楊毅 袁杰 牛瑞芳
?
STAT3的多重調(diào)控方式在腫瘤中的研究進(jìn)展*
楊毅袁杰牛瑞芳
摘要生理情況下原癌基因信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活子3(signal transducer and activator of transcription-3,STAT3)的激活受到嚴(yán)格的調(diào)控。然而,大量證據(jù)表明,STAT3在許多腫瘤細(xì)胞中存在持續(xù)激活,并在腫瘤的起始與進(jìn)展中發(fā)揮重要作用。目前的研究發(fā)現(xiàn),活化的STAT3能夠通過多種方式促進(jìn)腫瘤的進(jìn)展,如促進(jìn)腫瘤細(xì)胞的增殖、侵襲轉(zhuǎn)移、耐藥、上皮-間質(zhì)轉(zhuǎn)化、調(diào)節(jié)腫瘤微環(huán)境、促進(jìn)腫瘤干細(xì)胞的更新與分化等。STAT3的激活除了受傳統(tǒng)的細(xì)胞因子和生長因子信號(hào)通路的調(diào)控以外,大量的證據(jù)顯示G-蛋白偶聯(lián)受體、鈣黏素、Toll樣受體、miRNA以及乙?;揎椀纫苍赟TAT3活化過程中發(fā)揮了重要作用。本文主要針對(duì)腫瘤細(xì)胞中調(diào)控STAT3活化的途徑進(jìn)行綜述。
關(guān)鍵詞STAT3腫瘤信號(hào)傳導(dǎo)G蛋白偶聯(lián)受體Toll樣受體磷酸化
作者單位:天津醫(yī)科大學(xué)腫瘤醫(yī)院腫瘤研究所公共實(shí)驗(yàn)室,國家腫瘤臨床醫(yī)學(xué)研究中心,天津市腫瘤防治重點(diǎn)實(shí)驗(yàn)室(天津市300060)
*本文課題受國家自然科學(xué)基金面上項(xiàng)目(編號(hào):81372844)資助
信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活子3(signal transducer and activator of transcription-3,STAT3)是STAT家族中的一員,該家族是一組可以被不同的細(xì)胞因子或者生長因子激活的轉(zhuǎn)錄因子,其成員具有信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄調(diào)控雙重功能,在接受外界信號(hào)刺激后激活并進(jìn)入核內(nèi)影響基因的轉(zhuǎn)錄[1-3]。在這些STAT蛋白中,STAT3由于其與腫瘤的關(guān)系密切而最受關(guān)注。目前有多項(xiàng)證據(jù)表明激活的STAT3在細(xì)胞惡變過程中起關(guān)鍵性作用,在人類多種惡性腫瘤如乳腺癌、胰腺癌、結(jié)直腸癌、急性淋巴細(xì)胞白血病中高表達(dá),其過度表達(dá)與腫瘤的增殖、細(xì)胞凋亡抑制、侵襲和轉(zhuǎn)移、新血管生成、以及腫瘤干細(xì)胞(cancer stem cells, CSCs)的自我更新和分化等密切相關(guān),被認(rèn)為是一種原癌基因[1-3]。有證據(jù)表明抑制STAT3的活性可能是一個(gè)理想的藥物靶點(diǎn),因此有必要明確調(diào)控STAT3激活的信號(hào)通路。除了受傳統(tǒng)的細(xì)胞因子和生長因子的調(diào)控以外,目前大量證據(jù)顯示G-蛋白偶聯(lián)受體、鈣黏素、Toll-樣受體(TLRs)、microRNA、蛋白酪氨酸磷酸酶以及乙酰化修飾等也在STAT3活化過程中發(fā)揮了重要作用[1-10]。本文主要針對(duì)腫瘤細(xì)胞中調(diào)控STAT3活化的途徑進(jìn)行綜述。
經(jīng)典的STAT3活化方式是細(xì)胞接受細(xì)胞因子或生長因子刺激,導(dǎo)致受體發(fā)生二聚化,從而激活受體自身的酪氨酸激酶活性或者激活與受體偶聯(lián)的非受體型酪氨酸激酶的活性,繼而磷酸化STAT3第705位酪氨酸,磷酸化后的STAT3形成二聚體然后進(jìn)入細(xì)胞核內(nèi)調(diào)控相關(guān)基因的轉(zhuǎn)錄[1-3]。
1.1 細(xì)胞因子受體與STAT3的激活
多種細(xì)胞因子介導(dǎo)的信號(hào)通路能夠?qū)е耂TAT3的激活[2,11-12]。IL-6細(xì)胞因子受體家族是STAT3的重要調(diào)控分子,可作為配體與特異性受體結(jié)合并導(dǎo)致胞膜上的gp130形成同源二聚體或異源二聚體,然后招募和激活非受體型酪氨酸激酶JAK2,而JAK2則可以磷酸化gp130胞內(nèi)段的酪氨酸殘基,從而被STAT3 的SH2結(jié)構(gòu)域結(jié)合,JAK2磷酸化STAT3的第705位酪氨酸導(dǎo)致STAT3激活,激活的STAT3形成二聚體,然后進(jìn)入核內(nèi)調(diào)控相關(guān)基因的轉(zhuǎn)錄。
1.2 生長因子受體與STAT3的激活
多種生長因子(如表皮生長因子EGF)結(jié)合其受體以后能夠使受體發(fā)生同源或異源二聚化,激活受體自身胞內(nèi)域的酪氨酸激酶活性,并磷酸化自身的酪氨酸殘基,從而可以被STAT3的SH2結(jié)構(gòu)域識(shí)別并結(jié)合,繼而活化的受體磷酸化STAT3第705位的酪氨酸殘基導(dǎo)致STAT3激活[1-3]。最常見的受體包括:EGFR、VEGFR、PDGFR及FGFR等[13-14]。此外,受體型酪氨酸激酶也可以通過與其結(jié)合的非受體型酪氨酸激酶間接磷酸化STAT3的酪氨酸殘基從而使STAT3激活。已知的非受體型酪氨酸磷酸酶包括JAKs和Src激酶家族(Src family kinase,SFK)等,這兩種激酶都可以誘導(dǎo)STAT3的激活、二聚化以及向細(xì)胞核內(nèi)轉(zhuǎn)位進(jìn)而調(diào)控下游靶基因的表達(dá)[1-3]。
2.1 G蛋白偶聯(lián)受體
G蛋白偶聯(lián)受體(G-protein-coupled receptors,GPCRs)是位于細(xì)胞膜上調(diào)控胞外信號(hào)傳導(dǎo)至胞內(nèi)的最主要的蛋白家族之一。GPCR經(jīng)典的信號(hào)傳導(dǎo)方式是通過其胞內(nèi)偶聯(lián)的第二信使異源三聚體G蛋白進(jìn)行信號(hào)傳導(dǎo)。然而近年來有研究發(fā)現(xiàn)GPCR也可以通過JAKs或Src家族激酶調(diào)控轉(zhuǎn)錄因子STAT3的活性,從而促進(jìn)腫瘤的進(jìn)展[5,15-17]。1-磷酸鞘氨醇受體1(sphingosine-1-phosphate receptor 1,S1PR1)是一種GPCR,有研究發(fā)現(xiàn)S1PR1在STAT3陽性的腫瘤細(xì)胞中高表達(dá),而有研究發(fā)現(xiàn)S1PR1能夠通過上調(diào)JAK2的活性從而促進(jìn)STAT3的激活,此外,活化的STAT3作為轉(zhuǎn)錄因子反過來還能夠上調(diào)S1PR1的表達(dá)水平,從而形成一個(gè)正反饋環(huán)導(dǎo)致STAT3持續(xù)激活,促進(jìn)腫瘤的進(jìn)展[16-17]。Prokineticin 2(又稱BV8)的受體也是一種GPCR,其介導(dǎo)的信號(hào)通路在血管生成和髓樣細(xì)胞來源的白血病發(fā)病過程中發(fā)揮重要作用,有研究顯示BV8也可以通過JAK2激活STAT3從而促進(jìn)腫瘤細(xì)胞的增殖[5]。此外,還有證據(jù)顯示血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)等多種G蛋白偶聯(lián)受體都可以通過JAK調(diào)控STAT3的激活[15]。此外,GPCRs還能夠通過上調(diào)炎癥介質(zhì)的釋放從而間接激活STAT3[2]。
2.2 Rho GTP酶家族
Rho屬于小G蛋白超家族的亞家族成員,該家族蛋白具有GTP酶的活性,主要包括Rho、Rac和CDC42等成員[18]。最近研究發(fā)現(xiàn),Rho激酶家族中的Rac1 在STAT3的磷酸化中發(fā)揮了重要的作用[19]。Rac1可以通過其效應(yīng)分子MgcRacGAP與STAT3相互作用,MgcRacGAP的序列在進(jìn)化中高度保守,能夠通過其富含半胱氨酸的結(jié)構(gòu)域和GAP結(jié)構(gòu)域與STAT3的DNA結(jié)合結(jié)構(gòu)域相結(jié)合,隨后與IL-6R/gp130復(fù)合體相互作用,介導(dǎo)IL-6誘導(dǎo)STAT3的磷酸化[19-21]。此外,Rac1/MgcRacGAP復(fù)合物還能夠促進(jìn)磷酸化的STAT3向細(xì)胞核內(nèi)轉(zhuǎn)位[22]。近來,有研究發(fā)現(xiàn)細(xì)胞密度增加引起的鈣黏蛋白間的銜接也能夠激活STAT3,進(jìn)一步的研究發(fā)現(xiàn)鈣黏蛋白的這種作用主要通過激活Rac1/Cdc42而實(shí)現(xiàn),活化的Rac1/Cdc42能夠反向激活NF-κB,并促進(jìn)IL-6的表達(dá),最終導(dǎo)致STAT3的激活[23],這也是激活STAT3的另外一種方式。
2.3 Toll樣受體
Toll樣受體(toll-like receptors,TLR)是單次跨膜的蛋白質(zhì),TLR可以識(shí)別來源于微生物的具有保守結(jié)構(gòu)的分子,在非特異性免疫(天然免疫)中發(fā)揮重要作用[24]。最近的研究發(fā)現(xiàn)一些TLRs,如TLR2、TLR4、TLR7和TLR9在JAK-STAT3信號(hào)通路激活和腫瘤進(jìn)展過程中發(fā)揮重要作用[25- 30]。脂多糖(LPS)作為TLR4的重要激活因子,可在人膀胱癌細(xì)胞系T24中明顯升高STAT3的磷酸化水平,表明TLR4激活了STAT3信號(hào)通路[30]。在炎性相關(guān)結(jié)腸癌中,腸上皮細(xì)胞中TLR4的表達(dá)增高誘導(dǎo)STAT3激活,從而促進(jìn)結(jié)腸癌在體內(nèi)的生長[31]。TLR4還能夠通過上調(diào)IL-6的表達(dá)從而促進(jìn)STAT3的活化以及導(dǎo)致淋巴瘤的發(fā)生。除了TLR4,有研究發(fā)現(xiàn)TLR7能夠通過激活STAT3誘導(dǎo)腫瘤抑制基因表達(dá)的丟失從而加速胰腺癌的進(jìn)展[32]。胃癌中TLR2的表達(dá)升高與STAT3的活化呈顯著正相關(guān)[29]。膠質(zhì)母細(xì)胞瘤中TLR9的表達(dá)的表達(dá)增高與患者生存率下降相關(guān),而且與TLR2激活STAT3主要通過上調(diào)IL-6所不同的是,TLR9能夠直接激活STAT3[28]。最近的研究揭示了TLR9激活STAT3的詳細(xì)機(jī)制,CpG寡脫氧核苷酸(oligo-deoxy?nucleotides,ODNs)結(jié)合TLR9以后,卷曲蛋白4(friz?zled 4,F(xiàn)ZD4)招募并活化JAK2,這樣CpG-TLR9-FZD4信號(hào)通路就能夠磷酸化STAT3的酪氨酸殘基而導(dǎo)致其激活[25-26,28]。
2.4 miRNAs
最近的研究表明,在腫瘤的發(fā)生發(fā)展中,miRNAs在調(diào)控STAT3信號(hào)通路過程中具有重要作用。乳腺癌中,MiR-519d通過抑制STAT3的表達(dá)發(fā)揮抑癌作用[33]。作為STAT3的負(fù)調(diào)控因子,在肝癌細(xì)胞中,miR-20a低表達(dá)可解除對(duì)STAT3基因的抑制,促進(jìn)STAT3的表達(dá),增強(qiáng)STAT3的活性,促進(jìn)細(xì)胞增殖。提示,miR-20a可作為癌癥患者中一個(gè)潛在的治療靶點(diǎn)和生物標(biāo)志物[34]。Let-7 miRNA家族成員被廣泛地認(rèn)為是腫瘤抑制因子。低分化的胰腺導(dǎo)管癌細(xì)胞中重新表達(dá)let-7可增強(qiáng)細(xì)胞因子信號(hào)抑制因子3 (SOCS3)的表達(dá)。SOCS3抑制JAK2活化STAT3,STAT3及其下游信號(hào)分子的磷酸化水平降低,因此抑制了PDAC細(xì)胞的生長和轉(zhuǎn)移[35]。Iliopoulos等[36]發(fā)現(xiàn),Src的活化可引發(fā)NF-κB介導(dǎo)的炎癥反應(yīng),直接激活LIN28的轉(zhuǎn)錄,引起let-7的抑制和IL-6的高表達(dá),并伴隨著STAT3的活化。其研究表明,let-7與IL-6-STAT3之間的相互作用在細(xì)胞轉(zhuǎn)化過程中形成了一個(gè)負(fù)反饋環(huán),首次描述了表觀調(diào)控在炎癥反應(yīng)與腫瘤發(fā)生中所發(fā)揮的作用。此外,乳腺癌中通過STAT3下調(diào)miR-200和let-7的表達(dá)可引起EMT現(xiàn)象,相反STAT3的失活或者miR-200和let-7的重新表達(dá),則引起間葉乳腺癌的MET[37]。
2.5 蛋白質(zhì)酪氨酸磷酸酶
蛋白質(zhì)的酪氨酸磷酸化是由酪氨酸蛋白激酶催化,是STAT3活化的決定因素。與蛋白激酶相反,蛋白質(zhì)酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)是一種能夠特異地水解蛋白質(zhì)底物上的酪氨酸磷酸酯鍵,使其脫去磷酸基團(tuán)[38]。STAT3被PTPs去磷酸化,對(duì)其自身的活化強(qiáng)度和動(dòng)力學(xué)調(diào)控也是必不可少的。目前已發(fā)現(xiàn)了多種能夠調(diào)控STAT3活性的磷酸酶。如在結(jié)腸癌細(xì)胞中,STAT3能夠被PTPRT脫磷酸化[39];而在膠質(zhì)瘤中PTPRD發(fā)揮著使STAT3脫磷酸化的作用[40];在食管癌細(xì)胞中,PTP1B能夠顯著抑制由瘦素誘導(dǎo)的JAK2活性及STAT3的轉(zhuǎn)錄激活活性[41]。黑色素瘤細(xì)胞和神經(jīng)膠質(zhì)瘤細(xì)胞中觀察到SHP2負(fù)調(diào)控STAT3[42-43]。此外,TCPTP(又稱PTPN2)不但能夠使STAT3脫磷酸化,而且激活STAT3的上游激酶EGFR和SFKs也是其底物,相應(yīng)的,TCPTP在腫瘤細(xì)胞中的表達(dá)缺失則能夠?qū)е掳┘?xì)胞中SFK和STAT3的活化增高[6]。這些證據(jù)表明磷酸酶能夠通過負(fù)調(diào)控STAT3的活性發(fā)揮抑癌的作用。
2.6 PIAS蛋白家族
活化的STAT蛋白抑制因子(protein inhibitor of activated STAT,PIAS)由4個(gè)家族成員構(gòu)成,分別是PIAS1、PIASx(PIAS2)、PIAS3和PIASy(PIAS4)。該蛋白家族最早是用酵母雙雜交的方法以STAT1和STAT3為誘餌蛋白篩選發(fā)現(xiàn),PIASs蛋白在調(diào)控STAT家族蛋白活性方面發(fā)揮重要作用。目前發(fā)現(xiàn)與STAT3活性關(guān)系最密切的是PIAS3。PIAS3能夠通過多種方式影響STAT3的激活,如PIAS3能夠與活化的STAT3相互作用抑制其與DNA的結(jié)合,招募轉(zhuǎn)錄因子的輔阻遏因子,促進(jìn)蛋白的泛素化而降解等從而抑制STAT3介導(dǎo)的基因轉(zhuǎn)錄[44-45]。
2.7 SOCS蛋白家族
細(xì)胞因子信號(hào)抑制物(suppressor of cytokine sig?naling,SOCS)包括8個(gè)成員(CIS和SOCS1-SOCS7),SOCS家族蛋白的結(jié)構(gòu)比較類似,其特征性的結(jié)構(gòu)是位于蛋白質(zhì)中間的SH2區(qū)和C端的SOCS盒區(qū)[7,46]。在這些蛋白中,SOCS1和SOCS3作用最為顯著[46]。目前的研究認(rèn)為SOCS蛋白通過4種機(jī)制負(fù)調(diào)控JAKSTAT3信號(hào)通路:1)SOCS能夠通過與受體結(jié)合從而屏蔽STAT3與細(xì)胞因子受體的結(jié)合位點(diǎn),這是因?yàn)镾OCS與gp130之間的具有很強(qiáng)的結(jié)合力;2)SOCS能夠?qū)⑦@些蛋白泛素化繼而靶向至蛋白酶體系統(tǒng)而降解;3)SOCS能夠通過與JAKs結(jié)合抑制其激酶活性;4)SOCS能夠?qū)AKs靶向至蛋白酶體系統(tǒng)導(dǎo)致其降解[7,46]。
2.8 表觀遺傳修飾
除了磷酸化的STAT3能夠作為轉(zhuǎn)錄因子調(diào)控細(xì)胞內(nèi)基因表達(dá)變化以外,目前的研究發(fā)現(xiàn)非磷酸化的STAT3也具有弱的轉(zhuǎn)錄因子活性,能夠以單體或者二聚體的方式與GAS應(yīng)答啟動(dòng)子原件直接結(jié)合從而激活一系列STAT3的靶基因[47-48],促進(jìn)腫瘤的形成。非磷酸化STAT3靶定DNA結(jié)合的機(jī)制是通過調(diào)節(jié)染色質(zhì)的結(jié)構(gòu)并結(jié)合到DNA序列的AT富集區(qū)[49]。除了磷酸化修飾以外,另外一種表觀遺傳學(xué)修飾,即乙酰化修飾也在腫瘤發(fā)生發(fā)展中發(fā)揮重要作用。乙酰化的STAT3能夠調(diào)節(jié)DNA甲基轉(zhuǎn)移酶1(DNA methyltransferase 1,DNMT1)結(jié)合到基因的啟動(dòng)子上,誘導(dǎo)一些腫瘤抑制基因啟動(dòng)子發(fā)生甲基化而沉默,這些基因包括ARHI(又稱DIRAS3),蛋白酪氨酸磷酸酶PTPN6以及細(xì)胞周期蛋白依賴性激酶抑制因子CDKN2A等[10,50]。
2.9 絲氨酸磷酸化對(duì)STAT3的活性調(diào)節(jié)
除了第705位酪氨酸發(fā)生磷酸化,第727位絲氨酸的磷酸化也能夠?qū)TAT3的激活產(chǎn)生調(diào)節(jié)作用。目前已經(jīng)發(fā)現(xiàn)了多種能夠磷酸化STAT3第727位絲氨酸的蛋白激酶,如MAPKs(包括p38MAPK、ERK和JNK)、PKCδ、mTOR和NLK等。目前關(guān)于STAT3的絲氨酸磷酸化在STAT3活化方面的作用還有爭(zhēng)議,有研究認(rèn)為絲氨酸磷酸化能夠增強(qiáng)STAT3的轉(zhuǎn)錄活性,并促進(jìn)腫瘤的發(fā)生發(fā)展。如最近一項(xiàng)采用二乙基亞硝胺誘導(dǎo)肝癌發(fā)生的模型研究證實(shí),STAT3的絲氨酸磷酸化出現(xiàn)在肝癌發(fā)生的早期,抑制第727位絲氨酸的磷酸化能夠抑制STAT3在細(xì)胞核內(nèi)聚集和細(xì)胞的增殖能力[51]。此外,最近的幾項(xiàng)研究也認(rèn)為STAT3的絲氨酸磷酸化在腫瘤發(fā)生過程中發(fā)揮正調(diào)控作用[8,52-53]。但是針對(duì)膠質(zhì)瘤的一項(xiàng)研究發(fā)現(xiàn),STAT3的絲氨酸磷酸化水平的下降則可以促進(jìn)膠質(zhì)瘤的發(fā)生,而且與STAT3酪氨酸磷酸化水平升高呈正相關(guān)[54]。這些研究數(shù)據(jù)說明STAT3的絲氨酸磷酸化在腫瘤發(fā)生發(fā)展中的作用還有待進(jìn)一步的研究。有趣的是最近的幾項(xiàng)研究發(fā)現(xiàn),線粒體定位的STAT3能夠明顯促進(jìn)腫瘤的生長,而且主要與STAT3的絲氨酸磷酸化有關(guān)[8,52,55]。這提示STAT3的絲氨酸磷酸化在腫瘤發(fā)生發(fā)展中的作用還可能與STAT3的定位有關(guān)。
隨著研究的進(jìn)展,人們認(rèn)識(shí)到目前對(duì)STAT3的活化途徑以及在腫瘤發(fā)生發(fā)展中的作用有了更深入的認(rèn)識(shí)。STAT3的活性不僅受細(xì)胞因子和生長因子信號(hào)通路的調(diào)控,腫瘤細(xì)胞表達(dá)的其他膜受體系統(tǒng),如GPCRs和TLRs也能夠調(diào)節(jié)STAT3的活化;除了酪氨酸磷酸化修飾以外,絲氨酸磷酸化和乙?;揎椧苍赟TAT3活化過程發(fā)揮重要作用;此外,除了定位于細(xì)胞核作為轉(zhuǎn)錄因子發(fā)揮作用以外,STAT3還能夠定位于線粒體促進(jìn)腫瘤的發(fā)生發(fā)展。目前多種實(shí)體腫瘤和血液腫瘤中均發(fā)現(xiàn)了STAT3的過度激活,此外,最近有大量研究發(fā)現(xiàn),臨床上多種靶向受體型酪氨酸激酶(receptor tyrosine kinases,RTKs)的分子靶向治療耐藥都與腫瘤細(xì)胞中STAT3的激活密切相關(guān)。這些患者剛開始對(duì)分子靶向藥物(如小分子抑制劑和單克隆抗體)的治療很敏感,隨后很快發(fā)生耐藥。機(jī)理方面,研究發(fā)現(xiàn)多種RTKs(如EGFR,F(xiàn)GFR 和HER2等)的活性抑制能夠反饋激活STAT3信號(hào)通路[56]。因此,這些研究表明,STAT3是一個(gè)非常理想的癌癥治療靶點(diǎn)。目前有多個(gè)針對(duì)STAT3的小分子抑制劑藥物,如STA-21、OPB-51602和pyrimethamine等,已經(jīng)在多發(fā)性骨髓瘤、非霍奇金淋巴瘤、肝細(xì)胞癌以及鼻咽癌的治療研究中進(jìn)入臨床Ⅰ期和Ⅱ期試驗(yàn)[56]。有研究發(fā)現(xiàn),在對(duì)RTKs靶向治療耐藥的細(xì)胞中采用STAT3的小分子抑制劑處理能夠使得細(xì)胞重新對(duì)RTKs抑制劑變得敏感[57]。這提示聯(lián)合抑制RTKs和STAT3有可能是一個(gè)非常理想的癌癥治療方案,將有望減少由于RTKs靶向治療耐藥導(dǎo)致腫瘤治療的失敗。但是到目前為止,尚沒有一種有效的STAT3的靶向抑制劑能提高腫瘤患者生存率。這很有可能是因?yàn)镾TAT3具有多重活化途徑,單一的抑制某一途徑不能徹底抑制STAT3的激活。因此非常有必要對(duì)STAT3的活化機(jī)制進(jìn)行深入的了解,尤其是STAT3新的功能或者調(diào)控方式,如其在線粒體中的作用,STAT3的乙?;揎?、GPCRs和TLRs在STAT3活化中的詳細(xì)機(jī)制等。相信對(duì)STAT3活化機(jī)制的深入研究將有助于更好地理解腫瘤的發(fā)病機(jī)理以及為發(fā)現(xiàn)新的藥物靶點(diǎn)提供線索和思路。
參考文獻(xiàn)
[1] Yuan J, Zhang F, Niu R.Multiple regulation pathways and pivotal biological functions of STAT3 in cancer[J].Scientific reports, 2015, 5: 17663.
[2] Yu H, Lee H, Herrmann A, et al.Revisiting STAT3 signalling in cancer: new and unexpected biological functions[J].Nat Rev Cancer, 2014, 14(11):736-746.
[3] Geiger JL, Grandis JR, Bauman JE.The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations[J].Oral oncology, 2016, 56:84-92.
[4] Xiang M, Birkbak NJ, Vafaizadeh V, et al.STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kappaB to IL-6 signaling axis and STAT3-driven cancer phenotypes[J].Sci Signal, 2014, 7 (310):ra11.
[5] Xin H, Lu R, Lee H, et al.G-protein-coupled receptor agonist BV8/ prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells[J].J Biol Chem, 2013, 288(19): 13842-13849.
[6] Shields BJ, Wiede F, Gurzov EN, et al.TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers[J].Mol Cell Biol, 2013, 33(3):557-570.
[7] Kershaw NJ, Murphy JM, Lucet IS, et al.Regulation of Janus kinases by SOCS proteins[J].Biochem Soc Trans, 2013, 41(4):1042-1047.
[8] Gough DJ, Koetz L, Levy DE.The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation[J].PLoS One, 2013, 8(11):e83395.
[9] Rokavec M, Wu W, Luo JL.IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis[J].Mol Cell, 2012, 45(6):777-789.
[10] Lee H, Zhang P, Herrmann A, et al.Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation[J].Proc Natl Acad Sci USA, 2012, 109(20):7765-7769.
[11] Ara T, Nakata R, Sheard MA, et al.Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma[J].Cancer Res, 2013, 73(13):3852-3864.
[12] Yadav A, Kumar B, Datta J, et al.IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway[J].Mol Cancer Res, 2011, 9 (12):1658-1667.
[13] Wheeler SE, Suzuki S, Thomas SM, et al.Epidermal growth factor re-ceptor variant III mediates head and neck cancer cell invasion via STAT3 activation[J].Oncogene, 2010, 29(37):5135-5145.
[14] Lo HW, Hsu SC, Xia W, et al.Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression[J].Cancer Res, 2007, 67(19):9066-9076.
[15] Zheng L, Jia X, Zhang C, et al.Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway[J].American journal of translational research, 2015, 7(6):1021-1031.
[16] Smith GS, Kumar A, Saba JD.Sphingosine Phosphate Lyase Regulates Murine Embryonic Stem Cell Proliferation and Pluripotency through an S1P/STAT3 Signaling Pathway[J].Biomolecules, 2013, 3 (3):351-368.
[17] Lee H, Deng J, Kujawski M, et al.STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors[J].Nat Med, 2010, 16(12):1421-1428.
[18] Sit ST, Manser E.Rho GTPases and their role in organizing the actin cytoskeleton[J].J Cell Sci, 2011, 124(Pt 5):679-683.
[19] Raptis L, Arulanandam R, Geletu M, et al.The R(h)oads to Stat3: Stat3 activation by the Rho GTPases[J].Exp Cell Res, 2011, 317(13): 1787-1795.
[20] Matsuura A, Lee HH.Crystal structure of GTPase-activating domain from human MgcRacGAP[J].Biochem Biophys Res Commun, 2013, 435(3):367-372.
[21] van Adrichem AJ, Wennerberg K.MgcRacGAP inhibition stimulates JAK- dependent STAT3 activity[J].FEBS Lett, 2015, 589(24 Pt B): 3859-3865.
[22] Kawashima T, Bao YC, Minoshima Y, et al.A Rac GTPase-activating protein, MgcRacGAP, is a nuclear localizing signal-containing nuclear chaperone in the activation of STAT transcription factors[J].Mol Cell Biol, 2009, 29(7):1796-1813.
[23] Geletu M, Arulanandam R, Chevalier S, et al.Classical cadherins control survival through the gp130/Stat3 axis[J].Biochim Biophys Acta, 2013, 1833(8):1947-1959.
[24] Santoni M, Andrikou K, Sotte V, et al.Toll like receptors and pancreatic diseases: From a pathogenetic mechanism to a therapeutic target[J].Cancer Treat Rev, 2015, 41(7):569-576.
[25] Moreira D, Zhang Q, Hossain DM, et al.TLR9 signaling through NF-kappaB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells[J].Oncotarget, 2015, 6(19):17302-17313.
[26] Hossain DM, Pal SK, Moreira D, et al.TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid- Derived Suppressor Cells from Prostate Cancer Patients[J].Clin Cancer Res, 2015, 21(16):3771-3782.
[27] Liu BS, Cao Y, Huizinga TW, et al.TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells[J].Eur J Immunol, 2014, 44(7):2121-2129.
[28] Herrmann A, Cherryholmes G, Schroeder A, et al.TLR9 is critical for glioma stem cell maintenance and targeting[J].Cancer Res, 2014, 74(18):5218-5228.
[29] Tye H, Kennedy CL, Najdovska M, et al.STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation[J].Cancer Cell, 2012, 22(4):466-478.
[30] Ying H, Da L, Yu-xiu S, et al.TLR4 mediates MAPK-STAT3 axis activation in bladder epithelial cells[J].Inflammation, 2013, 36(5):1064-1074.
[31] Eyking A, Ey B, Runzi M, et al.Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer[J].Gastroenterology, 2011, 141(6):2154-2165.
[32] Ochi A, Graffeo CS, Zambirinis CP, et al.Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans[J].J Clin Invest, 2012, 122(11):4118-4129.
[33] Deng X, Zhao Y, Wang B.miR-519d-mediated downregulation of STAT3 suppresses breast cancer progression[J].Oncol Rep, 2015, 34 (4):2188-2194.
[34] Fan MQ, Huang CB, Gu Y, et al.Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma[J].J Exp Clin Cancer Res, 2013, 32(1): 21.
[35] Patel K, Kollory A, Takashima A, et al.MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression[J].Cancer Lett, 2014, 347(1):54-64.
[36] Iliopoulos D, Hirsch HA, Struhl K.An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation[J].Cell, 2009, 139(4):693-706.
[37] Guo L, Chen C, Shi M, et al.Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition[J].Oncogene, 2013, 32(45): 5272-5282.
[38] Ostman A, Hellberg C, Bohmer FD.Protein-tyrosine phosphatases and cancer [J].Nat Rev Cancer, 2006, 6(4): 307-320.
[39] Zhang X, Guo A, Yu J, et al.Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T[J].Proc Natl Acad Sci U S A, 2007, 104(10):4060-4064.
[40] Veeriah S, Brennan C, Meng S, et al.The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers[J].Proc Natl Acad Sci U S A, 2009, 106(23):9435-9440.
[41] Beales IL, Garcia-Morales C, Ogunwobi OO, et al.Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B[J].Mol Cell Endocrinol, 2014, 382(1):150-158.
[42] Cai T, Kuang Y, Zhang C, et al.Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2[J].American journal of cancer research, 2015, 5(5):1610-1620.
[43] Furcht CM, Buonato JM, Skuli N, et al.Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells[J].J Cell Sci, 2014, 127(Pt 16):3555-3567.
[44] Lee JH, Kim C, Sethi G, et al.Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel[J].Oncotarget, 2015, 6(8):6386-6405.
[45] Wu W, Takanashi M, Borjigin N, et al.MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastricadenocarcinogenesis[J].Br J Cancer, 2013, 108(3):653-661.
[46] Babon JJ, Varghese LN, Nicola NA.Inhibition of IL-6 family cytokines by SOCS3[J].Semin immunol, 2014, 26(1):13-19.
[47] Nishimoto A, Kugimiya N, Hosoyama T, et al.JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells[J].Biochem Biophys Res Commun, 2013, 438(3) 513-518.
[48] Yang J, Chatterjee-Kishore M, Staugaitis SM, et al.Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation[J].Cancer Res, 2005, 65(3):939-947.
[49] Timofeeva OA, Chasovskikh S, Lonskaya I, et al.Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA[J].J Biol Chem, 2012, 287(17):14192-14200.
[50] Yuan ZL, Guan YJ, Chatterjee D, et al.Stat3 dimerization regulated by reversible acetylation of a single lysine residue[J].Science, 2005, 307(5707):269-273.
[51] Miyakoshi M, Yamamoto M, Tanaka H, et al.Serine 727 phosphorylation of STAT3: an early change in mouse hepatocarcinogenesis induced by neonatal treatment with diethylnitrosamine[J].Mol Carcinog, 2014, 53(1):67-76.
[52] Zhang Q, Raje V, Yakovlev VA, et al.Mitochondrial Localized Stat3 promotes breast cancer growth via phosphorylation of serine 727 [J].J Biol Chem, 2013, 288(43):31280-31288.
[53] Tkach M, Rosemblit C, Rivas MA, et al.p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth[J].Endocr Relat Cancer, 2013, 20(2):197-212.
[54] Mandal T, Bhowmik A, Chatterjee A, et al.Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 - protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells[J].Cell Signal, 2014, 26(8):1725-1734.
[55] Gough DJ, Corlett A, Schlessinger K, et al.Mitochondrial STAT3 supports Ras-dependent oncogenic transformation[J].Science, 2009, 324(5935):1713-1716.
[56] Zhao C, Li H, Lin HJ, et al.Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism[J].Trends in pharmacological sciences, 2016, 37(1):47-61.
[57] Eiring AM, Page BD, Kraft IL, et al.Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia[J].Leukemia, 2015, 29(3):586-597.
(2016-02-18收稿)
(2016-03-17修回)
(編輯:楊紅欣校對(duì):鄭莉)
Research progress in multiple regulation pathways of STAT3 in cancer
Yi YANG, Jie YUAN, Ruifang NIU
Correspondence to: Ruifang NIU; E-mail:niuruifang@tjmuch.com
Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
This work was supported by the National Natural Science Foundation of China (No.81372844)
AbstractThe activation of the proto-oncogene STAT3 is strongly controlled under physiological conditions.However, obtained evidence revealed that STAT3 is persistently activated in cancer cells and contributes to cancer initiation and progression.Studies demonstrated the various functions of activated STAT3 in promoting cancer development and aggravation, including cancer cell proliferation, invasion and metastasis, drug resistance, epithelial-mesenchymal transition, regulation of the tumor microenvironment, and promotion of the self-renewal and differentiation of cancer stem cells.Canonically, STAT3 is regulated by signaling pathways mediated by cytokines and growth factors.Many studies determined that STAT3 was also regulated by G protein-coupled receptors, cadherin engagement, Toll-like receptors, microRNA, and acetylation.We summarized the recent developments in the research on the regulation of STAT3 activation.
Keywords:STAT3, signal transduction, GPCR, TLR, phosphorylation
doi:10.3969/j.issn.1000-8179.2016.08.181
通信作者:牛瑞芳niuruifang@tjmuch.com
作者簡(jiǎn)介
楊毅專業(yè)方向?yàn)閻盒阅[瘤侵襲轉(zhuǎn)移的分子機(jī)理研究。
E-mail:yiyang@tmu.edu.cn
·綜述·