosepotentialisatgroundpotentialφ=0.Thetwolocalizingelectrodesareplacedontheplane,whichisatpotentialφ=0too.Theselectionofthedischargepathcanbeobservedbythelocalizingelectrode.Therearevariouschargeinthestreamerchannel.Theirpotentialdistributionmeetsthepoissonequation.

        (1)

        Whereρisthechargeddensityinthestreamerchannel,Thechannelincludestheelectron,positiveandnegativeionsandpolarizationandchargedmacroparticles.Ifthereisnochargeinthestreamerchannel,thepotentialdistributionmeetstheLaplaceequation.

        2φ=0.

        (2)

        TheelectricfieldcanbecalculatedbysolvingtheLaplaceequationwithboundariesontheelectrodesanddischargespace.InthecalculationthecurrentcontinuityequationandOhm'slawneedtobeused.

        (3)

        WhereJisthecurrentdensityandσistheelectricalconductivityofthestreamerchannel.Whenthestreamerspropagatefromtheanodetowardsthecathode,thekstepcanbediscretizedintothefollowingformula.

        ρk+1=ρk+ts(σφk+1).

        (4)

        Wheretsisthetimestep.Theformula(4)isplugintotheformula(1)togetthefollowingformula.

        (5)

        Thepotentialdistributionatthek+1stepcanbesolvedbythesuccessiveover-relaxationiterationmethod.Sotheelectricalfieldinthedischargespacecanbederivedfromtheformula(6).TheheavylineinFigure7showsthepossiblepathinthestreamerpropagation.

        E=-φ.

        (6)

        Fig.7 Schematic of possible new bounds of positivestreamer in the stochastic model圖7 正流注在方形網格空間發(fā)展的示意圖

        3.2Initiationofthepositivestreamer

        Underthepositivevoltageoftherodelectrode,thereisastrongelectricfieldareaneartherodelectrode,wherethecollisioncoefficientαisgreaterthantheattachmentη,αandηarethefunctionoftheelectricfieldintensityE.Bytheactionoftheelectricfieldthefreeelectronsintheareaaremovedalongthedirectiontotherodelectrodeandformtheinitialelectronavalanche.Whentheheadelectronsintheinitialelectronavalanchegettotherodelectrode,thepositiveionsstayneartheelectrodeandformthespacecharges.Thespacechargesstrengthenthespaceelectricfieldfromtherodtoplaneelectrode.Themarcoparticlesbetweentherodandtheplaneelectrodearepolarizedandcharged.Themacroparticlesurfacecanextractthephotoelectronsandcontributetocollisionionization,whichenhancesthesecondaryelectronavalanche.Atthesametimethemacroparticlecanobstructandcapturetheelectronsandabsorbthephotons,whichweakenthesecondaryelectronavalanche.Thesefactorsaffectthepropagationoftheelectronavalancheandhaveacompetitioneffect.Theeffectwillaffectthetransitionfromtheelectronavalanchetothestreameranddecidethedischargepath.

        Thepositiveandnegativeions,thepolarizedandchargedmacroparticleswilldistorttheelectricalfieldafteronestreamerisdeveloped.Beforethespacesareeliminated,thenewstreamerisn’tformattedbecausethedensityanddistributionofnewoneareusuallyassociatedwiththeintensityoftheformerone.Theeliminatingtimeisdifferent.Therandomandirregularityofthedischargewillbeproduced.

        3.3Coronadischargeinthepositivestreamer

        initiation

        Alargenumberofelectronavalanchesaregeneratedbytheactionofthedistortedelectricalfieldneartherodelectrode.Whenthepositiveionsrecombinewiththenegativeionsorelectrons,therayradiationswillbeproducedandthehalocomesout,whichformscoronadischarges.Ifalargenumberofpositivespacechargesaccumulatearoundtheanode,thediscontinuousstreamercoronawilltransformastableglowdischarge.Thereisanapproximateuniformfieldbetweenthepositivespacechargesandtheanode.Whenthedensityofthepositivespacechargesissmall,thepositiveionswillneutralizetheanode,whichcanclearthewayforanewstreamerappearing.Whenthedensityofthepositivespacechargesisverybigandthelocalfieldishighenough,thebreakdownwilloccurinthespacefromthepositiveionstotheanode.Theionizingradiationwillproducephotoelectron.Thephotoelectronattachesoneselftothemacroparticlesorthemoleculesandatomswhichformpositiveions.Thepositiveionsdrifttotheanodeandcompensatethelossforthepositiveparticlesinthespacecharges.Soasthepositiveionsexist,theglowdischargesexist.

        3.4Probabilitymodelonthesuccessivepropagation

        ofthepositivestreamer

        Twoconditionsshouldbesatisfiedinordertohavethedevelopmentofthesuccessivestreamer.Firstly,theelectricfieldofthestreamerheadshouldbegreaterthanacriticalvalueinordertohaveionizationoftheairormarcoparticles.Secondly,asecondseedelectronshouldexistinthecollisionionizationareainordertostarttheformationofanavalanche.Thecriterionofthestreamergrowthhasbeenbasedmainlyonabovetwoassumptions.Ineverytimestepofthestreamergrowth,thelocalelectricfieldEishouldbecalculatedbetweenthepointsthatbelongtotheconductivestructureandthepointsaroundit.IfthelocalelectricfieldEiisgreaterthanathresholdvalueEth,thetimefortheformationofthenewstreamersegmentiscalculated.Thistimeisnecessaryforthestreamertopropagatefromonepointofthelatticetoanotherinacertaindirectionanditisnamedtheformationtime[5].Theformationtimeisarandomvariablehavinganarbitraryprobabilitydensityfunction,duetotherandomnatureofappearanceofsecondseedelectronsinthefrontofstreamertripsandthestatisticalfluctuationsoftheformationtimeofelectronavalanches.

        Thedistortedextentofthelocalelectricfieldisonlycorrelatedwiththemacroparticlesizesandhaslittlerelationshipwiththedielectricconstantandthevolumefraction[9].ThedistortedelectricfieldneatthemacroparticleisshowninFig. 8.Theequationisasfollows:

        (7)

        Fig.8 The distorted electric field near the macroparticle圖8  顆粒附近畸變電場

        TheprobabilitydistributionoftheformationtimematchestheWeibulldistribution.Theformulaoftheformationtimeisasfollows:

        ρ(ts)=γ(E)e-γ(E)t.

        (8)

        wheretsistheformationtime,whosevalueisdependedonthelocalelectricfieldEi.γ(E)istheprobabilityfunctionofthestreamerpropagation:

        (9)

        whereτisthetimestepofthecurrentiterationofthecomputerprogram.Itiscalculatedbytheformula

        (10)

        ThelocalelectricfieldEibetweentheadjacenttwopointscanbecalculatedbythetheformula

        (11)

        ThethresholdvalueEthcanbecalculatedbythetheformula[9],

        (12)

        whenthestreamerdevelopstothestepk,thepropagationdirectionfromonepointPtoanotherP′ischosenonthebasisoftheprobabilityfunctionp(ts)andtheformationtimets.

        (13)

        whereζisarandomnumberofuniformdistributionattheinterval(0, 1).Theshortesttsischosentothetimestep.

        3.5Simulationresultsandcomparision

        ThestochasticmodeisappliedtotheprobabilitydistributionofthehitpointunderthepositiveDCvoltage.Thelocalizingelectrodeisregardedasthestrikepoint.Theexperimentaltimesis100.Thehittedtimesoftheleftandrightelectrodeisrecordedandalsoincludesthesamehittedtimes.TheprobabilityofselectingtheairortheTPMsiscalculatedbytheformula(14).

        P=TTPM/Ttotal.

        (14)

        Tab.2showsthecomparisonwiththesimulationfromtheexperimentforthequartzsand.TheFig.8showsthecomparisonofthepercentagesoftheselectionofthedischargepathinTPMsfor7kindsofdifferentmacroparticlesizes.Theobjectivefunction(optimalpath)correspondstotheenergyfunctionoftheHopfieldneuralnetwork.Thestatesoftheneuronsofthisnetworkwillcorrespondtothesequenceofnodeswhichisdeterminedbythevaluesofthelocalelectricfield.AccordingtothestabilitytheoryofcontinuousHopfieldneuralnetwork,whentheenergyfunctiontendstotheminimumvalueandthestatesoftheneuronsalsotendtoanequilibriumpoint,thesequenceofnodesistheoptimalpathforthedischargedevelopment.TheoptimalpathhasbeenshowninFig.9.

        Fig.9 Comparison of the percentages of the selectionof the discharge path in TPMDs.圖9 兩相體放電路徑選擇百分比的比較

        TimesHittheleftHittherightHitthetwosidesExperirment80155Simulation75178

        4Conclusion

        Inthiswork7kindsofTPMsareinvestigatedbythedischargeexperimentsunderDCvoltage.ThepercentagesofthedischargepathinTPMsarecomparedwiththoseinair.ThestochasticmodeisusedtosimulatethedispersionandrandomnessofthedischargepathsofTPMs.Theconclusionsareasfollows.

        1)TheelectricfieldisdistortedandthedistortionalextentisdecidedbythemacroparticlesizeswhentheTPMsareaddedtothedischargespace.

        2)TheprobabilityofselectingtheairortheTPMsisgovernedbythelocaldistortedelectricfield.

        3)Theresultsfromthestochasticmodehaveagoodapproximationwiththatfromtheexperiment.

        References

        [1]QiuDH,MacAlpineJMK.Aprobabilisticanalysis

        ofsparkpathsinpoint/planeairgaps[J].IEEETransDielectrElectrInsul, 2001,8(4):644~647.

        [2]MacAlpineJMK,QiuDH.Ananalysisofsparkpathsinairusing3-Dimensionalimageprocessing[J].IEEETransDielectrElectrInsul, 1999, 6(3): 331~336.

        [3]QiuDH,MacAlpineJMK.Anincrementalanalysisofsparkpathsinairusing3-Dimensionalimageprocessing[J].IEEETransDielectrElectrInsul, 2000, 7(6): 758-763.

        [4]MacAlpineJMK,CheungLH.Predictionofsparkpathsinapoint/two-rodgapinair[J].IEEETransDielectrElectrInsul, 2005, 12(3):469-477.

        [5]AgorisDP,CharalambakosVP,PyrglotiE.AcomputationalapproachonthestudyofFrankinrodheightimpactonstrikingdistanceusingastochasticmodel[J].JournalofElectrostatics, 2004, 60: 175-178.

        [6]XuW,ChenSM,HeJL.Simulationoflightningstrikein2-D& 3-Dwithfractaltheoryanditsapplication[J].ProceedingsoftheCSEE, 2010,30(22): 127-134, 2010.

        [7]YeQZ,LiJ,XieZH.Analyticalmodeofthebreakdownmechanisminatwo-phasemixture[J].JPhysD:ApplPhys, 2004, 37: 3373-3382.

        [8]YeQZ,LiJ,LuF.Abnormalbreakdowncharacteristicinatwo-phasemixture[J].JPhysD:ApplPhys, 2006, 29: 2198-2204.

        [9]YaoWJ,HeZH,DengHM,etal.Experimentalinvestigationoftwo-phasemixturedischargesunderDCvoltagefromeffectsofmacroparticlesizes[J].IEEETransPlasmaSci, 2011, 39(3): 856-864.

        [10]Grigor′evAI,ShiryaevaSO.Thepossiblephysicalmechanismofinitiationandgrowthoflightning[J].PhysicaScripta, 1996, 54(3): 660-666.

        [11]YashimaM,FujinamiH,TakumaT.Breakdowncharacteristicsofgasesmixedwithtetrachlorethylenemistundernearlyuniformfields[J].IEEETransDielectrElectrInsul, 2011, 25(2): 371-379.

        [12]TardiveauP,MarodeE.Point-planedischargedynamicsinthepresenceofdielectricdroplets[J].JPhysD:ApplPhys, 2003, 36(10): 1204-1211.

        姚文俊1,何正浩2,鄧鶴鳴2

        (1 中南民族大學 電子信息工程學院,智能無線通信湖北省重點實驗室,武漢 430074;2 華中科技大學 電氣與電子工程學院,武漢 430074)

        摘要通過實驗研究了兩相體放電路徑的預測問題,結果表明:放電路徑中選擇空氣或兩相體由被畸變的電場決定,而電場的畸變受兩相體顆粒粒徑大小的影響。為了解釋實驗現象,利用傳統的流注理論和概論統計理論,以泊松方程求解的空間場強為流注發(fā)展的判據,并假設流注發(fā)展的擊穿時間滿足Weibull分布,將兩相體空間電場畸變后電場值的變化決定流注的發(fā)展方向,建立了正極性的放電路徑選擇的物理模型。將直流電壓下兩相體放電路徑發(fā)展問題的目標函數(即最短路徑)與連續(xù)性Hopfield神經網絡的能量函數相對應,將經過的節(jié)點順序(局部電場值的影響大小)與網絡的神經元狀態(tài)相對應,此時對應的節(jié)點發(fā)展順序就是待求的最佳路線。仿真和實驗結果比較顯示,基于該模型兩相體直流放電路徑選擇概率分布的計算結果與實驗所得規(guī)律一致。

        關鍵詞預測;放電路徑;兩相體;電磁畸變;仿真

        收稿日期2015-12-16

        作者簡介姚文俊(1970-),男,副教授,博士,研究方向:兩相體放電,E-mail:yaowj@mail.scuec.edu.cn

        基金項目國家自然科學 項目(50237010);中南民族大學中央高?;究蒲袠I(yè)務費專項(CZY11003)

        中圖分類號TM85

        文獻標識碼A

        文章編號1672-4321(2016)02-0103-08

        猜你喜歡
        仿真預測
        無可預測
        黃河之聲(2022年10期)2022-09-27 13:59:46
        選修2-2期中考試預測卷(A卷)
        選修2-2期中考試預測卷(B卷)
        選修2—2期中考試預測卷(A卷)
        不可預測
        不必預測未來,只需把握現在
        一種幫助幼兒車內脫險應急裝置的仿真分析
        科技資訊(2016年18期)2016-11-15 20:09:22
        Buck開關變換器的基本參數設計及仿真分析
        試析PLC控制下的自動化立體倉庫仿真情況分析
        基于MADYMO的航空座椅約束系統優(yōu)化設計
        科技視界(2016年18期)2016-11-03 21:44:44
        高清在线亚洲中文精品视频| 国产成人无码a在线观看不卡| 国产精品女人呻吟在线观看| 国产欧美精品区一区二区三区| 久久老子午夜精品无码| 久久中文字幕国产精品| 老熟女富婆激情刺激对白| 女人被爽到呻吟gif动态图视看 | 国产午夜福利精品久久2021| 亚洲一区精品中文字幕| 亚洲精品一区二区三区在线观| 一本久久综合亚洲鲁鲁五月天| 国产无遮挡又黄又爽又色| 成年女人在线观看毛片| 亚洲女人毛茸茸的视频| 日韩夜夜高潮夜夜爽无码| 无码精品a∨在线观看十八禁| 久久久国产不卡一区二区| 国产丝袜一区丝袜高跟美腿| 无码人妻一区二区三区在线| 国产微拍精品一区二区| av大片在线无码永久免费网址| 论理视频二区三区四区在线观看| 东京道一本热中文字幕| 国产精美视频| 国产一区二区三区涩涩涩| 国产成人av一区二区三区不卡| 国产影片中文字幕| 亚洲精品日本| 日本一区二区三区四区啪啪啪| а天堂中文最新一区二区三区| 国产啪精品视频网给免丝袜| 亚洲一区二区在线视频,| 日本伊人精品一区二区三区| 性一乱一搞一交一伦一性| 亚洲色欲色欲欲www在线| 一区二区三区四区中文字幕av| 国产台湾无码av片在线观看| 亚洲精品理论电影在线观看| 国产又黄又湿又爽的免费视频| 欧美成人看片一区二区三区尤物|