曾紅娟,趙然琳,王德舜,李彩霞,劉貽堯
電子科技大學(xué)生命科學(xué)與技術(shù)學(xué)院,四川 成都 611731
硫醇衍生化的納米金與癌胚抗原相互作用的光學(xué)分析
曾紅娟,趙然琳,王德舜,李彩霞,劉貽堯
電子科技大學(xué)生命科學(xué)與技術(shù)學(xué)院,四川 成都 611731
納米金已在在藥物靶向傳輸體系、疾病檢測(cè)、分子識(shí)別、生物標(biāo)簽等領(lǐng)域有著廣泛的應(yīng)用,但是,由于納米金的表面效應(yīng),大量的表面原子具有巨大剩余成鍵能力,使得納米金粒子較容易團(tuán)聚、沉聚,影響了其穩(wěn)定性。為了實(shí)現(xiàn)對(duì)腫瘤靶標(biāo)之一-癌胚抗原的痕量檢測(cè),需要制備出對(duì)癌胚抗原檢測(cè)具有良好的增色效應(yīng)與熒光增敏效應(yīng)的納米材料。該工作采用納米金的硫醇衍生法制備了一種新型的硫醇衍生化的納米金材料,并對(duì)此新型硫醇衍生化的納米金材料的特性用透射電子顯微鏡,紫外-可見吸收光譜,熒光發(fā)射光譜和紅外光譜等方法進(jìn)行了研究。紫外-可見吸收光譜,熒光發(fā)射光譜的實(shí)驗(yàn)結(jié)果表明,在新的配體乙二硫醇存在下,有更多的電子從配體的軌道躍遷到與中心離子相關(guān)的軌道上,導(dǎo)致熒光增強(qiáng)。這種新型硫醇衍生化的納米金與癌胚抗原作用時(shí)表現(xiàn)出增色效應(yīng)與熒光增敏效應(yīng),而納米金與癌胚抗原作用時(shí)看不到這種增色效應(yīng)與熒光增敏效應(yīng)。紅外方法的研究結(jié)果表明,這種材料的蛋白增色機(jī)理為當(dāng)硫醇衍生化納米金與癌胚抗原蛋白作用時(shí),體系中蛋白的—OH表現(xiàn)出更多的面外彎曲振動(dòng),有利于電子從硫醇衍生化納米金配合物向蛋白轉(zhuǎn)移而導(dǎo)致其增色和熒光增敏效應(yīng)。因而這種新的硫醇衍生化納米金材料比納米金將具有更好的生物檢測(cè)應(yīng)用價(jià)值。
納米金; 硫醇衍生化的納米金; 癌胚抗原; 增色效應(yīng); 熒光增敏效應(yīng)
納米金作為一種特性優(yōu)良的納米材料已在藥物靶向傳輸體系、疾病檢測(cè)、分子識(shí)別、生物標(biāo)簽等領(lǐng)域有著廣泛的應(yīng)用[1-3],在納米金的各種特性中,粒子的粒度是影響其應(yīng)用一個(gè)重要的因素,粒度較小的納米金粒子已經(jīng)成為研究的熱點(diǎn)[4-5]。但是,由于納米金的表面效應(yīng),隨著納米金粒子粒度減小,其表面原子數(shù)所占原子總數(shù)量的比例逐漸增加,大量的表面原子具有巨大剩余成鍵能力,使得納米金粒子較容易團(tuán)聚、沉聚,不很穩(wěn)定,因而須對(duì)其進(jìn)行修飾與保護(hù),以實(shí)現(xiàn)納米金更有效的利用[6]。目前不同的修飾配體一般分別通過三種方式與納米金粒子發(fā)生作用,分別是靜電作用、形成配位鍵以及空間位阻效應(yīng)[7]。其中由于硫醇可以與納米金粒子形成穩(wěn)定的Au—S配位鍵(鍵能約170 kJ·mol-1)是一種較為穩(wěn)定的結(jié)合方式,又因其在生物檢測(cè)中具有更好的靈敏度而被廣泛地研究,如Mirkin等利用巰基修飾的寡核苷酸組裝于納米金粒子表面,形成可與互補(bǔ)的靶分子雜交的納米金探針,溶液中包含靶分子時(shí),納米金探針的等離子共振吸收峰由520 nm紅移至600 nm,并形成網(wǎng)狀聚集體而使納米金溶液顏色由紅變紫[8]; 又如Cossaro等將烷基硫醇自組裝到納米金表面形成的單分子膜,使得納米金具有了更好的穩(wěn)定性和有序性[9]。但是,對(duì)硫醇衍生化的納米金與蛋白相互作用體系光學(xué)特性的研究還少有報(bào)道,而此項(xiàng)研究可以幫助人們更好地認(rèn)識(shí)和推廣硫醇衍生化的納米金在生物檢測(cè)中的應(yīng)用。本研究采用紫外-可見吸收光譜,熒光發(fā)射光譜和紅外光譜等方法對(duì)硫醇衍生化的納米金進(jìn)行光學(xué)特性表征。結(jié)果表明,硫醇衍生化的納米金不僅具有明顯的光學(xué)增敏現(xiàn)象,而且硫醇衍生化的納米金與蛋白作用后,使得蛋白體系中的—OH表現(xiàn)出更多的面外彎曲振動(dòng)而出現(xiàn)新的紅外吸收峰。
1.1 儀器
樣品的紫外-可見光吸收譜圖由U-2910型(HITACHI ,High-Technologies Corporation)紫外-可見光分光光度儀測(cè)得,熒光發(fā)射譜圖由F-4600型(HITACHI,High-Technologies Corporation)熒光分光光度儀測(cè)得,紅外透射譜圖由NEXUS 670型(Thermo Electron Corporation)傅里葉變換紅外光譜儀測(cè)得。
納米金的制備,取質(zhì)量分?jǐn)?shù)為0.01%的氯金酸水溶液100 mL,加熱至沸騰攪動(dòng)下準(zhǔn)確加入質(zhì)量分?jǐn)?shù)為1%的檸檬酸三鈉2 mL,繼續(xù)煮沸15 min,溶液顏色由橙黃色變?yōu)榫萍t色,而后,冷卻至室溫并以蒸餾水恢復(fù)到原來的體積,置于4 ℃冰箱保存?zhèn)溆谩?/p>
硫醇衍生化的納米金制備,取10 mL納米金溶液,向其中加入10 mL濃度為1 mmol·L-1的乙二硫醇的四氫呋喃溶液,攪拌溶液過夜。將納米金-乙二硫醇樣品進(jìn)行離心,去除上清液,重復(fù)離心以徹底去除上清液中游離的配體分子,將離心管中可穩(wěn)定分散的納米金-乙二硫醇沉淀分散于20 mL的雙蒸水中。
采用透射電子顯微鏡對(duì)納米金以及硫醇衍生化的納米金的超微結(jié)構(gòu)進(jìn)行分析; 采用U-2910型紫外-可見光分光光度儀,F(xiàn)-4600型熒光分光光度儀和NEXUS 670型傅里葉變換紅外光譜儀對(duì)納米金,硫醇衍生化的納米金,以及它們與癌胚抗原蛋白相互作用等進(jìn)行光譜特性檢測(cè)和分析。
2.1 納米金和硫醇衍生化納米金的Transmission electron microscope (TEM)表征
利用TEM技術(shù)分別對(duì)制備的納米金和硫醇衍生化納米金粒子進(jìn)行表征,結(jié)果如圖1所示。圖1(a)為納米金,圖1(b)為硫醇衍生化納米金。從圖中可以明顯看出,硫醇衍生化納米金粒子的形態(tài)更加規(guī)則而且分散性也更好。
Fig.1 TEM images of nanogold particles (a) and mercaptan derivatives nanogold particles (b)
2.2 納米金和硫醇衍生化納米金的紫外-可見特性
金溶膠在硫醇衍生化過程中,顏色由酒紅色變?yōu)樗{(lán)色并出現(xiàn)沉淀。紫外可見吸收光譜檢測(cè)結(jié)果如圖2所示,從圖中可以明顯看出納米金的最大吸收峰位置在520 nm,硫醇衍生化納米金的最大吸收峰位置在750 nm,說明硫醇衍生化納米金具有比金溶膠粒徑更大。將硫醇衍生化納米金與納米金溶膠以摩爾比為1∶1配制混合溶膠,其紫外吸收的強(qiáng)度明顯比納米金溶膠強(qiáng)。說明硫醇衍生化對(duì)納米金有增色效應(yīng)。
2.3 納米金和硫醇衍生化納米金的熒光特性
納米金和硫醇衍生化納米金的熒光光譜如圖3所示,從圖中可以看出納米金在520 nm波長(zhǎng)的光激發(fā)下,在787 nm產(chǎn)生一個(gè)很強(qiáng)的熒光發(fā)射峰,與納米金相比其強(qiáng)度增加5倍,這種熒光增強(qiáng)表明硫醇衍生化納米金,其中心Au粒子在新的配體乙二硫醇存在下存在更多的電子由配體的軌道躍遷到與中心金粒子相關(guān)的軌道上,導(dǎo)致熒光增加。因此,硫醇衍生化納米金會(huì)產(chǎn)生更強(qiáng)的熒光,更進(jìn)一步說明硫醇衍生化對(duì)納米金有熒光增敏作用。
Fig.2 Ultraviolet absorption spectra of samples
1: nanogold particles; 2: mercaptan derivatives nanogold particles; 3: the mixed solution of nanogold particles and mercaptan derivatives nanogold particles, the concentration ratio is 1∶1
Fig.3 Fluorescence emission spectra of nanogold particles (1) and mercaptan derivatives nanogold particles (2)
2.4 硫醇衍生化納米金與癌胚抗原蛋白作用的紫外-可見光分析
為了探討硫醇衍生化納米金是否會(huì)破壞腫瘤標(biāo)志物蛋白結(jié)構(gòu),實(shí)驗(yàn)中以存在于大腸癌、乳腺癌和肺癌中的腫瘤標(biāo)志物癌胚抗原(CEA)為模型,采用紫外-可見光分析法對(duì)硫醇衍生化納米金與硫醇衍生化納米金和癌胚抗原蛋白相互作用進(jìn)行檢測(cè)。結(jié)果如圖4所示,硫醇衍生化納米金并沒有對(duì)蛋白的結(jié)構(gòu)造成產(chǎn)生的影響,加入CEA溶液中時(shí),在250~300 nm之間的吸收峰沒有變化,說明硫醇衍生化納米金不會(huì)破壞蛋白結(jié)構(gòu); 在200~250 nm之間出現(xiàn)很強(qiáng)的吸收峰,說明硫醇衍生化納米金對(duì)CEA存在很好的增色效應(yīng),可以提高對(duì)CEA檢測(cè)的靈敏度。
2.5 硫醇衍生化納米金與CEA作用的熒光分析
為了進(jìn)一步證明所制備的硫醇衍生化納米金是否對(duì)CEA存在增色效應(yīng),采用熒光方法對(duì)它們之間的相互作用進(jìn)行進(jìn)一步的實(shí)驗(yàn),結(jié)果如圖5所示。發(fā)現(xiàn)在530 nm激發(fā)光作用下,加入CEA蛋白后的體系在783 nm的熒光發(fā)射峰明顯增強(qiáng),說明硫醇衍生化納米金對(duì)靶標(biāo)蛋白確實(shí)存在明顯的熒光增敏作用。
2.6 CEA及硫醇衍生化納米金與CEA作用的紅外分析
Fig.4 Ultraviolet absorption spectra of the CEA solution (1), the mixed solution of mercaptan derivatives nanogold particles and CEA (2)
Fig.5 Fluorescence emission spectra of mercaptan derivatives nanogold particles (1), the mixed solution of mercaptan derivatives nanogold particles and CEA (2)
Fig.6 FTIR of the CEA solution (1), the mixed solution of mercaptan derivatives nanogold particles and CEA (2)
硫醇衍生化納米金由于其配合物中存在新的硫醇配體,減少了Au離子的禁帶寬度,使得更多的電子可以從價(jià)帶進(jìn)入導(dǎo)帶而具有更強(qiáng)的吸收強(qiáng)度。而且發(fā)現(xiàn)這種硫醇衍生化納米金由于其具有的熒光增敏而更適合于蛋白的檢測(cè),因而這種新的硫醇衍生化納米金材料比納米金將具有更好的生物檢測(cè)應(yīng)用價(jià)值。
[1] Dubertret B, Calame M, Libchaber A J. Nature Biotechnology, 2001, 19(2): 365.
[2] Elena P V, Ekaterina A L, Andrey M B, et al. Journal of Biotechnology, 2014, 182: 37.
[3] Bindhu M R, Umadevi M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 128: 37.
[4] Bagheri Z, Massudi R, Ghanavi J. Optics & Laser Technology, 2014, 58: 135.
[5] Naveen K, Raman S, Harish K. Analytical Biochemistry, 2014, 456: 43.
[6] Alessandro F, Cristina G, Pier R S, et al. Photoacoustics, 2014, 2(1): 47.
[7] YANG Qiang, WANG Li, XIANG Wei-dong, et al(楊 強(qiáng),王 立,向衛(wèi)東,等). Progress in Chemistry(化學(xué)進(jìn)展), 2006, 18(2): 290.
[8] Mirkin C A, Letsinger R L, Mucic R C, et al. Nature, 1996, 382: 607.
[9] Cossaro A, Mazzarello R, Rousseau R, et al. Science, 2008, 321(5891): 943.
Optical Analysis of the Interaction of Mercaptan Derivatives of Nanogold Particles with Carcinoembryonic Antigen
ZENG Hong-juan, ZHAO Ran-lin, WANG De-shun, LI Cai-xia, LIU Yi-yao
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
Gold nanoparticles (AuNPs) have been the subject of intense research for use in biomedicine over the past couple of decades. AuNPs, also referred to as colloidal gold, possess some astounding optical and physical properties that have earned them a prime spot among the new promising tools for medical applications. Today, AuNPs are offered to provide the clinical laboratory with more sensitive, faster, and simpler assays, which are also cost-effective. AuNPs can be used to develop point-of-care tests and novel testing strategies such as in drug targeting, disease detection, molecular recognition, and biological labels. The typical structure of AuNPs is spherical nano-sized gold particles, but they can also be composed of a thin gold shell surrounding a dielectric core, such as silica (gold nanoshells). their size range from 0.8 to 250 nm and are characterized by high absorption coefficients. AuNPs have some unique optical properties, such as enhanced absorption and scattering, where the absorption cross-section of AuNPs is 4~5 orders of magnitude greater than that of rhodamine 6G. When AuNPs aggregate, interaction of locally adjacent AuNPs (plasmon-plasmon interaction) shifts their color to blue. Thus, the binding of AuNP-labeled entities to their respective target would lead to aggregation of the nanoparticles and a detectable shift in the optical signal. The strong absorption of AuNPs can also be used in colorimetric detection of analytes by measuring changes in the refractive index of the AuNP’s environment caused by adsorption of the target analytes. However, a large number of surface atoms of nanoparticles have huge surplus bonding ability, because of surface effect of gold nanoparticles, result in reuniting and sinking among the nanoparticles which make them unstable. In order to detect traces of carcinoembryonic antigen, one of the tumor targets, a new kind of gold nanoparticle with hyperchormic effect and fluorescence sensitization effect material needs to be prepared. In this paper, novel mercaptan derivative of nanogold particles are prepared and studied using transmission electron microscopy (TEM), ultraviolet-visible absorption spectra (UV-Vis), fluorescence emission (FE) spectrum and infrared spectrum (IR) methods. The UV-Vis and FE results show the presence of new ligands mercaptan, more electrons from the orbit of ligand which can excite to the central ion related orbits and increase fluorescence of gold. Fluorescence sensitization effect was observed when mercaptan derivatives of nanogold interacted with carcinoembryonic antigen (CEA) and no fluorescence sensitization effect was found when nanogold interacted with carcinoembryonic antigen (CEA). The study of CEA hyperchromic mechanism of mercaptan derivatives nanogold and the CEA by the method of infrared spectrum, shows that the randomized OH bonds in the Au-protein interaction, showed more on the outside of the plane of bending vibration after the interaction with the mercaptan derivative nanogold, making the energy transfer from mercaptan derivatives nanogold to protein easy; leading to its fluorescence sensitization effect.
Nanogold; Mercaptan derivatives nanogold particles; Carcinoembryonic antigen; Hyperchromic effect; Fluorescence sensitization effect
Sep. 9, 2014; accepted Jan. 25, 2015)
2014-09-09,
2015-01-25
國(guó)家自然科學(xué)基金項(xiàng)目(61071026)資助
曾紅娟,女, 1968年生, 電子科技大學(xué)生命科學(xué)與技術(shù)學(xué)院副教授 e-mail: zenghj@uestc.edu.cn
O657.3
A
10.3964/j.issn.1000-0593(2016)02-0478-04