周 鵬,林匡飛,于慧娟,趙建華,蔡友瓊,劉莉莉*(.中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所,農(nóng)業(yè)部水產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室,上海 00090;.華東理工大學(xué),國(guó)家環(huán)境保護(hù)化工過(guò)程環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)與控制重點(diǎn)實(shí)驗(yàn)室,上海 0037)
?
東海沉積物中多溴聯(lián)苯醚的分布特征研究
周 鵬1,林匡飛2,于慧娟1,趙建華2,蔡友瓊1,劉莉莉2*(1.中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所,農(nóng)業(yè)部水產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室,上海 200090;2.華東理工大學(xué),國(guó)家環(huán)境保護(hù)化工過(guò)程環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)與控制重點(diǎn)實(shí)驗(yàn)室,上海 200237)
摘要:采集分析了中國(guó)東海28個(gè)表層沉積物和7個(gè)柱狀沉積物.結(jié)果表明,東海表層沉積物中除BDE-209外∑PBDEs的濃度范圍為0.20~2.09ng/g dw,BDE-209的濃度范圍為0.57~2.87ng/g dw,在總PBDEs中所占濃度百分比為57.9%~76.7%;接下來(lái)分別是BDE-99和BDE-47,所占比例分別為11.7%~21.5%和7.1%~17.4%.表層沉積物中PBDEs分布呈現(xiàn)出(離海岸線)由近及遠(yuǎn)濃度越來(lái)越低的趨勢(shì),由北到南濃度上升的趨勢(shì).東海柱狀沉積物中PBDEs濃度隨著深度加深呈現(xiàn)出先上升后下降的趨勢(shì),很好的反映出了PBDEs在中國(guó)大陸的使用歷史和現(xiàn)狀.表層沉積物TOC含量在0.54%~0.88%之間,柱狀沉積物TOC的含量在0.62%~0.88%之間,而且不管是表層沉積物(R2=0.723,P< 0.01)還是柱狀沉積物(R2=0.595, P<0.01),PBDEs濃度和TOC含量之間有較強(qiáng)的線性關(guān)系,表明沉積物中TOC含量是影響PBDEs分布的一個(gè)重要因素.
關(guān)鍵詞:多溴聯(lián)苯醚;東海;沉積物;分布;TOC
* 責(zé)任作者, 副教授, lilyliu@ecust.edu.cn
溴代阻燃劑(BFRs)因阻燃效率高、相對(duì)用量少、對(duì)復(fù)合材料的力學(xué)性能幾乎無(wú)影響,成為目前世界上產(chǎn)量最大和應(yīng)用較廣泛的有機(jī)阻燃劑之一[1].多溴聯(lián)苯醚(PBDE)是常用的溴代阻燃劑[2].其中, PBDEs是一類具有長(zhǎng)期殘留性、生物富集性和潛在致畸性的持久性有機(jī)物(POPs),隨著溴原子個(gè)數(shù)的增加,其化學(xué)親脂疏水性增強(qiáng),蒸汽壓逐漸降低[3].盡管五溴聯(lián)苯醚(Penta-BDEs)和八溴聯(lián)苯醚(Octa-BDEs)于2009年被加入到POPs禁令清單,但之前生產(chǎn)的產(chǎn)品壽命尚未終止,且Deca-BDEs仍在生產(chǎn)和使用,其通過(guò)含有PBDEs產(chǎn)品的生產(chǎn)、使用及處置等環(huán)節(jié)被釋放到環(huán)境中[4].近年來(lái),隨著PBDEs被作為高效阻燃劑的廣泛應(yīng)用,其帶來(lái)的環(huán)境問題和生物毒性也越來(lái)越引起關(guān)注.針對(duì)典型高污染區(qū)中PBDEs的研究已有許多,尤其是在BFRs生產(chǎn)、使用的企業(yè)和電子電器設(shè)備拆解、處置區(qū)域附近的土壤、大氣等環(huán)境和生物體中均檢測(cè)到較高濃度的PBDEs[5-7].
近年來(lái),海洋地區(qū)POPs的污染程度日益引起人們的注意.由于PBDEs具有一定的揮發(fā)性,能夠通過(guò)“蚱蜢跳效應(yīng)”遷移到偏遠(yuǎn)地區(qū),并能在低溫環(huán)境中通過(guò)冷凝結(jié)效應(yīng)而沉降[8],匯集到河流,然后通過(guò)地表徑流最終匯集到湖泊海洋沉積物中[9].因此,其對(duì)環(huán)境和生態(tài)的影響已經(jīng)不再局限于人類生產(chǎn)和居住的區(qū)域,在南北極和各大陸沿海地區(qū)等極少人類活動(dòng)的地區(qū)也已檢出PBDEs[10-12].海洋地區(qū)沉積物中PBDEs可能來(lái)自大氣傳輸和沉降,之后被海洋動(dòng)植物吸收富集到體內(nèi),而人類可能通過(guò)食用海洋生物富集PBDEs[13-14].因此,研究大陸沿海地區(qū)沉積物中PBDEs的污染水平和分布對(duì)評(píng)價(jià)PBDEs對(duì)人類和生物健康有重要意義.
中國(guó)東海是世界上最大的大陸架之一,中國(guó)境內(nèi)有多條大型河流的河水最終匯入其中,包括長(zhǎng)江、錢塘江、甌江、閩江等.而這些河流流經(jīng)的沿海省份(上海、浙江和福建等)的工業(yè)化和城市化都非常高,有大量的電子、印染和石油化工等企業(yè)聚集[15].因此,含有大量污染物的、中國(guó)大陸的生產(chǎn)生活廢水會(huì)隨著這些河流的河水一起匯入到中國(guó)東海,使得中國(guó)東海成為這些污染物的一個(gè)匯[16].另外一方面,中國(guó)東海處于中國(guó)大陸的下風(fēng)向因此又會(huì)有部分的污染物隨著大氣顆粒物的沉降一起進(jìn)入到中國(guó)東海[17-18].而在中國(guó)沿海省份的聚集著大量使用PBDEs的生產(chǎn)企業(yè),這些PBDEs和有可能隨著污水的排放和大氣顆粒物的沉降一起進(jìn)入到中國(guó)東海,然后通過(guò)環(huán)境介質(zhì)的重新分配和交換吸附進(jìn)入到中國(guó)東海沉積物[19].因此,為了了解中國(guó)東海沉積物中PBDEs的污染現(xiàn)狀和特征,我們對(duì)中國(guó)東海進(jìn)行了采樣和分析,為以后的研究提供基礎(chǔ)數(shù)據(jù).
1.1 樣品信息
樣品是參加“國(guó)家自然科學(xué)基金委員會(huì)2013年?yáng)|??茖W(xué)考察實(shí)驗(yàn)室研究6~7月航次”所采集的.采集時(shí)間為2013年6月21日~7月15 日,核心采樣區(qū)域經(jīng)度范圍122°10’E~125°02’E,緯度范圍26°48’N~32°00’N,見圖1,各采樣點(diǎn)具體經(jīng)緯度見表1.本次考察共采集每個(gè)斷面前4個(gè)站點(diǎn)的表層沉積物,共28個(gè)表層沉積物樣品;柱狀沉積物7個(gè)(每個(gè)斷面的第一個(gè)站點(diǎn)采集15~ 30cm不等的柱狀沉積物,然后每3cm分割,分開保存).
1.2 樣品前處理
將所有底泥樣品解凍后干燥,揀出碎石和碎殼等雜質(zhì),過(guò)200目篩,備用.底泥樣品與無(wú)水硫酸鈉充分混勻,加入回收率指示物13C-PCB-141和13C-BDE-209,研磨除去多余水分,用40mL丙酮/正己烷混合液 (1:1,V:V)索氏提取8h,索氏抽提采用瑞士BUCHI抽提系統(tǒng)B-811,加入干凈的銅片除硫.然后將提取液濃縮定容至5.0~6.0mL,轉(zhuǎn)移到30mL玻璃離心管中,加入約5mL濃硫酸,靜置后離心,反復(fù)加入少量濃硫酸和正己烷2~4 遍,轉(zhuǎn)移上清液至10mL量筒中,氮吹至1.0~2.0mL,用70mL正己烷/二氯甲烷混合液(1:1/V:V) 經(jīng)多段硅膠柱凈化,淋洗液經(jīng)旋轉(zhuǎn)蒸發(fā)和氮吹濃縮,定容至1.0mL正己烷中,經(jīng)0.45μm 的PTFE膜過(guò)濾后,GC /MS檢測(cè)分析.
1.3 樣品分析和質(zhì)量控制
使用配有Triplus自動(dòng)進(jìn)樣器的GC6890-MS5975C(安捷倫科技有限公司)分析PBDEs,采用負(fù)化學(xué)電離源(NCI)并選擇離子模式(SIM)進(jìn)行檢測(cè).采用不分流進(jìn)樣模式,進(jìn)樣1μL,甲烷為反應(yīng)氣,高純氬氣(純度99.99%)為載氣,流速為1.5mL/min,進(jìn)樣口溫度設(shè)為280℃.采用DB-5MS毛細(xì)管柱(30m×0.25mm×0.25μm)對(duì)Di-BDEs到Hepta-BDEs進(jìn)行分離,升溫程序?yàn)?100℃保持1min,再以30℃/min 的速度升溫至220℃,停留2min,以3℃/min的速度升溫至280℃,停留5min.選擇m/z為79、81作為定性定量離子;對(duì)Octa-BDEs、Nona-BDEs和BDE-209采用DB-5HT毛細(xì)管柱(15.0m×0.25mm×0.1μm)進(jìn)行分離,升溫程序?yàn)?100℃保持1min,以8℃/min的速度升溫至300℃,保持5min,320℃后運(yùn)行2min.選擇m/z 為79、81和486.7、487.7作為定性定量離子.
用上述色譜及質(zhì)譜方法測(cè)得樣品中13CPCB-141和13C-PBDE-209 2種替代物的回收率分別為84.5%±10.5%和78.0%±8.5%.每16個(gè)樣品為1個(gè)批次,每個(gè)批次樣品同時(shí)做方法空白、空白加標(biāo)和基質(zhì)加標(biāo),以控制整個(gè)分析過(guò)程的準(zhǔn)確度和精密度.數(shù)據(jù)未進(jìn)行回收率矯正.
2.1 東海表層沉積物中TOC含量和BFRs的濃度如表1所示,東海表層沉積物中TOC含量在0.54%~0.88%之間,這個(gè)結(jié)果整體在Kao等人的報(bào)道結(jié)果之間.而對(duì)比世界其他海域 (例如亞馬遜三角洲TOC含量為0.6% ± 0.1%[20],密西西比三角洲TOC含量為0.71% ± 0.27%[21],世界海域表層沉積物TOC平均含量為0.75%[22]),中國(guó)東海沉積物中TOC含量與之相當(dāng).根據(jù)Kao等[23]和Wang等[16]提供的13C同位素?cái)?shù)據(jù),運(yùn)用TOC同位素平衡模型計(jì)算得出,長(zhǎng)江是長(zhǎng)江三角洲和東海主要的有機(jī)物來(lái)源,其貢獻(xiàn)量達(dá)到沉積物重量的26%~54%.
東海表層沉積物中PBDEs的濃度如表1所示.其中∑PBDEs的濃度范圍為0.20~2.09ng/g dw, BDE-209的濃度范圍為0.57~2.87ng/g dw.然而,本文所檢測(cè)出的BDE-209濃度較Chen 等[24]2006年的檢測(cè)結(jié)果(0.16~95ng/g dw)要低許多.可能是因?yàn)椴蓸狱c(diǎn)離海岸線的距離差異,本研究的采樣點(diǎn)離海岸線較遠(yuǎn),因而受到內(nèi)陸排放的影響可能就小很多.還有另外一個(gè)原因可能是由于歐盟于2006年推出了RoHS指令,商業(yè)Deca-BDE被禁用,因而導(dǎo)致市面上的PBDEs使用量大為減少[25].
為了考察東海沉積物中PBDEs濃度和TOC含量之間的關(guān)系,對(duì)表層沉積物中PBDEs濃度和TOC含量進(jìn)行線性擬合,所得擬合結(jié)果如圖2所示.從圖2可以看出,東海沉積物中PBDEs濃度和TOC含量之間的線性關(guān)系非常好(R2=0.723, P<0.01),這進(jìn)一步驗(yàn)證了東海沉積物中PBDEs濃度分布的一個(gè)重要影響因素是沉積物中TOC含量.
圖2 東海表層沉積物中PBDEs濃度和TOC直接的關(guān)系Fig.2 The correlations between PBDEs concentrations and TOC% in the surface sediments from the ECS
2.2 東海表層沉積物中PBDEs遷移特征
東海各個(gè)斷面采樣點(diǎn)的表層沉積物中的PBDEs濃度如圖3所示.從圖3可以看出,所有斷面離陸地最近的采樣點(diǎn)的表層沉積物中的PBDEs濃度都是最高的,隨著離陸地距離越遠(yuǎn),其濃度也隨之降低,這充分說(shuō)明了東海表層沉積物中PBDEs主要來(lái)自于內(nèi)陸江河的直接排放.例如,位于杭州灣的斷面1和斷面2主要受錢塘江的影響,而斷面5和斷面6主要受從浙江臺(tái)州入海的甌江影響.
另外從圖3可以看出,BDE-209在所有PBDEs中所占濃度百分比范圍為57.9%~76.7%,接下來(lái)分別是BDE-99和BDE-47,所占比例范圍分別為11.7%~21.5%和7.1%~17.4%,這說(shuō)明BDE-209是所有PBDEs同系物中最為主要的同系物.雖然BDE-209是主要同系物,但是BDE-209所占比重只有57.9%~76.7%,比太湖[26]以及其他的有關(guān)沉積物文獻(xiàn)報(bào)道結(jié)果低出許多.可能是因?yàn)闁|海表層沉積物中PBDEs主要來(lái)源于兩方面,一方面是來(lái)源于內(nèi)陸河流顆粒物的輸送,其顆粒物中BDE-209所占比例為90%以上[27].另外一方面是來(lái)源于內(nèi)陸空氣中顆粒物的沉降,而空氣顆粒物中吸附的PBDEs中低溴代的PBDEs所占比例要比河流顆粒物中所占比例高出許多[28].東海表層沉積物主要來(lái)之于空氣顆粒物沉降和河流顆粒物的輸送,所以其中BDE-209所占比例介于空氣顆粒物和河流顆粒物之間.
表1 東海表層沉積物中PBDEs同系物濃度和TOC含量Table 1 The concentration of PBDEs congeners and TOC in surface sediment of East China Sea
圖3 東海表層沉積物中PBDEs的濃度Fig.3 The concentration of PBDEs in surface sediment of East China Sea
2.3 東海柱狀沉積物中PBDEs的濃度分布
東海柱狀沉積物中PBDEs的濃度和TOC含量見表2和圖4.從表2和圖4可以看出,東海柱狀沉積物中PBDEs濃度總體呈現(xiàn)出先上升后下降的趨勢(shì),當(dāng)沉積物深度到達(dá)15cm以后,PBDEs濃度已檢測(cè)不到或者低于檢出限.以DH1-1柱狀沉積物為例,表層0~3cm沉積物中PBDEs總濃度為2.58ng/g dw,隨著深度繼續(xù)加深3~6、6~9、9~12、12~15cm沉積物中PBDEs總濃度依次為3.04、1.81、0.74和0.33ng/g dw.這一現(xiàn)象和中國(guó)大陸使用PBDEs的方式非常吻合.隨著20世紀(jì)70年末改革開放的開始,中國(guó)制造業(yè)開始迅猛發(fā)展,PBDEs開始進(jìn)入中國(guó)市場(chǎng)并被使用到相關(guān)產(chǎn)品中[2],因此在大約15cm深處的沉積物開始有PBDEs的檢出,隨后其濃度大量增加,并在3~6cm深處的沉積物濃度達(dá)到最高.之后濃度略有下降,這是因?yàn)?006年前后隨著歐美等國(guó)家相繼推出類似于RoHS指令這樣的法規(guī)之后,PBDEs的使用量開始明顯下降,但是市場(chǎng)上2006年之前的產(chǎn)品仍含有大量的PBDEs,因此沉積物中PBDEs只是出現(xiàn)了略微的下降趨勢(shì).
表2 東海柱狀沉積物中PBDEs濃度和TOC含量Table2 The concentration of PBDEs and TOC in core sediment from ECS
續(xù)表2
圖4 東海柱狀沉積物中PBDEs濃度和同系物組成Fig.4 The concentration and congeners contribution of PBDEs in core sediment form ECS
就不同柱狀沉積物之間比較來(lái)說(shuō),其PBDEs濃度總體呈現(xiàn)出的分布趨勢(shì)和表層沉積物是一致的,即位于甌江入??诘腄H 5-1柱狀沉積物中PBDEs濃度最高.其原因如2.2節(jié)所述,主要是因?yàn)楫T江受浙江臺(tái)州等廢舊電子電器拆解行業(yè)污染嚴(yán)重,其輸送至東海的顆粒物中PBDEs含量較錢塘江高.
柱狀沉積物Core DH 1-1、DH2-1、DH3-1、DH4-1、DH5-1、DH6-1和DH7-1中TOC的含量分別在0.62%~0.78%、0.68%~0.82%、0.64%~0.77%、0.63%~0.73%、0.73%~0.88%、0.74%~0.88%和0.63%~0.75%之間(表2).此外,柱狀沉積物中PBDEs濃度和TOC含量之間有較強(qiáng)的線性關(guān)系(R2=0.595,P<0.01,圖5),這進(jìn)一步說(shuō)明沉積物中PBDEs分布和TOC含量有較大的關(guān)系.
圖5 東海柱狀沉積物中PBDEs濃度(ng/g dw)和TOC含量(%)之間的關(guān)系Fig.5 The correlations between PBDEs concentrations and TOC% in the core sediments from the ECS
3.1 東海表層沉積物中TOC含量在0.54%~0.88%之間;其中∑PBDEs的濃度范圍為0.20~2.09ng/g dw,BDE-209的濃度范圍為0.57~2.87ng/g dw.東海沉積物中PBDEs濃度和TOC含量之間的線性關(guān)系非常好(R2=0.723,P<0.01).3.2 東海表層沉積物中BDE-209在所有PBDEs中所占濃度百分比范圍為57.9%~76.7%,接下來(lái)分別是BDE-99和BDE-47,所占比例范圍分別為11.7%~21.5%和7.1%~17.4%.其分布呈現(xiàn)出(離海岸線)由近及遠(yuǎn)濃度越來(lái)越低的趨勢(shì);由北到南濃度上升的趨勢(shì).
3.3 東海柱狀沉積物中PBDEs濃度呈現(xiàn)出先上升后下降的趨勢(shì).柱狀沉積物TOC的含量在0.62%~0.88%之間,而且柱狀沉積物中PBDEs濃度和TOC含量之間有較強(qiáng)的線性關(guān)系(R2=0.595, P<0.01).
參考文獻(xiàn):
[1] 朱婧文,刁 碩,劉成斌.溴代阻燃劑 [J].科技信息, 2012, (25):26.
[2] De Wit C A.An overview of brominated flame retardants in the environment [J].Chemosphere, 2002,46:583-624.
[3] Fu J, Suuberg E M.Vapor pressure of solid polybrominated diphenyl ethers determined via Knudsen effusion method [J].Environmental Toxicology and Chemistry, 2011,30:2216-2219.
[4] Streets S S, Henderson S A, Stoner A D, et al.Partitioning and bioaccumulation of PBDEs and PCBs in Lake Michigan [J].Environmental Science and Technology, 2006,40:7263-7269.
[5] 田 慧,郭 強(qiáng),毛瀟萱,等.廣州地區(qū)典型多溴聯(lián)苯醚遷移和歸趨行為模擬 [J].中國(guó)環(huán)境科學(xué), 2014,34(3):758-765.
[6] Jin J, Wang Y, Liu W, et al.Polybrominated diphenyl ethers in atmosphere and soil of a production area in China: levels and partitioning [J].Journal of Environmental Sciences, 2011,23:427-433.
[7] Yang S, Wang S, Liu H, et al.Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J].Environmental Science and Pollution Research, 2012,19:4090-4096.
[8] Zheng X, Liu X, Jiang G, et al.Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau [J].Environmental Pollution, 2012,161:101-106.
[9] Allsopp M, Erry B, Santillo D, et al.POPs in the Baltic: a review of persistent organic pollutants (POPs) in the Baltic Sea [R].Greenpeace International, 2001.
[10] Wang X P, Gong P, Yao T D, et al.Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau [J].Environmental Science and Technology, 2010,44:2988-2993.
[11] M?ller A, Xie Z, Sturm R, et al.Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants in air and seawater of the European Arctic [J].Environmental Pollution, 2011,159:1577-1583.
[12] 耿大瑋,李英明,張 慶.南極喬治王島大氣中PCBs和PBDEs的污染水平及分布規(guī)律 [R].上海:第六屆全國(guó)環(huán)境化學(xué)學(xué)術(shù)大會(huì), 2011.
[13] Muir D C, Backus S, Derocher A E, et al.Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard [J].Environmental Science and Technology, 2006,40:449-455.
[14] Parolini M, Guazzoni N, Binelli A, et al.Polybrominated diphenyl ether contamination in soil, vegetation, and cow milk from a high-mountain pasture in the Italian Alps [J].Archives of Environmental Contamination and Toxicology, 2012,63:29-44.
[15] Cai M, Zhao Z, Yang H, et al.Spatial distribution of per-and polyfluoroalkyl compounds in coastal waters from the East to South China Sea [J].Environmental Pollution, 2012,161:162-169.
[16] Wang X C, Sun M Y, Li A C.Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments [J].Journal of Oceanography, 2008,64:311-321.
[17] Guo Z, Lin T, Zhang G, et al.High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea [J].Environmental Science and Technology, 2006,40:5304-5311.
[18] Hu L, Lin T, Shi X, et al.The role of shelf mud depositional process and large river inputs on the fate of organochlorine pesticides in sediments of the Yellow and East China Seas [J].Geophysical Research Letters, 2011,38(3):246-258.
[19] Bettina H, Hermann F, Wolfgang V L, et al.Effects of chain length, chlorination degree, and structure on the octanol? water partition coefficients of polychlorinated n-alkanes [J].Environmental Science and Technology, 2011,45:2842-2849.
[20] Aller R C, Blair N E.Sulfur diagenesis and burial on the Amazon shelf: Major control by physical sedimentation processes [J].Geo-Marine Letters, 1996,16:3-10.
[21] Lin S, Morse J W.Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments [J].American Journal of Science, 1991,291:55-89.
[22] Berner R A.Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance [J].Am.J.Sci., 1982,282:451-473.
[23] Kao S, Lin F, Liu K.Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough [J].Deep Sea Research Part II: Topical Studies in Oceanography, 2003,50: 1203-1217.
[24] Chen S J, Gao X J, Mai B X, et al.Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: levels, distribution and potential hydrodynamic influence [J].Environmental Pollution, 2006,144:951-957.
[25] De Wit C A, Herzke D, Vorkamp K.Brominated flame retardants in the Arctic environment–trends and new candidates [J].Science of the Total Environment, 2010,408:2885-2918.
[26] Qiu X, Zhu T, Hu J.Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China [J].Chemosphere, 2010,80:1207-1212.
[27] Carlsson P, Herzke D, Wedborg M, et al.Environmental pollutants in the Swedish marine ecosystem, with special emphasis on polybrominated diphenyl ethers (PBDE), Chemosphere, 2011,82:1286-1292.
[28] Deng W J, Zheng J S, Bi X H, et al.Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China [J].Environ.Int., 2007,33:1063-1069.
The distribution of polybrominated piphenyl rther in the sediment of East China Sea.
ZHOU Peng1, LIN Kuang-fei2, YU Hui-juan1, ZHAO Jian-hua2, CAI You-qiong1, LIU Li-li2*(1.Laboratory of Quality and Safety Risk Assessment for Aquatic Products (Shanghai), Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai 200090, China;2.East China University of Science and Technology, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China).China Environmental Science, 2016,36(1):149~156
Abstract:In this study, 28surface sediment and 7core sediment samples were collected from the East China Sea (ECS) to determine the distribution properties of polybrominated diphenyl ethers (PBDEs).The concentrations of total PBDEs (excepted BDE-209) in surface sediment samples were in the range of 0.20~2.09ng/g dw.Among the detected congeners, BDE-209 was the predominant congener with the corresponding concentration ranging from 0.57~2.87ng/g dw (57.9%~76.7% of total PBDEs), followed by BDE-99 and BDE-47.Moreover, the concentrations of PBDEs decreased with the increase of distance between sampling sites and coastline and increased from the north to south.The distribution trends of PBDEs in core sediment samples from the ECS matched well with the application history and status of PBDEs products in China.The ratios of total organic carbon (TOC) in the surface and core sediment samples were ranged from 0.54%~0.88% and 0.62%~0.88% respectively.And the correlations between TOC and PBDEs in both surface (R2=0.723, P< 0.01) and core (R2=0.595, P<0.01) sediment samples indicated that TOC might be one of the impact factors for the characteristics of PBDEs distribution in sediment.
Key words:polybrominated diphenyl ethers;East China Sea;sediment;distribution;total organic carbon
中圖分類號(hào):X55
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1000-6923(2016)01-0149-08
收稿日期:2015-05-20
基金項(xiàng)目:環(huán)保公益性行業(yè)科研專項(xiàng)(201309047,201309030);國(guó)家自然科學(xué)基金(41001316,41371467,40901148);中央高校基本科研業(yè)務(wù)費(fèi)(NO.WB1214059)
作者簡(jiǎn)介:周 鵬(1988-),男,江西貴溪人,助理研究員,博士,主要從事水產(chǎn)品檢測(cè)、POPs污染分析及源解析研究.發(fā)表論文4篇.