周學(xué)麗,李念平,鄒杰
(1.湖南大學(xué) 土木工程學(xué)院 長(zhǎng)沙 410082;2.廣州黃巖機(jī)電科技有限公司 廣州 510000)
?
周學(xué)麗1,李念平1,鄒杰2
(1.湖南大學(xué) 土木工程學(xué)院 長(zhǎng)沙 410082;2.廣州黃巖機(jī)電科技有限公司 廣州 510000)
摘要:低溫送風(fēng)空調(diào)系統(tǒng)引進(jìn)新型冰蓄冷設(shè)備,采用正丁烷作為制冷劑,制冷劑與水直接接觸,換熱更強(qiáng)烈且穩(wěn)定。為了研究該系統(tǒng)相應(yīng)損因素條件下的節(jié)能薄弱環(huán)節(jié),實(shí)現(xiàn)系統(tǒng)性能優(yōu)化,基于該系統(tǒng)及各表冷器分析模型,分析了熱濕比、新風(fēng)比、送風(fēng)溫差等損因素對(duì)系統(tǒng)效率和各表冷器損率的影響。結(jié)果表明:當(dāng)熱濕比變化時(shí),處理二次混風(fēng)的表冷器損率隨之呈正比變化,其他表冷器損率及系統(tǒng)效率隨之呈反比變化;當(dāng)新風(fēng)比變化時(shí),處理新風(fēng)的兩級(jí)表冷器損率隨之呈正比變化,其他表冷器損率及系統(tǒng)效率隨之呈反比變化;當(dāng)送風(fēng)溫差變化時(shí),處理一次回風(fēng)的表冷器損率隨之呈正比變化,其他表冷器損率及系統(tǒng)效率隨之呈反比變化。
關(guān)鍵詞:低溫送風(fēng)空調(diào)系統(tǒng);分析模型;損率;效率;冰蓄冷
自從20世紀(jì)推廣使用冰蓄冷技術(shù)以來(lái)[1],冰蓄冷技術(shù)以“移峰填谷”的優(yōu)勢(shì),成為暖通空調(diào)領(lǐng)域炙手可熱的“寵兒”[1-2]。傳統(tǒng)的冰蓄冷設(shè)備采用乙烯乙二醇溶液為制冷劑,制冷劑不與冰水直接接觸,傳熱熱阻高,傳熱效率低;為了滿足制冷要求,需要配備大面積換熱管,運(yùn)行效率較低[3]。鄒杰[3]研發(fā)了一種新型動(dòng)態(tài)冰蓄冷設(shè)備,采用正丁烷作為制冷劑,制冷劑與冰水直接接觸,制冰過(guò)程中制冷劑帶走熱量將冷水制成冰,融冰過(guò)程中依靠冰融化向空調(diào)系統(tǒng)供冷;為了更好地將水與制冷劑混合,在冰蓄冷設(shè)備中設(shè)置移動(dòng)床等傳動(dòng)裝置,換熱更加強(qiáng)烈,運(yùn)行效率更高,控制更加可靠[4]。筆者介紹的低溫送風(fēng)空調(diào)系統(tǒng)引進(jìn)該新型動(dòng)態(tài)冰蓄冷設(shè)備,夜晚利用冷水機(jī)組制冰,白天利用冷水機(jī)組和冰蓄冷設(shè)備分別向空調(diào)機(jī)組提供7/12 ℃和0/7 ℃的冷凍水,高效實(shí)現(xiàn)低溫送風(fēng)和負(fù)荷轉(zhuǎn)移[5]。但是相關(guān)研究發(fā)現(xiàn)該系統(tǒng)能量利用效率受到諸如熱濕比、新風(fēng)比、送風(fēng)溫差等運(yùn)行參數(shù)的影響,因此,筆者基于能量利用效率進(jìn)行研究,為優(yōu)化系統(tǒng)性能及提高系統(tǒng)節(jié)能性奠定理論基礎(chǔ)。
(1)
式中:T0為環(huán)境空氣溫度,K;Ta為進(jìn)出口對(duì)數(shù)平均溫度,K。
(2)
(3)
(4)
(5)
冰蓄冷低溫送風(fēng)空調(diào)系統(tǒng)空氣處理流程如圖1所示[5],空氣處理過(guò)程焓濕圖如圖2所示[5],由圖1和圖2可知,表冷器1是處理新風(fēng)(狀態(tài)點(diǎn)1)的一級(jí)表冷器,冷凍水供回水溫度為7/12 ℃,由冷水機(jī)組提供;處理新風(fēng)的二級(jí)表冷器是表冷器2,由冰蓄冷系統(tǒng)提供冷凍水,供回水溫度為0/7 ℃,它能夠?qū)⒈砝淦?處理后的新風(fēng)(狀態(tài)點(diǎn)1′)處理到溫度T=3.8 ℃,相對(duì)濕度φ=95%,含濕量d=4.76 g/kg的低溫風(fēng)(狀態(tài)點(diǎn)1″);一次回風(fēng)(狀態(tài)點(diǎn)2)由變頻風(fēng)機(jī)控制流量,由表冷器3(供回水溫度為0/7 ℃)處理到溫度T=3.8 ℃,相對(duì)濕度φ=95%,含濕量d=4.76 g/kg的低溫風(fēng)(狀態(tài)點(diǎn)2′),最終與兩級(jí)表冷處理過(guò)的新風(fēng)混合為一次混風(fēng),一次混風(fēng)和二次回風(fēng)(狀態(tài)點(diǎn)2″)混合為二次混風(fēng)(狀態(tài)點(diǎn)3);二次混風(fēng)由表冷器4(供回水溫度為7/12 ℃)在干工況下處理到達(dá)送風(fēng)狀態(tài)(狀態(tài)點(diǎn)4),最終由送風(fēng)機(jī)將送風(fēng)(狀態(tài)點(diǎn)5)送入室內(nèi)用于消除房間熱濕負(fù)荷。
圖1 冰蓄冷低溫送風(fēng)空調(diào)系統(tǒng)空氣處理流程圖Fig.1 Flow diagram of the ice storage system with cold
圖2 冰蓄冷低溫送風(fēng)空調(diào)系統(tǒng)空氣處理焓濕圖fig.2 Air conditioning process of the ice storage system with cold air
(6)
(7)
(8)
(9)
(10)
(11)
圖3 各設(shè)備損失率隨熱濕比變化曲線Fig.3 Different exergy loss rate values of the surface air coolers under different heat and humidity
圖4 系統(tǒng)損失和效率隨熱濕比變化曲線Fig.4 Different exergy loss values and exergy efficiency values of the system under different heat and humidity
圖5 各設(shè)備損失率隨新風(fēng)比變化曲線Fig.5 Different exergy loss rate values of the surface air coolers under different fresh air
圖6 系統(tǒng)損失和效率隨新風(fēng)比變化曲線Fig.6 Different exergy loss values and exergy efficiency values of the system under different fresh air ratio
圖7 各設(shè)備損失率隨送風(fēng)溫差變化曲線Fig.7 Different exergy loss rate values of the surface coolers under different temperature difference between supply air and indoor
圖8 系統(tǒng)損失和效率隨送風(fēng)溫差變化曲線Fig.8 Different exergy loss values and exergy efficiency values of the system under different temperature difference between supply air and indoor
4結(jié)論與展望
5)筆者的分析計(jì)算依據(jù)來(lái)源于冰蓄冷低溫送風(fēng)空調(diào)系統(tǒng)設(shè)計(jì)工況,對(duì)于非設(shè)計(jì)工況的系統(tǒng)性能優(yōu)化具有指導(dǎo)意義,而與非設(shè)計(jì)工況的對(duì)比研究有待開展。
參考文獻(xiàn):
[1] 李蕾,魏兵. 低溫變風(fēng)量空調(diào)系統(tǒng)的能耗分析[J]. 低溫與超導(dǎo),2014(9): 64-68.
LI L.WEI B. Energy consumption analysis of cold air distribution VAV system [J]. Cryogenics & Superconductivity, 2014(9): 64-68. (in Chinese)
[2] LI X W,ZHANG X S, SHUO Q. Evaporative supercooling method for ice production [J]. Applied Thermal Engineering, 2012, 37(1): 120-128.
[3] 鄒杰.一種動(dòng)態(tài)冰蓄冷設(shè)備:200720058204.6 [P]. 2008-10-1.
ZOU J. A dynamic ice storage equipment: 200720058204.6 [P]. 2008-10-1. (in Chinese)
[4] 鄒杰.一種蓄冷設(shè)備: 201310047656.4 [P]. 2013-05-09.
ZOU J. A dynamic ice storage equipment: 201310047656.4 [P]. 2013-05-09. (in Chinese)
[5] ZHOU X L, LI N P. Research on Energy-saving of new type low-temperature air flow dehumidification system based on exergy analysis method [C]// Proceedings of ISHVAC-COBEE conference, Tianjin, July 12-15, 2015.
[6] 李念平,孫劍,湯廣發(fā). 低溫送風(fēng)空調(diào)系統(tǒng)對(duì)室內(nèi)空氣環(huán)境的影響及技術(shù)經(jīng)濟(jì)初析[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),1999(S1):56-61.
LI N P, SUN J, TANG G F. Effects of cold air distribution on indoor air environment and analysis of its technology economic [J]. Journal of Hunan University(Natural Science Edition),1999(S1):56-61. (in Chinese)
[7] 梁坤峰,王林,張林泉,等. 冰蓄冷輻射空調(diào)系統(tǒng)方案設(shè)計(jì)與能耗分析 [J]. 低溫與超導(dǎo),2014(2):85-91.
LIANG K F, WANG L, ZHANG L Q, et al. Design and energy consumption analysis of a new air-conditioning system[J]. Cryogenics & Superconductivity, 2014(2): 85-91.(in Chinese)
[8] 梁坤峰,任峴樂(lè),賈雪迎,等. 冰蓄冷輻射空調(diào)系統(tǒng)運(yùn)行優(yōu)化與能耗分析[J]. 制冷技術(shù),2014(6):68-74.
LIANG K F, REN X L, JIA X Y, et al. Operation optimization and energy consumption analysis of radiation air conditioning system with ice storage [J]. Refrigeration Technology, 2014(2): 85-91. (in Chinese)
[9] 殷平.空調(diào)大溫差研究(3):空調(diào)送風(fēng)大溫差經(jīng)濟(jì)分析 [J]. 暖通空調(diào),2000(6):75-76.
YIN P. Resrarch of large temperature difference in air conditioning(3):An economical analysis [J]. Journal of HVAC,2000(6): 75-76. (in Chinese)
WANG L. Thermodynamics analysis of HVAC systems based on exergy method [D]. Changsha: Hunan University, 2012. (in Chinese)
[11] 顏志猛,連之偉,王文.一次回風(fēng)空調(diào)系統(tǒng)的分析[J]. 流體機(jī)械,2002(11):58-60.
YAN Z M, LIAN Z W, WANG W. Analysis on exergy of air conditioning system with primary return air [J].Fluid Machinery, 2002(11):58-60. (in Chinese)
[12] HURDOGAN E, BUYUKALACA O, HEPBASLI A. Exergetic modeling and experimental performance assessment of a novel desiccant cooling system [J]. Energy and Buildings, 2011,43(6): 1489-1498.
[13] AHMADI P,DINCER I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant [J]. Applied Thermal Engineering, 2011, 32(14/15): 2529-2540.
[14] BALTA M T, DINCER I, HEPBASLI A. Exergoeconomic analysis of a hybrid copper-chlorine cycle driven by geothermal energy for hydrogen production [J]. International Journal of Hydrogen Energy, 2011, 36(17): 11300-11308.
[15] CHEN L G, FENG H J, SUN F R. Exergoeconomic performance optimization for a combined cooling,heating and power generation plant with an endoreversible closed Brayton cycle [J]. Mathematical and Computer Modeling, 2011, 54(11/12): 2785-2801.
[16] OZGENER L. A review on the experimental and analysis of earth to air heat exchange (EAHE) systems in Turkey [J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4483-4490.
[17] AHAMED J U, SAIDUR R, MASJUKI H H. A review on exergy analysis of vapor compression refrigeration system [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1593-1600.
[18] HEPBASLI A. A comparative investigation of various greenhouse heating options using exergy analysis methos [J]. Applied Energy, 2011, 88(12): 4411-4423.
[19] MOROSUK T, TSATSARONIS G. Comparative evaluation of LNG-based cogeneration systems using advanced exergetic analysis [J]. Energy, 2011, 36(6): 3771-3778.
[20] 卓金武. MATLAB在數(shù)學(xué)建模中的應(yīng)用[M]. 北京:北京航空航天大學(xué)出版社,2011.
ZHUO J W. The application of MATLAB in mathematical modeling [M]. Beijing: Beijing University of Aeronautics and Astronautics, 2011. (in Chinese)
(編輯胡英奎)
Analysis on exergy loss factors of a novel ice storage system with cold air distribution
Zhou Xueli1, Li Nianping1, Zou Jie2
(1.College of Civil Engineering, Hunan University, Changsha 410082, P. R. China;2.Guangzhou Huangyan Mechanical and Electrical Technology Co., Guangzhou 510000, P. R. China)
Abstract:An exergy analysis model was developed for a novel ice storage system with cold air distribution and its main surface air coolers. Based on this model, the influence of heat and humidity ratio, fresh air ratio and temperature difference between supply air and indoor air on the exergy efficiency of the system and the exergy loss rate of its surface air coolers was studied. Finally the important parameters for system optimization were identified. The simulation results show that the exergy loss rate of the surface air cooler for secondary mixed air is positively proportional to the variation of heat and humidity ratio, while it is inverse for the other; the exergy loss rate of the surface air coolers for fresh air is positively proportional to the variation of fresh air ratio, while it is opposite for the other; the exergy loss rate of the surface air cooler for primary mixed air is positively proportional to the variation of temperature difference between supply air and indoor air, while it is inverse for the other.
Keywords:cold air distribution system; exergy analysis model; exergy loss rate; exergy efficiency; ice storage.
doi:10.11835/j.issn.1674-4764.2016.02.018
收稿日期:2015-08-12
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51578220)
作者簡(jiǎn)介:周學(xué)麗(1991-),女,主要從事建筑節(jié)能技術(shù)研究,(E-mail)18229945449@163.com。
中圖分類號(hào):TU831.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674-4764(2016)02-0132-06
李念平(通信作者),男,教授,博士生導(dǎo)師,(E-mail)linianping@126.com。
Received:2015-08-12
Foundation item:National Natural Science Foundation of China (No. 51578220)
Author brief:Zhou Xueli (1991- ), main research interest:building energy-saving technology,(E-mail) 18229945449@163.com.
Li Nianping(corresponding author), professor, doctor supervisor, (E-mail) linianping@126.com.