邱金友,張華,余曉明,王襲,吳銀龍(上海理工大學(xué)能源與動力工程學(xué)院,上海 00093;海爾集團(tuán)技術(shù)研發(fā)中心,山東 青島 660)
?
新型制冷劑R1234ze(E)水平圓管內(nèi)流動沸騰換熱特性
邱金友1,張華1,余曉明1,王襲2,吳銀龍1
(1上海理工大學(xué)能源與動力工程學(xué)院,上海 200093;2海爾集團(tuán)技術(shù)研發(fā)中心,山東 青島 266101)
摘要:新型制冷劑R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)因較低的GWP值備受制冷行業(yè)關(guān)注,有望替代R134a。在內(nèi)徑為8 mm水平圓管內(nèi)對R1234ze(E)流動沸騰換熱特性進(jìn)行實驗研究,并在相應(yīng)實驗工況下與R134a進(jìn)行對比。本研究的實驗工況:流動沸騰換熱的飽和溫度為10℃±0.5℃,熱通量為5.0和10 kW·m?2,質(zhì)流密度范圍為300~500 kg·m?2·s?1。分析質(zhì)流密度、熱通量以及干度對R1234ze(E)和R134a飽和流動沸騰傳熱系數(shù)的影響。結(jié)果表明,R1234ze(E)和R134a的流動沸騰傳熱系數(shù)隨質(zhì)流密度和熱通量的增大而增大;在低質(zhì)流密度300 kg·m?2·s?1工況下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1,其偏差縮小為7.35%。最后將實驗結(jié)果同4種常見預(yù)估關(guān)聯(lián)式進(jìn)行比較,結(jié)果表明Kandlikar關(guān)聯(lián)式計算結(jié)果較優(yōu),全工況范圍內(nèi)Kandlikar關(guān)聯(lián)式對R1234ze(E)和R134a的預(yù)估值與90%的實驗數(shù)據(jù)偏差在±25%以內(nèi),平均偏差分別為23.13%和11.50%,滿足工程設(shè)計要求。
關(guān)鍵詞:R1234ze(E);R134a;流動沸騰;傳熱關(guān)聯(lián)式;水平圓管
2015-10-08收到初稿,2016-03-10收到修改稿。
聯(lián)系人:張華。第一作者:邱金友(1987—),男,博士研究生。
Received date: 2015-10-08.
Foundation item: supported by the National Natural Science Foundation of China (51176124) and the International Science and Technology Cooperation Projects (2012DFR70430).
當(dāng)前制冷空調(diào)行業(yè)廣泛采用HFCs類制冷劑,例如R134a,雖然其對臭氧層沒有破壞,但其溫室效應(yīng)潛能值高(GWP=1430)。隨著全球變暖日益加劇,國際社會已經(jīng)開始對此類物質(zhì)加以管控。歐盟2006年通過了F-Gas法規(guī)[1],規(guī)定從2011年1月1日起禁止GWP值大于150的含氟制冷劑應(yīng)用于新車型的汽車空調(diào)器。2014年歐盟對F-Gas法規(guī)進(jìn)行修訂[2],拓展和加速了對GWP值過高含氟物質(zhì)的限制和淘汰,并指出部分具體HFCs類物質(zhì)消減的時間節(jié)點。因此,制冷劑的替代必將趨向于選用低GWP值類物質(zhì)。
近幾年來,R1234yf和R1234ze(E)等HFO (hydro-fluoro-olefins)類物質(zhì)因其較低的GWP值備受學(xué)者關(guān)注。其中最新的研究報告[3]表明R1234ze(E)的GWP值小于1,其作為空調(diào)、熱泵的替代品已初步得到認(rèn)可[4-7]。表1列舉了R1234ze(E) 和R134a基本熱物理性質(zhì)。
表1 R1234ze(E)與R134a的基本物性[8-9]Table 1 Physical properties of R1234ze(E) and R134a[8-9]
目前為止關(guān)于新型制冷劑R1234ze(E)的研究主要集中在熱物性、直接替代優(yōu)化和傳熱傳輸性能等3個方面。熱物性方面,Meng等[10]和He等[11]測量了R1234ze(E)黏度;Qiu等[12]和Higashi等[13]測量了R1234ze(E)的液態(tài)飽和密度;Miyara等[14]實驗測量了R1234ze(E)飽和液態(tài)熱導(dǎo)率等,物性研究表明R1234ze(E)的熱物理性質(zhì)與R134a較為接近。還有部分學(xué)者對R1234ze(E)與HFCs類物質(zhì)的混合物開展了物性研究[15-17]。直接應(yīng)用與替代研究方面,F(xiàn)ukuda等[18]和McLinden等[19]通過仿真的方法印證了R1234ze(E)適合在中高溫?zé)岜霉r作為R134a的替代品;Ansari等[20]應(yīng)用熵方法比較了R1234ze(E) 和R134a理論循環(huán)性能,結(jié)果表明其循環(huán)性能較為接近;Adrian等[21]用直接替代實驗的方法,佐證了R1234ze(E)在熱泵系統(tǒng)中應(yīng)用具有較好的循環(huán)性能。流動冷凝與蒸發(fā)傳熱方面,Hossain等[22]在管內(nèi)徑為4.35 mm水平管內(nèi)對R1234ze(E)的冷凝傳熱與壓降進(jìn)行實驗研究,在所研究的質(zhì)流密度145~400 kg·m?2·s?1、熱通量14~44 kW·m?2工況范圍內(nèi),表明其冷凝傳熱性能較R410A優(yōu);Hossain 等[23]也在內(nèi)徑為4.35 mm水平銅管內(nèi)初步探索了R1234ze(E)流動沸騰換熱與壓降特性,并在質(zhì)流密度為150~445 kg·m?2·s?1、飽和溫度為5和10℃工況內(nèi)與R410A和R32進(jìn)行比較,表明R1234ze(E)的流動沸騰傳熱系數(shù)較R410A和R32低;Grauso 等[24]在內(nèi)徑為6 mm的水平光管中對R1234ze(E)和R134a的流動換熱特性進(jìn)行了實驗研究,在質(zhì)流密度為146~520 kg·m?2·s?1、熱通量為5.0~20.4 kW·m?2工況范圍內(nèi),表明其傳熱性能較為相似;Diani等[25]在內(nèi)徑為3.4 mm的微肋管內(nèi)測試了R1234ze(E)的流動沸騰換熱特性,在質(zhì)流密度為190~940 kg·m?2·s?1和熱通量為10.0~50.0 kW·m?2工況范圍內(nèi),表明R1234ze(E)的流動沸騰傳熱系數(shù)較R134a低9%左右。其中,R1234ze(E)在管內(nèi)徑大于等于8 mm的管內(nèi)流動沸騰換熱特性研究較為缺乏。本文在內(nèi)徑為8 mm的水平紫銅管內(nèi)對R1234ze(E)和R134a飽和流動沸騰換熱特性進(jìn)行實驗研究,分析質(zhì)流密度、熱通量和干度對傳熱系數(shù)的影響,并對兩種單質(zhì)的傳熱性能進(jìn)行對比分析。最后將實驗數(shù)據(jù)同文獻(xiàn)中4種常見的預(yù)估關(guān)聯(lián)式進(jìn)行比較,找出預(yù)測效果良好的關(guān)聯(lián)式。
1.1實驗測試臺簡介
實驗系統(tǒng)如圖1所示。實驗臺主要包括制冷劑循環(huán)回路、冷卻系統(tǒng)以及數(shù)據(jù)采集系統(tǒng)3個部分。制冷劑循環(huán)回路中儲液罐液態(tài)制冷劑經(jīng)溶液泵加壓分流,一部分通過實驗循環(huán)回路,另一部分經(jīng)旁通管回到溶液泵,主回路上經(jīng)泵加壓后液態(tài)制冷劑經(jīng)過冷段以抵消經(jīng)過溶液泵后焓值的增加,確保進(jìn)入流量計的是純液態(tài)制冷劑,主回路上制冷劑流量采用科氏力質(zhì)量流量計測量。實驗段前設(shè)有預(yù)熱段,通過控制預(yù)熱段的加熱量可以調(diào)節(jié)實驗段入口的干度。經(jīng)實驗段后的制冷劑進(jìn)入恒溫槽中的冷凝盤管進(jìn)行冷凝,最后回儲液罐完成循環(huán)。實驗段進(jìn)出口分別設(shè)有石英玻璃管,可觀察測試管段流型。
圖1 實驗裝置系統(tǒng)Fig.1 Schematic diagram of experimental system1—refrigerant pump; 2—sub-cooler; 3—mass flow meter; 4—preheater; 5—sampling port; 6—test section; 7—electric heater; 8—electricity meter; 9—charging port; 10—condenser; 11—refrigerating unit; 12—stirrer; 13—controller; 14—heater; 15—liquid reservoir; 16—sub-cooler recycle pump
1.2測試段介紹
圖2為測試管段結(jié)構(gòu),測試段采用管內(nèi)徑為8 mm、外徑為9.52 mm的紫銅管,測試段的總長度為2400 mm,沿管軸向有5個測溫斷面,每個測溫斷面分別在上下左右各設(shè)置一個測溫?zé)犭娕?。測試段的進(jìn)出口各安裝一個絕對壓力變送器,用于測量進(jìn)出口的壓力。銅管外繞有電加熱帶,用來提供測試段所需加熱量,電加熱帶的纏繞結(jié)構(gòu)如圖3所示,為防止電加熱帶漏電,同時使其與紫銅管外壁充分接觸,避免測溫?zé)犭娕际艿诫娂訜嶂苯訉?dǎo)熱的影響,在銅管外壁先均勻纏繞一層導(dǎo)熱絕緣膠布,電加熱帶在導(dǎo)熱絕緣膠布外均勻纏繞,并在溫度測點處留出一定空隙。電加熱帶外依次纏繞玻璃纖維布、硅酸鋁保溫棉和隔氣帶,確保與環(huán)境的隔熱效果良好。為驗證實驗段的保溫效果,進(jìn)行了單相熱平衡實驗,結(jié)果發(fā)現(xiàn)實驗段的漏熱量小于制冷劑有效得熱的2%,因此在實驗段傳熱系數(shù)處理的過程中未考慮漏熱的影響。
圖2 測試段結(jié)構(gòu)Fig.2 Schematic diagram of test section
圖3 電加熱帶纏繞結(jié)構(gòu)及溫度測點布置Fig.3 Structure of electronic heating tape and temperature measuring point
2.1測試工況
本實驗測試段制冷劑入口飽和溫度為10℃,質(zhì)流密度為300~500 kg·m?2·s?1,熱通量為5.0和 10.0 kW·m?2。表2為具體實驗工況點。
表2 實驗工況Table 2 Experimental working conditions
2.2測試方法
管內(nèi)流動局部傳熱系數(shù)定義為
式中,htp為管內(nèi)流動沸騰傳熱系數(shù),W·m?2·K?1;Qtest為測試段電加熱量,W;熱通量q的調(diào)節(jié)可以通過控制電加熱帶的功率Qtest;Tsat為管內(nèi)流動制冷劑飽和溫度,℃,可通過測量測試段進(jìn)出口壓力,并假設(shè)測試段內(nèi)壓降均勻計算得到壓降分布,再計算得到管內(nèi)平均飽和溫度;dwi為測試管內(nèi)徑,m;?z為測試管段長度,m;Twi為管內(nèi)壁溫,℃,通過熱電偶測量外壁溫度按照一維穩(wěn)態(tài)導(dǎo)熱計算得到,其計算式如下
式中,dwi和dwo分別為測試管內(nèi)徑和外徑,m;Two為熱電所測管外壁溫度,℃;λ為銅管熱導(dǎo)率,W·m?1·K?1。測試段平均制冷劑干度可通過預(yù)熱器熱平衡計算得到
式中,m為質(zhì)量流量,kg·s?1;Qpreh為預(yù)熱段加熱量,W;itest,in和itest,out分別為實驗段進(jìn)出口制冷劑焓值,kJ·kg?1;itest,v,in和itest,l,in分別為實驗段進(jìn)口氣相和液相制冷劑焓,kJ·kg?1;itest,v,out和itest,l,out分別為實驗段出口氣相和液相制冷劑焓,kJ·kg?1。數(shù)據(jù)計算和分析中用到的流體熱物性通過NIST Refprop v9.0[9]查得。
2.3不確定度分析
本實驗中主要存在兩方面不確定度,一是預(yù)熱段和測試段的漏熱引起的偏差,二是測量儀表引起的偏差。針對第1類不確定度,采用對預(yù)熱段和測試段進(jìn)行標(biāo)定和熱平衡實驗,直接扣除這部分誤差。對于第2類不確定度,采用Moffat[26]提出的不確定度傳遞方法,其傳遞方程如下
式中,Δq/q為測試段熱通量的相對誤差;ΔTwi為內(nèi)壁溫度的誤差;ΔTsat為測定壓力下對應(yīng)的飽和溫度;Twi?Tsat為管內(nèi)沸騰換熱溫差。測量儀表及其不確定值見表3。本實驗中得到傳熱系數(shù)的最小不確定度和最大不確定度分別為3.03%和11.14%。
表3 測量系統(tǒng)儀表及其不確定值Table 3 Measurement instruments and their uncertainties
3.1實驗結(jié)果
圖4(a)、(b)分別表示R1234ze(E)和R134a在熱通量為5.0和10.0 kW·m?2、飽和溫度為10℃時,管內(nèi)流動沸騰傳熱系數(shù)隨質(zhì)流密度和干度的變化曲線。由圖可見,在研究的工況范圍內(nèi)R1234ze(E)流動沸騰傳熱系數(shù)總體較R134a略微偏低12.14%。在低質(zhì)流密度300 kg·m?2·s?1下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1時其偏差縮小為7.35%。其中,干度對傳熱系數(shù)的影響方面,由圖4(a)可以發(fā)現(xiàn),新型制冷劑R1234ze(E)的局部傳熱系數(shù)隨干度的增加先增加而后出現(xiàn)拐點,這主要是由于在低干度時R1234ze(E)的換熱過程主要以核態(tài)沸騰換熱為主,尤其在低干度區(qū)域,換熱主要受到銅管壁面過熱度的影響。隨干度的增加,在干度為0.7~0.8附近傳熱系數(shù)出現(xiàn)拐點,主要是由于在高干度區(qū)R1234ze(E)的流型由環(huán)狀流轉(zhuǎn)化為霧狀流,此時被流體濕潤的壁面開始減少,即出現(xiàn)干涸,而液膜對流蒸發(fā)只發(fā)生在濕潤的壁面,這使得整體的傳熱系數(shù)下降。R1234ze(E)流動沸騰局部傳熱系數(shù)隨干度的變化趨勢與圖4(b)中R134a的變化趨勢相同。
質(zhì)流密度對傳熱系數(shù)的影響方面,R1234ze(E) 和R134a流動沸騰局部傳熱系數(shù)均隨質(zhì)流密度的增加而有較大幅度增大。這是由于R1234ze(E)和R134a飽和溫度為10℃時氣液密度差異較大,其氣液密度比率分別為0.0136和0.0160,因此在蒸發(fā)過程中制冷劑兩相流動平均流速增大,強化了對流換熱。平均質(zhì)流密度從300 kg·m?2·s?1增加到500 kg·m?2·s?1過程中,R1234ze(E)和R134a的平均傳熱系數(shù)分別增大了34.40%和29.36%。
圖4 傳熱系數(shù)隨干度變化Fig.4 Heat transfer coefficients versus vapor quality
熱通量對傳熱系數(shù)的影響方面,R1234ze(E)和R134a流動沸騰局部傳熱系數(shù)均隨熱通量的增加而有小幅增大,這是由于增大換熱溫差,會導(dǎo)致核態(tài)沸騰增強。在質(zhì)流密度為500 kg·m?2·s?1工況下,熱通量從5.0 kW·m?2增加大10.0 kW·m?2時,R1234ze(E)和R134a流動沸騰局部傳熱系數(shù)分別增加了3.12%和2.80%。
管徑對傳熱系數(shù)的影響方面,本文對比文獻(xiàn)[23],Hossain等在管內(nèi)徑為4.35 mm的水平銅管中測試了R1234ze(E)流動沸騰換熱特性。將本文在內(nèi)徑8 mm得到的R1234ze(E)流動沸騰傳熱系數(shù)與Hossain等在內(nèi)徑為4.35 mm得到的數(shù)據(jù)進(jìn)行比較,表明管徑大小對制冷劑流動沸騰傳熱系數(shù)具有較大影響,R1234ze(E)在小管徑4.35 mm內(nèi)的流動沸騰傳熱系數(shù)要大于大管徑8 mm。在質(zhì)流密度300 kg·m?2·s?1、飽和溫度為10℃,R1234ze(E)在管內(nèi)徑為4.35 mm的流動沸騰傳熱系數(shù)平均比內(nèi)徑為8 mm增強約153%。
3.2預(yù)估關(guān)聯(lián)式
在已有的文獻(xiàn)中指出,流動沸騰換熱是一種帶有相變的傳熱過程,認(rèn)為是核態(tài)沸騰和對流蒸發(fā)相結(jié)合的一種傳熱方式。目前,關(guān)于管內(nèi)流動沸騰換熱規(guī)律的研究,已提出大量理論預(yù)估關(guān)聯(lián)式,較為廣泛運用的有3類,分別為加和模型、增強模型和漸進(jìn)模型。本文選用4種典型關(guān)聯(lián)式(Gungor和Winterton[27]、Kandlikar[28]、Liu和Winterton[29]、Saitoh等[30])對R1234ze(E)管內(nèi)流動沸騰局部傳熱系數(shù)進(jìn)行預(yù)估判斷,并與實驗數(shù)據(jù)比較分析,其關(guān)聯(lián)式具體數(shù)學(xué)模型參見相關(guān)文獻(xiàn)。其中,Gungor and Winterton模型[27]是在前人的研究的基礎(chǔ)上發(fā)展了一種加和模型,該預(yù)估關(guān)聯(lián)式適用于圓管和環(huán)形管,模型考慮了池沸騰和對流沸騰兩者共同影響,共同決定傳熱系數(shù)。Kandlikar模型[28]是將流體沸騰區(qū)域劃分為核態(tài)沸騰和強制對流蒸發(fā)兩個區(qū)域,通過單相流體的流動情況來預(yù)測核態(tài)沸騰和對流換熱的傳熱系數(shù),提出一種適用于水平管和豎直管的飽和流動沸騰傳熱系數(shù)的加強預(yù)估模型。Liu和Winterton[29]提出了一種通用于管內(nèi)過冷和飽和流動沸騰傳熱系數(shù)預(yù)估關(guān)聯(lián)式,該關(guān)聯(lián)式體現(xiàn)流動沸騰換熱存在核態(tài)沸騰和強制對流換熱兩種換熱機理,綜合考慮兩類換熱規(guī)律并選擇指數(shù)漸進(jìn)疊加形式。Saitoh等[30]基于流動過程存在核態(tài)沸騰和強制對流兩種換熱機理基礎(chǔ)上,考慮換熱管管徑的影響,引入了Weber系數(shù),該關(guān)聯(lián)式適用于內(nèi)徑的范圍為0.5~11 mm。
3.3實驗與預(yù)估關(guān)聯(lián)式對比
圖5(a)~(d)分別表示Gungor和Winterton、Kandlikar、Liu和Winterton及Saitoh等4種預(yù)估關(guān)聯(lián)式與R1234ze(E)和R134a實驗值的偏差結(jié)果。
從圖5(a)可以看出,Gungor和Winterton關(guān)聯(lián)式的計算值與R1234ze(E)的實驗值偏差較大,部分預(yù)測點的偏差超過±30%,且預(yù)測值普遍大于實驗值。Gungor和Winterton關(guān)聯(lián)式的計算值與R134a的實驗值偏差較小,多數(shù)預(yù)測點的偏差在±30%內(nèi)。
圖5 實驗值與預(yù)估關(guān)聯(lián)式偏差Fig. 5 Experimental data compared with correlation
從圖5(b)可以看出,Kandlikar關(guān)聯(lián)式的計算值較好地預(yù)測R1234ze(E)和R134a的實驗值,其中90%預(yù)測點與實驗值的偏差在±25%內(nèi)。Kandlikar關(guān)聯(lián)式預(yù)測值與R1234ze(E)和R134a實驗值的平均偏差分別為23.13%和11.50%。
從圖5(c)可以看出,Liu和Winterton關(guān)聯(lián)式的計算值與R1234ze(E)和R134a的實驗值偏差較大,部分預(yù)測點偏差超過±30%。且其預(yù)測點普遍在低干度時大于實驗值,在高干度時小于實驗值,其對R1234ze(E)流動沸騰傳熱系數(shù)的預(yù)測準(zhǔn)確度較差。
從圖5(d)可以看出,Saitoh等關(guān)聯(lián)式的計算值在低干度時與R1234ze(E)和R134a的實驗值偏差較小,在高干度時與R1234ze(E)和R134a的實驗值偏差較大,且在高干度時預(yù)測值大于實驗值,預(yù)測點偏差超出±30%。
綜上,4種關(guān)聯(lián)式與實驗值的比較分析,Kandlikar關(guān)聯(lián)式的總體計算效果較優(yōu)。圖6表示在全實驗工況范圍內(nèi)Kandlikar關(guān)聯(lián)式對R1234ze(E) 和R134a流動局部傳熱系數(shù)的預(yù)測值和實驗值隨干度的變化趨勢。由圖6(a)、(b)可知,在低質(zhì)流密度300 kg·m?2·s?1工況下,Kandlikar對R1234ze(E)的預(yù)測準(zhǔn)確性優(yōu)于質(zhì)流密度為500 kg·m?2·s?1工況。由圖6(c)、(d)可知,在低質(zhì)流密度300 kg·m?2·s?1工況下,Kandlikar對R134a的預(yù)測準(zhǔn)確性低于質(zhì)流密度為500 kg·m?2·s?1工況。綜上分析發(fā)現(xiàn),Kandlikar關(guān)聯(lián)式對R1234ze(E)和R134a的預(yù)測整體準(zhǔn)確性較好,且其能夠較準(zhǔn)確預(yù)測出全干度范圍內(nèi)傳熱系數(shù)最大值,滿足工程設(shè)計要求。
本文對環(huán)保制冷劑R1234ze(E)和常規(guī)制冷劑R134a在內(nèi)徑為8 mm水平圓管內(nèi)飽和流動沸騰換熱特性進(jìn)行實驗研究,分析質(zhì)流密度、熱通量和干度對傳熱系數(shù)的影響規(guī)律。結(jié)合Gungor和Winterton、Kandlikar、Liu和Winterton、Saitoh等4種流動沸騰傳熱系數(shù)預(yù)估關(guān)聯(lián)式,深入分析預(yù)估值與實驗值的偏差。得出以下結(jié)論。
圖6 傳熱系數(shù)實驗值與Kandlikar預(yù)測關(guān)聯(lián)式全工況對比Fig.6 Experimental data of heat transfer coefficients compared with correlation of Kandlikar
(1)分析質(zhì)流密度和熱通量對流動沸騰換熱的影響,表明R1234ze(E)和R134a流動沸騰傳熱系數(shù)均隨質(zhì)流密度和熱通量的增大而增大,隨干度的增加傳熱系數(shù)先增大后降低。在低質(zhì)流密度300 kg·m?2·s?1工況下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1時其偏差縮小為7.35%。
(2)4種預(yù)估關(guān)聯(lián)式計算值與實驗值的比較結(jié)果表明:Kandlikar關(guān)聯(lián)式對R1234ze(E)和R134a預(yù)估效果與實驗值的吻合度較好,90%計算點與實驗點的偏差在±25%內(nèi),總體平均偏差分別為23.13%和11.50%,同時Kandlikar關(guān)聯(lián)式能夠較為準(zhǔn)確預(yù)測傳熱系數(shù)隨干度變化的極大值,其預(yù)估值可供R1234ze(E)換熱器的工程設(shè)計參考。
References
[1]Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EC. Official J. Eur. Union [EB/OL]. [2006-06-14]. http://eur-lex. europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0040.
[2]Regulation(EU) No.517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation(EC) No. 842/2006.Official J. Eur. Union [EB/OL]. [2014-05-20]. http://eur-lex.europa.eu/legal-content/EN/ TXT/?uri=uriserv: OJ.L_.2014.150.01.0195.01.ENG.
[3]WALLINGTON T J, SULBAEK ANDERSEN M P, NIELSEN O J. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials(GWPs), and ozone depletion potentials (ODPs) main [J]. Chemosphere, 2015, 129(6): 135-141.
[4]CALM M J. The next generation of refrigerants historical review consideration and outlook [J]. International Journal of Refrigeration, 2008, 31(2): 1123-1133.
[5]ATILLA G D, VEDAT O. Characteristics of some new generation refrigerants with low GWP [J]. Energy Procedia, 2015, 75(8): 1452-1457.
[6]FRANCISCO M, JOAQUIN N E, BERNARDO P, et al. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids [J]. International Journal of Refrigeration, 2014, 44(1): 141-150.
[7]LAI N A. Equations of state for HFO-1234ze(E) and their application in the study on refrigeration cycle [J]. International Journal of Refrigeration, 2014, 43(7): 194-202.
[8]WALLINGTON T J, SULBAEK ANDERSEN M P, NIELSEN O J. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) main [J]. Chemosphere, 2014, 129(6): 135-141.
[9]LEMMON E W, HUBER M L, MCLINDEN M O. NIST reference fluids thermodynamic and transport properties-refprop 9, standard reference database 23 [DB]. Gaithersburg, MD, USA: National Institute of Standard and Technology, 2009.
[10]MENG X Y, QIU G S, WU J T, et al. Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) [J]. The Journal of Chemical Thermodynamics, 2013, 63(8): 24-30.
[11]HE M G, QI X T, LIU X Y, et al. Estimating the viscosity of pure refrigerants and their mixtures by free-volume theory [J]. International Journal of Refrigeration, 2015, 54(6): 55-66.
[12]QIU G H, MENG X Y, WU J T. Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) [J]. The Journal of Chemical Thermodynamics, 2013, 60(5): 150-158.
[13]HIGASHI Y, TANAKA K, ICHIKAWA T. Critical parameters and saturated densities in the critical region for trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) [J]. Journal of Chemical and Engineering Data, 2010, 55(4): 1594-1597.
[14]MIYARA A, FUKUDA R, TSUBAKI K. Thermal conductivity of saturated liquid of R1234ze(E)+R32 and R1234yf+R32 mixtures [J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, 28: 435-443.
[15]霍二光,戴源德,耿平,等. R1234ze與R152a混合制冷劑替代R22的可行性[J]. 化工學(xué)報,2015,66(12):4725-4729. HUO E G, DAI Y D, GENG P, et al. Feasibility research on using R152a and R1234ze mixture as alternative for R22 [J]. CIESC Journal, 2015, 66(12): 4725-4729.
[16]RAABE G. Molecular simulation studies on the vapor-liquid phase equilibria of binary mixtures of R-1234yf and R-1234ze(E) with R-32 and CO2[J]. Journal of Chemical and Engineering Data, 2013, 58(6): 1867-1873.
[17]張志巍,李敏霞,馬一太. HFC32/HFO1234ze二元混合工質(zhì)的熱物性模型[J]. 工程熱物理學(xué)報,2014,35(2):218-222. ZHANG Z W, LI M X, MA Y T. Thermophysical properties model for binary mixtures working fluid of HFC32/HFO1234ze [J]. Journal of Engineering Thermophysics, 2014, 35(2): 218-222.
[18]FUKUDA S, KONDOU C, TAKATA N, et al. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps [J]. International Journal of Refrigeration, 2014, 40(4): 161-173.
[19]MCLINDEN O M, KAZAKOV F A, STEVEN BROWN J, et al. A thermodynamic analysis of refrigerants: possibilities and tradeoffs for low-GWP refrigerants [J]. International Journal of Refrigeration, 2014, 38(1): 80-92.
[20]ANSARI N A, YADAV B, KUMAR J. Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system [J]. International Journal of Scientific and Engineering Research, 2013, 4(8): 137-144.
[21]ADRIAN M B, JOAQUIN N E, ANGEL B, et al. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements [J]. Applied Thermal Engineering, 2014, 71(1): 259-265.
[22]HOSSAIN M A, ONAKA Y, MIYARA A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A [J]. International Journal of Refrigeration, 2012, 35(1): 927-938.
[23]HOSSAIN M A, ONAKA Y, AFRON M M H, et al. Heat transfer during evaporation of R1234ze(E), R32, R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2013, 36(2): 465-477.
[24]GRAUSO S, MASTRULLO R, MAURO A W, et al. Flow pattern map, heat transfer and pressure drops during evaporation of R-1234ze(E) and R134a in a horizontal, circular smooth tube: experiments and assessment of predictive methods [J]. International Journal of Refrigeration, 2013, 36(2): 478-491.
[25]DIANI A, MANCIN S, ROSSETTO L. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube [J]. International Journal of Refrigeration, 2014, 47: 105-119.
[26]MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17.
[27]GUNGOR K E, WINTERTON R H S. A general correlation for flow boiling in tubes and annuli [J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 351-358.
[28]KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes [J]. ASME Journal of Heat Transfer, 1990, 112: 219-228.
[29]LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation [J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766.
[30]SAITOH S, DAIGUJI H, HIHARA E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5215-5225.
Flow boiling heat transfer characteristic of refrigerant R1234ze(E) in horizontal circular tube
QIU Jinyou1, ZHANG Hua1, YU Xiaoming1, WANG Xi2, WU Yinlong1
(1School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2Haier Group Technology Research and Development Center, Qingdao 266101, Shandong, China)
Abstract:Nowadays, more and more attention has been paid to the new low GWP (global warming potential) refrigerant R1234ze(E), which is one of the ideal alternatives for R134a. In this work, the flow boiling heat transfer coefficients of R1234ze(E) and R134a were measured inside an 8 mm ID horizontal tube. The experimental results were obtained over the saturation temperature of 10℃ with heat fluxes ranging from 5.0 to 10.0 kW·m?2and mass fluxes ranging from 300 to 500 kg·m?2·s?1. The influences of mass flux, heat flux and quality on the heat transfer coefficients were discussed. The results showed that the local flow boiling heat transfer coefficients of R1234ze(E) and R134a increased with increasing mass flux and heat flux. The local heat transfer coefficient of R1234ze(E) was around 14.68% lower than that of R134a at the mass flux of 300 kg·m?2·s?1, while the local heat transfer coefficient deviation between R1234ze(E) and R134a reduced to 7.35% when the mass flux reached 500 kg·m?2·s?1. Additionally, the experimental data of local heat transfer coefficients were compared with four well-known correlations available in literatures. The results indicated that Kandlikar correlation provided the best prediction of the local heat transfer coefficients for both R1234ze(E) and R134a. Approximately90% of the experimental points are in an error bandwidth of ±25% of the prediction, and the average deviations are found to be 23.13% and 11.50% for R1234ze(E) and R134a, respectively.
Key words:R1234ze(E); R134a; flow boiling; heat transfer correlation; horizontal circular tube
中圖分類號:TK 124
文獻(xiàn)標(biāo)志碼:A
文章編號:0438—1157(2016)06—2255—08
DOI:10.11949/j.issn.0438-1157.20151523
基金項目:國家自然科學(xué)基金項目(51176124);國際科技合作項目(2012DFR70430)。
Corresponding author:Prof. ZHANG Hua, Zhanghua3000@163.com