呂雨虹,陳慶,趙娟,王彥玲,祝建峰,閆蘊(yùn)力
(1.河北醫(yī)科大學(xué),河北石家莊050017;2.河北省胸科醫(yī)院,河北石家莊050041)
?
轉(zhuǎn)染白細(xì)胞介素18基因通過下調(diào)多藥耐藥基因表達(dá)增強(qiáng)順鉑對(duì)C6膠質(zhì)瘤細(xì)胞毒作用*
呂雨虹1,陳慶2,趙娟1,王彥玲1,祝建峰2,閆蘊(yùn)力1
(1.河北醫(yī)科大學(xué),河北石家莊050017;2.河北省胸科醫(yī)院,河北石家莊050041)
摘要:目的探討轉(zhuǎn)染白細(xì)胞介素18(IL18)基因?qū)Υ笫驝6膠質(zhì)瘤細(xì)胞順鉑化療敏感性的影響及可能的作用機(jī)制。方法體外培養(yǎng)轉(zhuǎn)染IL18基因的C6/IL18細(xì)胞株和未轉(zhuǎn)染的C6細(xì)胞系,MTT法觀察順鉑對(duì)兩類腫瘤細(xì)胞的抑制率;流式細(xì)胞術(shù)檢測(cè)順鉑作用后轉(zhuǎn)染及未轉(zhuǎn)染腫瘤細(xì)胞的凋亡率;反轉(zhuǎn)錄PCR及蛋白質(zhì)印跡法(Western blot)檢測(cè)轉(zhuǎn)染細(xì)胞內(nèi)多藥耐藥基因(Mdr1)和拓?fù)洚悩?gòu)酶TopoⅡα的mRNA水平和蛋白質(zhì)水平的表達(dá)變化。結(jié)果順鉑對(duì)轉(zhuǎn)染IL18基因的膠質(zhì)瘤細(xì)胞株的抑制率明顯高于未轉(zhuǎn)染細(xì)胞(P<0.05),半數(shù)抑制濃度分別為29.66μg/ml和55.49μg/ml;流式細(xì)胞術(shù)顯示順鉑作用后的轉(zhuǎn)染細(xì)胞凋亡增多(P<0.05);反轉(zhuǎn)錄PCR及Western blot顯示轉(zhuǎn)染細(xì)胞的Mdr1基因表達(dá)顯著下降,TopoⅡα基因表達(dá)無明顯變化。結(jié)論轉(zhuǎn)染IL18基因能夠下調(diào)多藥耐藥基因Mdr1的表達(dá),增強(qiáng)順鉑對(duì)大鼠C6膠質(zhì)瘤細(xì)胞的毒作用。
關(guān)鍵詞:白細(xì)胞介素18;C6膠質(zhì)瘤;多藥耐藥基因;P糖蛋白
基因治療是新興的腫瘤治療手段,其利用基因重組和轉(zhuǎn)染技術(shù),對(duì)腫瘤細(xì)胞基因組進(jìn)行改良,以期望實(shí)現(xiàn)治療腫瘤的目的。白細(xì)胞介素18 (Interleukin 18,IL18)是一種多功能的細(xì)胞因子,能夠增強(qiáng)體內(nèi)抗腫瘤免疫反應(yīng)[1],是基因治療的候選基因。李文玲[2]等應(yīng)用逆轉(zhuǎn)錄病毒轉(zhuǎn)染的方法構(gòu)建了穩(wěn)定表達(dá)具有生物活性的白細(xì)胞介素18的C6/ IL18細(xì)胞系,并在體外和體內(nèi)觀察到有顯著意義的細(xì)胞生長(zhǎng)抑制現(xiàn)象。不僅如此,蔣常文[3]等發(fā)現(xiàn)轉(zhuǎn)染IL18基因能夠顯著性下調(diào)C6細(xì)胞周期相關(guān)基因PCNA、cyclin D1、cyclin B1的表達(dá),上調(diào)P21的表達(dá)。然而,轉(zhuǎn)染IL18基因能否下調(diào)多藥耐藥基因表達(dá),增強(qiáng)化療藥物對(duì)腫瘤細(xì)胞毒性,尚未有深入的研究報(bào)道。明確轉(zhuǎn)染基因能否增強(qiáng)化療敏感性,將為基因治療提供更廣闊的應(yīng)用前景。
1.1材料與試劑
大鼠C6膠質(zhì)瘤細(xì)胞和導(dǎo)入IL18基因的C6/ IL18細(xì)胞系,河北醫(yī)科大學(xué)細(xì)胞生物教研室制備并保存[2]。順鉑(齊魯制藥有限公司),RPMI 1640培養(yǎng)基(美國(guó)Gibco公司),胎牛血清(天津?yàn)笊锕荆?,四甲基偶氮唑藍(lán)(methyl thiazolyl tetrazolium,MTT)(美國(guó)Sigma公司),Annexin V-FITC/PI細(xì)胞凋亡雙染試劑盒(美國(guó)Invitrogen公司),RT-PCR試劑盒(美國(guó)Invitrogen公司),小鼠抗大鼠βactin、Mdr1、TopoⅡα,以及辣根過氧化物酶標(biāo)記羊抗鼠二抗均來自美國(guó)Santa Cruz公司。
1.2試驗(yàn)方法
1.2.1MTT檢測(cè)不同濃度順鉑對(duì)腫瘤細(xì)胞的抑制率取對(duì)數(shù)生長(zhǎng)期C6和C6/IL18細(xì)胞,接種于96孔培養(yǎng)板,24 h后根據(jù)不同藥物濃度組:2.5、5.0、10.0、20.0、40.0、80.0及160.0μg/ml加入藥物,對(duì)照組加入等量的生理鹽水,每組均做3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次(n=9)。藥物與細(xì)胞共培養(yǎng)24 h后加入MTT,孵育4 h后終止反應(yīng)。酶標(biāo)儀(BIO-TEK ELX800,美國(guó))在490 nm波長(zhǎng)下測(cè)吸光值(A值)。根據(jù)公式計(jì)算細(xì)胞抑制率:對(duì)照孔A值-用藥孔A值/對(duì)照孔A值×100%。由細(xì)胞抑制率與藥物濃度的對(duì)數(shù)值作線性回歸,求出順鉑對(duì)每種細(xì)胞的半數(shù)抑制濃度(IC50)。
1.2.2流式細(xì)胞術(shù)檢測(cè)順鉑作用后的細(xì)胞凋亡率取對(duì)數(shù)生長(zhǎng)期C6和C6/IL18細(xì)胞,接種于培養(yǎng)瓶中,24 h后加入終濃度為30.0μg/ml(C6/IL18細(xì)胞的IC50)的順鉑作用24 h,胰酶消化,冷PBS洗2次,Binding Buffer重懸細(xì)胞,設(shè)置陰性對(duì)照組(不加染料)、同型對(duì)照組(分別只加Annexin V-FITC和PI)以及藥物處理組(混合Annexin V-FITC和PI),室溫避光反應(yīng)10 min上流式細(xì)胞儀(BD FACS Calibur,美國(guó))檢測(cè),調(diào)節(jié)電壓和補(bǔ)償,收集10 000個(gè)事件,統(tǒng)計(jì)門內(nèi)細(xì)胞的凋亡比例。實(shí)驗(yàn)重復(fù)3次。
1.2.3反轉(zhuǎn)錄PCR檢測(cè)mRNA的表達(dá)Trizol法提取細(xì)胞總RNA,并進(jìn)行反轉(zhuǎn)錄反應(yīng),反轉(zhuǎn)錄產(chǎn)物進(jìn)行PCR反應(yīng),Mdr1、TopoⅡα、βactin和IL18的退火溫度分別為51、55、53及59℃。引物見表1。
表1 擴(kuò)增基因的引物序列及長(zhǎng)度
1.2.4蛋白質(zhì)免疫印跡法(Western blot)檢測(cè)蛋白的表達(dá)提取細(xì)胞總蛋白,使用BCA法測(cè)定蛋白濃度,25μg/ml孔上樣,蛋白經(jīng)SDS-PAGE電泳分離后,轉(zhuǎn)至NC膜上。NC膜用一抗4℃過夜孵育(Mdr1、TopoⅡα、βactin一抗均1∶1 000稀釋),TBS洗膜,37℃二抗孵育1 h(1∶2 000稀釋),洗膜后,滴加ECL化學(xué)發(fā)光液,采用凝膠成像系統(tǒng)(BIO-RAD Chemi Doc XRS,美國(guó))記錄圖像。
1.3統(tǒng)計(jì)學(xué)方法
采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,實(shí)驗(yàn)數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,作非配對(duì)t檢驗(yàn),P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2.1順鉑對(duì)C6/IL18和C6細(xì)胞抑制率的比較
順鉑對(duì)細(xì)胞的抑制率隨濃度升高而增大(見圖1),除0.5μg/ml外,其他濃度2.5、5.0、10.0、20.0、40.0、80.0及160.0μg/ml,對(duì)C6/IL18細(xì)胞的抑制率均高于C6細(xì)胞(見表2),P<0.05,n=9。經(jīng)計(jì)算,順鉑對(duì)C6/IL18細(xì)胞的半數(shù)抑制濃度(IC50)為29.66μg/ml,明顯低于其對(duì)C6細(xì)胞的IC50 55.49μg/ml,P<0.05。
2.2順鉑對(duì)C6/IL18和C6細(xì)胞凋亡率的比較
C6/IL18和C6細(xì)胞經(jīng)順鉑作用24 h后,C6/IL18細(xì)胞凋亡率[(22.63±2.85)%,n =3]明顯高于C6細(xì)胞凋亡率[(10.57±1.93)%,n=3,P=0.012,F(xiàn)=1.16]。
2.3轉(zhuǎn)染IL18基因?qū)6細(xì)胞Mdr1和TopoⅡα基因表達(dá)的影響
反轉(zhuǎn)錄PCR和Western blot結(jié)果顯示(見圖2、3),相對(duì)于C6細(xì)胞,C6/IL18細(xì)胞的Mdr1 mRNA和蛋白表達(dá)水平均明顯減少(見表3、4),TopoⅡα變化不明顯。
圖1 順鉑對(duì)細(xì)胞的生長(zhǎng)抑制曲線
表2 順鉑對(duì)細(xì)胞的生長(zhǎng)抑制率(n=9,±s)
表2 順鉑對(duì)細(xì)胞的生長(zhǎng)抑制率(n=9,±s)
注:?P<0.05
組別順鉑濃度/(μg/ml)0.5 2.5 5.0 10.0 20.0 40.0 80.0 160.0 C6/IL18 C6 P值F值8.8±1.1 19.2±4.7? 29.4±6.8? 40.0±10.2? 53.1±6.2? 61.5±8.0? 65.8±8.9? 69.6±6.4?9.5±1.7 14.1±3.6 20.6±6.8 29.2±7.5 40.7±11.4 50.2±8.6 53.5±9.5 55.3±13.4 0.324 0.021 0.014 0.021 0.011 0.011 0.012 0.011 2.587 1.703 1.008 1.860 3.395 1.144 1.138 4.297
圖2 轉(zhuǎn)染IL18基因下調(diào)Mdr1轉(zhuǎn)錄水平
圖3 轉(zhuǎn)染IL18基因減少M(fèi)dr1蛋白表達(dá)
表3 Mdr1、TopoⅡα基因轉(zhuǎn)錄水平相對(duì)值(n=3,±s)
表3 Mdr1、TopoⅡα基因轉(zhuǎn)錄水平相對(duì)值(n=3,±s)
注:?P<0.05
組別 C6/IL18 C6 P值 F值Mdr1 0.11±0.04? 0.55±0.05 0.000 2.054 TopoⅡα 0.54±0.06 0.47±0.03 0.153 5.105
表4 Mdr1、TopoⅡα基因蛋白水平相對(duì)值(n=3,±s)
表4 Mdr1、TopoⅡα基因蛋白水平相對(duì)值(n=3,±s)
注:?P<0.05
組別 C6/IL18 C6 P值 F值Mdr1 0.10±0.05? 0.40±0.05 0.002 1.246 TopoⅡα 0.21±0.04 0.19±0.04 0.405 1.000
神經(jīng)膠質(zhì)瘤是成人中樞神經(jīng)系統(tǒng)中最常見的原發(fā)腫瘤,占顱內(nèi)腫瘤的70%,預(yù)后差,死亡率高。膠質(zhì)瘤治療采用手術(shù)、放化療結(jié)合的手段,然而患者生存時(shí)間并沒有大幅度提升和改善。主要原因是膠質(zhì)瘤呈浸潤(rùn)性生長(zhǎng),手術(shù)不能完全切除;另一方面由于其內(nèi)在的耐藥性,化療藥物很難有效地殺傷腫瘤細(xì)胞,從而導(dǎo)致化療失敗。
化療過程中,患者在接觸化療藥物一段時(shí)間后,多數(shù)會(huì)發(fā)生耐藥,并且對(duì)其他在結(jié)構(gòu)和機(jī)制上完全不同的藥物表現(xiàn)出交叉耐藥,這種現(xiàn)象稱多藥耐藥(multidrug resistance,MDR)。惡性腫瘤細(xì)胞產(chǎn)生多藥耐藥的機(jī)制尚未完全闡明,其中已知的最重要的形成機(jī)制是P糖蛋白(Pglycoprotein,Pgp)過度表達(dá)[4],該蛋白是跨膜轉(zhuǎn)運(yùn)蛋白,定位在細(xì)胞膜和高爾基體上,可以將藥物分子泵出胞外,減少藥物的胞內(nèi)累積,不僅如此,Pgp對(duì)底物要求不嚴(yán)格,可將不同類型的藥物泵出,從而形成多藥耐藥。Pgp過度表達(dá),與腫瘤耐藥、復(fù)發(fā)和預(yù)后密切相關(guān)[5-8]。周榮福[9]等的臨床研究發(fā)現(xiàn),人腦星形細(xì)胞瘤Pgp表達(dá)先天存在,對(duì)化療藥物有先天耐受性,當(dāng)藥物刺激后Pgp陽(yáng)性表達(dá)能產(chǎn)生繼發(fā)耐藥或增強(qiáng)先天耐藥。人類編碼這一蛋白的基因?yàn)镸dr1,定位在7號(hào)染色體長(zhǎng)臂2區(qū)1帶,含28個(gè)外顯子。Mdr1基因啟動(dòng)子及其鄰近區(qū)域,可與多條信號(hào)通路的轉(zhuǎn)錄因子結(jié)合,調(diào)節(jié)Mdr1的轉(zhuǎn)錄[4,10-12]。另一條介導(dǎo)多藥耐藥的途徑是DNA拓?fù)洚悩?gòu)酶(Topoisomerase,Topo)的數(shù)量或活性減少[13]。真核細(xì)胞中TopoⅡ的主要作用是調(diào)節(jié)DNA空間結(jié)構(gòu),參與DNA修復(fù)、復(fù)制和轉(zhuǎn)錄。以TopoⅡ?yàn)榘悬c(diǎn)的抗腫瘤藥物通過形成藥物-酶-DNA復(fù)合物抑制DNA的復(fù)制與轉(zhuǎn)錄。研究發(fā)現(xiàn)[14-15],TopoⅡ的含量或活性下調(diào),引起藥物失去效靶,形成細(xì)胞耐藥。這類耐藥沒有Mdr1基因過表達(dá),主要表現(xiàn)為TopoⅡ基因突變或缺失;TopoⅡ酶水平減少或磷酸化水平提高。
白細(xì)胞介素18是一種多功能細(xì)胞因子,能夠增強(qiáng)體內(nèi)抗腫瘤免疫反應(yīng)[1],是基因治療的候選基因。研究表明[16],IL18基因單獨(dú)轉(zhuǎn)染,或與其他細(xì)胞因子聯(lián)合轉(zhuǎn)染,如IL12、IFN、FASL等,表現(xiàn)出顯著地抑制腫瘤生長(zhǎng)的特性。XU[16]等應(yīng)用慢病毒轉(zhuǎn)染的方法,將IL18和IFNβ基因?qū)牍撬杌|(zhì)干細(xì)胞,發(fā)現(xiàn)這些轉(zhuǎn)基因細(xì)胞能顯著抑制膠質(zhì)瘤細(xì)胞生長(zhǎng),促進(jìn)其凋亡;大鼠模型顯示,這些轉(zhuǎn)基因細(xì)胞還能增強(qiáng)其他抗腫瘤因子的分泌,以及CD4+和CD8+T細(xì)胞對(duì)瘤組織的浸潤(rùn),延長(zhǎng)荷瘤大鼠生存期。雖然轉(zhuǎn)染IL18基因能顯著地抑制腫瘤生長(zhǎng),但是這些研究中的腫瘤細(xì)胞并不能全部清除。轉(zhuǎn)染IL18基因能否增強(qiáng)化療效果尚未有深入研究。本研究首先觀察C6/IL18和C6兩種細(xì)胞,在不同濃度順鉑下的生長(zhǎng)抑制情況,發(fā)現(xiàn)順鉑對(duì)C6/IL18細(xì)胞的生長(zhǎng)抑制明顯增強(qiáng)。之后,進(jìn)一步檢測(cè)這兩種細(xì)胞的Pgp和TopoⅡα的mRNA和蛋白水平的變化,發(fā)現(xiàn)C6/IL-18細(xì)胞中Pgp表達(dá)量明顯減少,這與順鉑對(duì)其有較高抑制率的結(jié)果相對(duì)應(yīng),推測(cè)轉(zhuǎn)染IL18基因通過下調(diào)多藥耐藥基因Mdr1的表達(dá),增強(qiáng)藥物對(duì)C6細(xì)胞的毒作用。
Mdr1基因表達(dá)可被多條信號(hào)通路調(diào)節(jié),其中ERK/MAPK和PI3K/AKT最密切相關(guān)。MUNOZ[17]等人的研究發(fā)現(xiàn),膠質(zhì)瘤細(xì)胞系對(duì)替莫唑胺耐藥的過程包含兩個(gè)階段:早期階段,胞漿內(nèi)的Pgp轉(zhuǎn)運(yùn)到胞膜,伴隨構(gòu)象激活性改變;晚期階段,腫瘤細(xì)胞自分泌EGF,與自身的EGFR受體結(jié)合,激活ERK1/2-JNK-AP-1信號(hào)通路,增強(qiáng)Mdr1基因轉(zhuǎn)錄。大量研究表明[18-21],藥物作用腫瘤細(xì)胞會(huì)引起PI3K/AKT信號(hào)活化,進(jìn)而上調(diào)Mdr1表達(dá),應(yīng)用小RNA干擾或抑制PI3K-AKT活性能下調(diào)Mdr1。而PI3K/AKT下游的哪個(gè)或哪些靶基因作用Mdr1,不同課題組得出的結(jié)果不盡相同。一些研究發(fā)現(xiàn)抑制耐藥細(xì)胞的PI3K-AKT活性后,通過NF-κB途徑調(diào)節(jié)Mdr1[19]。而其他研究發(fā)現(xiàn),藥物可通過Akt-mTOR信號(hào)通路增加Mdr1表達(dá)[20],阻斷mTOR通路能抑制膜轉(zhuǎn)運(yùn)蛋白ABCB1、ABCC1和ABCG2的表達(dá),逆轉(zhuǎn)細(xì)胞的耐藥性[21]。這些研究使用的藥物以及腫瘤細(xì)胞類型不同,腫瘤基因組異質(zhì)性較強(qiáng),可能存在多個(gè)途徑影響Mdr1表達(dá)。之前的研究報(bào)道C6細(xì)胞中轉(zhuǎn)染IL18基因能夠顯著性上調(diào)P21的表達(dá),下調(diào)周期蛋白cyclin D1和cyclin B1的表達(dá),引起細(xì)胞周期阻滯[3]。而AKT活化介導(dǎo)的下游信號(hào)與這一作用相反,通過抑制P21的活性,穩(wěn)定cyclin-CDK復(fù)合物,促進(jìn)細(xì)胞周期進(jìn)展。因此,轉(zhuǎn)染IL18基因可能通過對(duì)抗PI3K-AKT信號(hào),調(diào)節(jié)Mdr1基因表達(dá)。
綜上所述,轉(zhuǎn)染IL18基因能夠下調(diào)Mdr1基因表達(dá),減少細(xì)胞內(nèi)Pgp蛋白水平,增強(qiáng)C6細(xì)胞的藥物敏感性,為IL18基因治療提供更廣闊的應(yīng)用前景。
參考文獻(xiàn):
[1]CHRISTOFIDES A,KOSMOPOULOS M,PIPERI C. Pathophysiological mechanisms regulated by cytokines in gliomas[J]. Cytokine,2015,71(2):377-384.
[2]李文玲,閆蘊(yùn)力,單保恩,等.逆轉(zhuǎn)錄病毒介導(dǎo)IL18基因在大鼠膠質(zhì)瘤細(xì)胞C6中的表達(dá)[J].細(xì)胞與分子免疫學(xué)雜志,2004,20(5):522-525.
[3]蔣常文,閆蘊(yùn)力,馬衛(wèi)東,等. IL18基因轉(zhuǎn)染對(duì)大鼠C6膠質(zhì)瘤細(xì)胞生長(zhǎng)特性的影響[J].細(xì)胞生物學(xué)雜志,2005,27(3):339-342.
[4]AMBUDKAR S V,KIMCHI-SARFATY C,SAUNA Z E,et al. P-glycoprotein:from genomics to mechanism[J]. Oncogene,2003,22(47):7468-7485.
[5]WU Q,YANG Z,NIE Y,et al. Multi-drug resistance in cancer chemotherapeutics:mechanisms and lab approaches[J]. Cancer Lett,2014,347(2):159-166.
[6]ABRAHAM J,SALAMA N N,AZAB A K. The role of P-glycoprotein in drug resistance in multiple myeloma[J]. Leuk Lym-phoma,2015,56(1):26-33.
[7]JAMROZIAK K,ROBAK T. Pharmacogenomics of MDR1/ABCB1 gene:the influence on risk and clinical outcome of haematological malignancies[J]. Hematology,2004,9(2):91-105.
[8]HAAR C P,HEBBAR P,WALLACE GC,et al. Drug resistance in glioblastoma:a mini review[J]. Neurochem Res,2012,37(6):1192-1200.
[9]周榮福,侯衛(wèi)東,李飛,等. P糖蛋白在腦星形細(xì)胞瘤中的表達(dá)及意義[J].中國(guó)臨床神經(jīng)外科雜志,2007,12(12):729-731.
[10]CHEN K G,SIKIC B I. Molecular pathways:regulation and therapeutic implications of multidrug resistance[J]. Clin Cancer Res,2012,18(7):1863-1869.
[11]SUI H,F(xiàn)AN Z Z,LI Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/P-gp-mediated multiple drug resistance in human cancer cells[J]. J Int Med Res,2012,40 (2):426-435.
[12]ANDORFER P,ROTHENEDER H. Regulation of the Mdr1 promoter by E2F1 and EAPP[J]. FEBS Lett,2013,587(10):1504-1509.
[13]TSURUO T,NAITO M,TOMIDA A,et al. Molecular targeting therapy of cancer:drug resistance,apoptosis and survival signal [J]. Cancer Sci,2003,94(1):15-21.
[14]JUN K Y,PARK S E,LIANG J L,et al. Benzo[b]tryptanthrin inhibits Mdr1,topoisomerase activity,and reverses adriamycin resistance in breast cancer cells[J]. Chem MedChem,2015,10(5):827-835.
[15]WANG Y L,YAN Y L,ZHOU N J,et al. Mechanism of multidrug resistance of human small cell lung cancer cell line H446/VP[J]. Chin Med J,2010,123(22):3299-3303.
[16]XU G,GUO Y,SENG Z,et al. Bone marrow-derived mesenchymal stem cells co expressing interleukin-18 and interferon-β exhibit potent antitumor effect against intracranial glioma in rats[J]. Oncol Rep,2015,34(4):1915-1922.
[17]MUNOZ J L,RODRIGUEZ-CRUZ V,GRECO S J,et al. Temozolomide induces the production of epidermal growth factor to regulate MDR1 expression in glioblastoma cells[J]. Mol Cancer Ther,2014,13(10):2399-2411.
[18]XIE X,TANG B,ZHOU J,et al. Inhibition of the PI3K/Akt pathway increases the chemo-sensitivity of gastric cancer to vincristine[J]. Oncol Rep,2013,30(2):773-782.
[19]LIN X,ZHANG X,WANG Q,et al. Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-κB signaling pathway in a human breast cancer cell line[J]. Neoplasma,2012,59(3):248-256.
[20]WANG S F,CHOU Y C,MAZUMDE R N,et al. 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells[J]. Biochem Pharmacol,2013,86(4):548-560.
[21]ZOU Z,ZHANG J,ZHANG H,et al. 3-Methyladenine can depress drug efflux transporters via blocking the PI3K-AKT-mTOR pathway thus sensitizing MDR cancer to chemotherapy[J]. J Drug Target,2014,22(9):839-848.
(張蕾編輯)
論著
Transfection of IL18 gene enhances cytotoxicity of cisplatin on C6 glioma cells by reducing Mdr1 expression*
Yu-hong Lyu1,Qing Chen2,Juan Zhao1,Yan-ling Wang1,Jiang-feng Zhu2,Yun-li Yan1
(1. Department of Cell Biology,Hebei Medical University,Shijiazhuang,Hebei 050017,China;2. Department of Gastroenterology,Hebei Chest Hospital,Shijiazhuang,Hebei 050041,China)
Abstract:Objective To explore the effect of transfection of interleukin 18(IL 18)on sensitivity of rat C6 glioma cells to cisplatin chemotherapy and the possible mechanism. Methods C6 cells with and without transfection of IL 18(C6/IL18 cells and C6 cells)were cultured in vitro. The growth inhibition ratios of both types of glioma cells were measured by MTT assay,when treated with cisplatin at various concentrations. Cell apoptosis was detected by flow cytometry after being treated with 50%inhibition concentration of cisplatin. The levels of mRNA and protein of Mdr1 and TopoⅡα were evaluated by reverse transcription-polymerase chain reaction(RT-PCR)and Western blot. Results Upon cisplatin treatment,the ratio of growth inhibition was significantly higher in the C6/IL18 cells than that in the C6 cells(P<0.05),the 50%inhibition concentration of cisplatin was 29.66 μg/ml and 55.49 μg/ml respectively. The apoptosis ratio of the C6/IL18 cells was higher than that of the C6 cells after treatment with cisplatin(P<0.05). In the C6/IL18 cells,the expressions of Mdr 1 was markedly down-regulated identified by RT-PCR and Western blot,but the expressions of TopoⅡα had no significant differences. Conclusions Transfection with IL 18 significantly reduces the expressions of Mdr1,then strengthens the chemo-sensitivity of C6 glioma cells to cisplatin.
Keywords:interleukin 18;C6 glioma cell;Mdr1;Pgp
中圖分類號(hào):R739.41
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.3969/j.issn.1005-8982.2016.10.005
文章編號(hào):1005-8982(2016)10-0020-05
收稿日期:2015-12-10
*基金項(xiàng)目:河北省醫(yī)學(xué)科學(xué)研究重點(diǎn)課題計(jì)劃(No:20160508)