鄧?yán)?,宋?/p>
(湖北省丹江口市第一醫(yī)院檢驗(yàn)科,湖北丹江口442700)
?
高膽固醇對(duì)小鼠原代成骨細(xì)胞Akt/NF-κB信號(hào)通路的影響
鄧?yán)?,宋?/p>
(湖北省丹江口市第一醫(yī)院檢驗(yàn)科,湖北丹江口442700)
摘要:目的觀察高膽固醇對(duì)原代成骨細(xì)胞Akt/NF-κB信號(hào)通路的影響。方法將小鼠原代成骨細(xì)胞按1×105接種于6孔板上,待細(xì)胞融合至80%左右,分別加入0μg/ml、12.5μg/ml、25μg/ml和50μg/ml的膽固醇溶液培養(yǎng)基繼續(xù)培養(yǎng)24 h。采用蛋白質(zhì)免疫印跡法(Western blot)的方法,檢測(cè)成骨細(xì)胞核轉(zhuǎn)錄因子kappa B (NF-κB)和蛋白激酶B(Akt)的蛋白表達(dá);采用實(shí)時(shí)熒光定量PCR方法,檢測(cè)成骨細(xì)胞中人白細(xì)胞介素1α (IL-1α)、人白細(xì)胞介素6(IL-6)和腫瘤壞死因子α(TNF-α)的信使RNA(mRNA)表達(dá);采用酶聯(lián)免疫吸附法,檢測(cè)細(xì)胞培養(yǎng)上清中IL-1α、IL-6和TNF-α的蛋白水平。結(jié)果膽固醇誘導(dǎo)成骨細(xì)胞中NF-κB的增加和Akt磷酸化水平降低,增加IL-1α、IL-6與TNF-α的mRNA和蛋白表達(dá),且呈一定的劑量依賴性。結(jié)論高膽固醇可以通過Akt/NF-κB信號(hào)通路及其介導(dǎo)的炎癥因子表達(dá)參與成骨細(xì)胞的調(diào)節(jié)。
關(guān)鍵詞:成骨細(xì)胞;NF-κB;Akt;膽固醇
膽固醇水平與骨質(zhì)疏松直接相關(guān)[1-3],高膽固醇血癥增加骨吸收、降低骨形成[4]。高膽固醇與原發(fā)性骨質(zhì)疏松有一定關(guān)系,如對(duì)絕經(jīng)期、老年性原發(fā)骨質(zhì)疏松患者激素替代治療可以減少骨質(zhì)流失,提高骨密度,同時(shí)可見膽固醇降低[5-7]。高膽固醇對(duì)繼發(fā)性性骨質(zhì)疏松也有一定的作用,如糖皮質(zhì)激素導(dǎo)致的股骨頭壞死可見膽固醇升高[8],膽固醇升高還可作為前列腺癌骨轉(zhuǎn)移的臨床指標(biāo)[9]。膽固醇及其代謝產(chǎn)物可以抑制成骨細(xì)胞活性、降低骨鹽沉積最終導(dǎo)致骨質(zhì)疏松[10-11]。他汀類藥物可降低血清膽固醇,刺激骨形成、減少骨流失,與骨形態(tài)發(fā)生蛋白2基因(bone morphogenetic protein 2,BMP2基因)表達(dá)增加有關(guān),適當(dāng)劑量的他汀類藥物可用于治療骨質(zhì)疏松[12]。成骨細(xì)胞對(duì)骨組織的生長發(fā)育、骨代謝平衡、骨量平衡和骨損傷修復(fù)有著關(guān)鍵作用。因此,在高膽固醇血癥導(dǎo)致骨質(zhì)疏松病理生理過程中,其對(duì)成骨細(xì)胞的影響起著重要作用。本實(shí)驗(yàn)利用原代成骨細(xì)胞體外培養(yǎng)觀察高膽固醇對(duì)Akt/NF-κB信號(hào)通路的影響從而探討高膽固醇誘導(dǎo)骨質(zhì)疏松發(fā)生的作用和可能的分子機(jī)制。
1.1一般材料
C57BL/6小鼠購自重慶醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心。DMEM培養(yǎng)基、胎牛血清(fetal bovine serum,F(xiàn)BS)均購自美國Gibico公司,RNA提取試劑Trizol和熒光試劑SYBR Premix Ex TaqTMⅡ均購自日本TaKaRa公司,蛋白提取試劑RIPA、PMSF、NaF、Na3VO4和BCA蛋白測(cè)定試劑均購自上海碧云天生物技術(shù)有限公司,NF-κB抗體購自美國Abcam公司,蛋白激酶B(protein kinase B,Akt)及p-Akt抗體均購自美國CST公司,β-actin抗體、HRP標(biāo)記二抗購自北京中杉金橋生物技術(shù)有限公司。IL-1α、IL-6和TNF-α酶聯(lián)免疫試劑盒購自晶美生物工程有限公司。
1.2方法
1.2.1小鼠成骨細(xì)胞的培養(yǎng)及鑒定取20只出生24 h內(nèi)的小鼠,引頸處死,75%酒精浸泡10 min。無菌的條件下取出顱蓋骨浸泡在D-Hanks液中。分別剪成0.1 mm×0.1 mm×0.1 mm的組織塊,加入10 ml 0.25%的胰蛋白溶液,37℃孵育30 min。1 000 r/min離心5 min,棄上清液。加入0.2%膠原酶10 ml,37℃孵育2 h,每5 min震蕩1次。1 000 r/min離心5 min,棄上清。用DMEM培養(yǎng)基沖洗3次。200目濾網(wǎng)過濾去除骨碎片。收獲細(xì)胞以完全培養(yǎng)基(含10%胎牛血清、100 u/ml青霉素、100μg/ml鏈霉素的DMEM培養(yǎng)液)重懸,吹打均勻,接種至多個(gè)25 cm2培養(yǎng)瓶。放入37℃,5%二氧化碳CO2培養(yǎng)箱培養(yǎng)。每48h換液1次,細(xì)胞融合成單層至80%以上時(shí),0.25%胰酶消化制成細(xì)胞懸液,采用差速貼壁法進(jìn)行成骨細(xì)胞純化。倒置相差顯微鏡觀察細(xì)胞形態(tài)變化,堿性磷酸酶活性檢測(cè)鑒定成骨細(xì)胞。
1.2.2細(xì)胞處理分組實(shí)驗(yàn)中細(xì)胞主要按照以下分組進(jìn)行處理,收集第4代細(xì)胞進(jìn)行實(shí)驗(yàn),將原代成骨細(xì)胞按1×105接種于6孔板上。將膽固醇溶于乙醇溶液,待細(xì)胞生長至80%融合狀態(tài)時(shí)加入不同濃度的膽固醇溶液,膽固醇終濃度為0μg/ml,12.5μg/ml,25μg/ml,50μg/ml,乙醇濃度為0.25%,對(duì)照組為只含有10%FBS的DMEM培養(yǎng)基。
1.2.3實(shí)時(shí)熒光定量PCR(quantitative real-time PCR,RT-PCR)細(xì)胞按上述分組進(jìn)行處理,用不同濃度膽固醇溶液培養(yǎng)基培養(yǎng)24 h,離心管收集培養(yǎng)上清液備用,用預(yù)冷的PBS洗滌細(xì)胞兩次,用Trizol法提取原代成骨細(xì)細(xì)胞總RNA,逆轉(zhuǎn)錄合成cDNA。采用RT-PCR檢測(cè)目的基因,用2-ΔΔCt值計(jì)算目的基因的相對(duì)表達(dá)量。其中人白細(xì)胞介素6 (interleukin 6,IL-6)基因引物正向序列:5'-GAAATC GTGGAAATGAG-3';反向:5'-TAGGTTTGCCGAGTA GA-3'。腫瘤壞死因子(tumor necrosis factor α,TNF-α)基因正向引物:5'-CTGTGAAGGGAATGGGTGTT -3';反向:5'-CAGGGAAGAATCTGGAAAGGTC-3'。人白細(xì)胞介素1α(interleukin 1α,IL-1α)基因引物正向序列:5'-CTCTAGAGCACCATGCTACAG-3';反向:5'-TTGGAATCCAGGGGAAACACT-3'。內(nèi)參β-actin基因引物正向序列:5'-GCTGTCCCTGTATG CCTCT-3';反向:5'-GATGTCACGCACGATTTCC-3'。
1.2.4酶聯(lián)免疫分析(Elisa)采用酶聯(lián)免疫試劑盒,按試劑說明進(jìn)行檢測(cè),酶標(biāo)儀測(cè)定450 nm波長處光密度(optical density,OD)值,以標(biāo)準(zhǔn)品濃度和OD值作標(biāo)準(zhǔn)曲線,樣品濃度根據(jù)標(biāo)準(zhǔn)曲線得出。
1.2.5蛋白質(zhì)免疫印跡分析(Western blot)提取原代成骨細(xì)胞蛋白并用BCA法測(cè)定蛋白濃度。取60μg蛋白上樣,SDS-PAGE電泳分離蛋白后轉(zhuǎn)膜到聚偏二氟乙烯(polyvinylidene fluoride,PVDF)膜上,5%脫脂牛奶室溫封閉1 h,一抗4℃孵育過夜,TBST 洗3次,HRP標(biāo)記的二抗室溫孵育1 h,TBST洗3次后加ECL試劑反應(yīng),顯像、成像。用目的條帶與β-actin的灰度值比較表示目的蛋白的相對(duì)表達(dá)量。
1.3統(tǒng)計(jì)學(xué)方法
采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(±s)表示,組間比較用單因素ANOVA分析,用LSD-t檢驗(yàn)或SNK-q檢驗(yàn)進(jìn)行兩兩比較,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1膽固醇對(duì)成骨細(xì)胞IL-1α、IL-6和TNF-α mRNA表達(dá)的影響
按上述方法分離小鼠原代成骨細(xì)胞進(jìn)行堿性磷酸酶活性檢測(cè)鑒定,可見大量染色陽性細(xì)胞,細(xì)胞膜及細(xì)胞漿內(nèi)顆粒染色呈藍(lán)黑色顆粒,鑒定結(jié)果見圖1。成功分離的成骨細(xì)胞接種6孔板,并用不同濃度的膽固醇刺激成骨細(xì)胞24 h,實(shí)時(shí)熒光定量PCR測(cè)定IL-1α、IL-6和TNF-α mRNA表達(dá)。0μg/ml組與對(duì)照組比較各炎癥因子的表達(dá)基本無變化,說明酒精溶酶基本不影響本實(shí)驗(yàn)中炎癥因子的表達(dá)。不同濃度膽固醇顯著誘導(dǎo)IL-1α、IL-6及TNF-α 的mRNA水平,且呈現(xiàn)一定的劑量依賴性,見圖2。本結(jié)果提示在成骨細(xì)胞中膽固醇與炎癥因子IL-1α、IL-6和TNF-α的mRNA水平呈正相關(guān)。
圖1 成骨細(xì)胞第2代堿性磷酸酶染色(×400)
圖2 不同濃度的膽固醇對(duì)成骨細(xì)胞IL-1α、IL-6和TNF-α mRNA的影響
2.2膽固醇對(duì)成骨細(xì)胞IL-1α、IL-6和TNF-α分泌水平的影響
如附表所示,不同濃度的膽固醇刺激成骨細(xì)胞24 h后,酶聯(lián)免疫吸附法測(cè)定細(xì)胞培養(yǎng)液上清中分泌IL-1α、IL-6和TNF-α的水平變化。0μg/ml組與對(duì)照組比較,IL-1α、IL-6及TNF-α均無明顯變化;12.5μg/ml、25μg/ml和50μg/ml組均能顯著誘導(dǎo)IL-1α、IL-6及TNF-α的水平。說明膽固醇可以促進(jìn)IL-1α、IL-6和TNF-α的分泌,且IL-6的分泌與膽固醇濃度呈正相關(guān)。
2.3膽固醇對(duì)成骨細(xì)胞Akt和NF-κB信號(hào)通路的影響
如圖3A與3B所示,膽固醇刺激成骨細(xì)胞后Western blot測(cè)定不同處理組蛋白變化,與對(duì)照組比較,12.5μg/ml、25μg/ml和50μg/ml 3組中NF-κB水平均顯著增加(P<0.01),而p-Akt水平顯著降低(P<0.01)。提示:成骨細(xì)胞中膽固醇濃度與NF-κB蛋白表達(dá)一定范圍內(nèi)呈正相關(guān)(P<0.01),膽固醇濃度與成骨細(xì)胞Akt磷酸化水平一定范圍內(nèi)呈負(fù)相關(guān)(P<0.01),統(tǒng)計(jì)結(jié)果見圖3C與3D。
附表 不同濃度的膽固醇對(duì)成骨細(xì)胞分泌IL-1α、IL-6 和TNF-α的影響(n=8,pg/ml,±s)
附表 不同濃度的膽固醇對(duì)成骨細(xì)胞分泌IL-1α、IL-6 和TNF-α的影響(n=8,pg/ml,±s)
注:?與對(duì)照組比較,P<0.01
組別 IL-1α IL-6 TNF-α對(duì)照組 2.21±0.08 6.28±0.14 36.05±0.06 0μg/ml組 2.58±0.06 6.30±0.38 37.73±0.30 12.5μg/ml組 4.25±0.14? 10.63±1.28? 51.75±3.30?25μg/ml組 3.97±0.17? 16.08±1.05? 52.47±1.48?50μg/ml組 4.36±0.18? 18.77±1.25? 58.69±3.09?
圖3 不同濃度膽固醇對(duì)成骨細(xì)胞Akt和NF-κB信號(hào)通路的影響
Akt信號(hào)通路及靶基因?qū)欠只?、骨形成和骨重建都有著關(guān)鍵調(diào)控作用。血漿網(wǎng)膜素-1 (omentin-1)和胰島素可以通過增加Akt的磷酸化水平,促進(jìn)成骨細(xì)胞的增殖。敲除Akt1/Akt2的小鼠骨化延遲,敲除Akt2對(duì)BMP2沒有影響,但可通過對(duì)骨特異性轉(zhuǎn)錄因子(Runx2)基因的調(diào)控阻斷骨髓基質(zhì)細(xì)胞或間充質(zhì)干細(xì)胞向成骨細(xì)胞的分化[13]。Akt磷酸化可以抑制糖皮激素誘導(dǎo)的成骨細(xì)胞凋亡。NF-κB廣泛表達(dá)于多種組織細(xì)胞中,其激活后參與許多基因的轉(zhuǎn)錄調(diào)控,在免疫、炎癥、氧化應(yīng)激、細(xì)胞增殖、細(xì)胞凋亡等生理病理過程中發(fā)揮重要調(diào)控作用。NF-κB與骨代謝密切相關(guān),γ射線可導(dǎo)致NF-κB活化,促進(jìn)成骨細(xì)胞凋亡。NF-κB p50激活后也可刺激成骨細(xì)胞和破骨細(xì)胞分泌集落刺激因子1(colony-stimulating factor 1,CSF-1),其在骨的重建中有著重要作用。TNF-α可以刺激成骨細(xì)胞NF-κB蛋白與其內(nèi)源性抑制因子核因子抑制蛋白-κB(nuclean factor-kappa B,IκBα)的解離,短時(shí)間可見核周NF-κB蛋白濃度增加,并迅速入核調(diào)控目的基因,導(dǎo)致成骨細(xì)胞凋亡[14]。NF-κB的抑制劑PMMA可以有效阻斷間質(zhì)細(xì)胞向成熟破骨細(xì)胞的分化[15],骨保護(hù)素(osteoclastogenesis inhibitory factor,OPG)與NF-κB配體核因子KB受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANKL)結(jié)合使基質(zhì)金屬蛋白酶9(matix metalloproteinase 9,MMP9)表達(dá)增高,阻斷破骨細(xì)胞的生成、抑制骨的再吸收。本研究結(jié)果顯示,膽固醇濃度與Akt的磷酸化水平負(fù)相關(guān),與NF-κB的表達(dá)正相關(guān),提示膽固醇可能通過NF-κB與Akt信號(hào)通路介導(dǎo)成骨細(xì)胞分化過程。
PI3K/Akt是調(diào)節(jié)NF-κB及下游基因表達(dá)的重要信號(hào)通路。過表達(dá)的胰島素受體底物1(insulin receptor 1,IRS1)可通過PI3K/Akt信號(hào)通路抑制NF-κB和其下游BAX基因(Bcl2-associated X protein,BAX)的表達(dá)促進(jìn)成骨細(xì)胞增殖,且上述作用可以被PI3K的抑制劑LY294002所逆轉(zhuǎn)[16]。PI3K/Akt磷酸化后,激活NF-κB及其調(diào)控下游細(xì)胞因子和炎癥介質(zhì)TNF-α、IL-1α及IL-6的釋放[17]。TNF-α、IL-1α、IL-6等炎癥介質(zhì)的分泌可以促進(jìn)炎癥反應(yīng),不僅對(duì)破骨細(xì)胞性骨吸收有明顯促進(jìn)作用,而且還能影響成骨細(xì)胞性骨形成。TNF-α能夠抑制膠原合成、堿性磷酸酶(alkaline phosphatase,AKP)活性和骨鈣素合成,同時(shí)可以通過NF-κB途徑增加IL-6、IL-1α和ICAM1基因的表達(dá)從而增加骨質(zhì)流失。IL-6在骨更新中有著重要作用,成骨細(xì)胞分泌的IL-6與多種細(xì)胞因子共同作用促進(jìn)骨吸收和骨重建[18,19]。本研究觀察結(jié)果顯示,高膽固醇促進(jìn)TNF-α、IL-1α與IL-6表達(dá),而且表達(dá)水平與膽固醇濃度正相關(guān),提示高膽固醇可能通過Akt/NF-κB信號(hào)通路促進(jìn)炎癥反應(yīng),從而影響成骨細(xì)胞分化過程。
綜上所述,高膽固醇可能通過抑制Akt活性激活NF-κB信號(hào)通路,進(jìn)一步誘導(dǎo)炎癥因子的釋放,從而影響成骨細(xì)胞分化,最終導(dǎo)致成骨細(xì)胞與破骨細(xì)胞的動(dòng)態(tài)失衡而增加骨質(zhì)疏松發(fā)病風(fēng)險(xiǎn)。
參考文獻(xiàn):
[1]TRIMPOU P,ODéN A,SIMONSSON T,et al. High serum to-tal cholesterol is a long-term cause of osteoporotic fracture[J]. Osteoporosis International,2011,22(5):1615-1620.
[2]YOU L,SHENG Z Y,TANG C L,et al. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats[J]. Acta Pharmacologica Sinica,2011,32(12):1498-1504.
[3]MAKOVEY J,CHEN JS,HAYWARD C,et al. Association between serum cholesterol and bone mineral density[J]. Bone,2009,44(2):208-213.
[4]MAJIMA T,SHIMATSU A,KOMATSU Y,et al. Increased bone turnover in patients with hypercholesterolemia[J]. Endocrine Journal,2008,55(1):143-151.
[5]LI M,WANG A,HU L,et al. Climacteric:the Journal of the International Menopause Society[J]. Climacteric,2015,18(2):214-218.
[6]MA Y L,BRYANT H U,ZENG Q,et al. Long-term dosing of arzoxifene lowers cholesterol,reduces bone turnover,and preserves bone quality in ovariectomized rats[J]. Journal of Bone and Mineral Research,2002,17(12):2256-2264.
[7]DELMAS P D,BJARNASON N H,MITLAK B H,et al. Effects of raloxifene on bone mineral density,serum cholesterol concentrations,and uterine endometrium in postmenopausal women[J]. Obstetrical & Gynecological Survey,1998,53(5):293-294.
[8]SANBE T,TOMOFUJI T,EKUNI D,et al. Oral administration of vitamin C prevents alveolar bone resorption induced by high dietary cholesterol in rats[J]. Journal of Periodontology,2007,78 (11):2165-2170.
[9]THYSELL E,SUROWIEC I,H?RNBERG E,et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol[J]. PLoS One,2010,5(12):Doi:10.1371/journal.pone.0014175.
[10]PARHAMI F,TINTUT Y,BEAMER W G,et al. Atherogenic high-fat diet reduces bone mineralization in mice[J]. Journal of Bone and Mineral Research,2001,16(1):182-188.
[11]JEONG T D,LEE W,CHOI S E,et al. Relationship between serum total cholesterol level and serum biochemical bone turnover markers in healthy pre-and postmenopausal women[J]. Bio Med Research International,2014,2014:Doi:10.1155/2014/ 398397.
[12]MUNDY G,GARRETT R,HARRIS S,et al. Stimulation of bone formation in vitro and in rodents by statins[J]. Science,1999,286(5446):1946-1949.
[13]MUKHERJEE A,WILSON E M,ROTWEIN P. Selective signaling by Akt2 promotes bone morphogenetic protein 2-mediated osteoblast differentiation[J]. Molecular and Cellular Biology,2010,30(4):1018-1027.
[14]KITAJIMA I,SOEJIMA Y,TAKASAKI I,et al. Ceramide-induced nuclear translocation of NF-κB is a potential mediator of the apoptotic response to TNF-α in murine clonal osteoblasts[J]. Bone,1996,19(3):263-270.
[15]CLOHISY J C,HIRAYAMA T,F(xiàn)RAZIER E,et al. NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis[J]. Journal of Orthopaedic Research,2004,22(1):13-20.
[16]ZHANG W,SHEN X,WAN C,et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation:differential signalling via Akt and ERK[J]. Cell Biochemistry and Function,2012,30(4):297-302.
[17]EHRHARDT C,LUDWIG S. A new player in a deadly game:influenza viruses and the PI3K/Akt signalling pathway[J]. Cellular Microbiology,2009,11(6):863-871.
[18]GIULIANI N,PEDRAZZONI M,PASSERI G,et al. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells[J]. Scandinavian Journal of Rheumatology,1998,27(1):38-41.
[19]YOKOTA K,SATO K,MIYAZAKI T,et al. Combination of tumor necrosis factor-α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo[J]. Arthritis & Rheumatology,2014,66(1):121-129.
(張蕾編輯)
論著
Effects of high-level cholesterol on Akt/NF-κB signaling pathway of mouse primary osteoblasts
Li Deng,Dan Song
(Department of Laboratory,Danjiangkou First Hospital,Danjiangkou,Hubei 442700,China)
Abstract:Objective To observe the effects of high-level cholesterol on Akt/NF-κB signaling pathway of primary osteoblasts. Methods Mouse primary osteoblasts were seeded at 1×105to 6-well plates. At 80%fusion,the cells were stimulated with 0 μg/ml,12.5 μg/ml,25 μg/ml and 50 μg/ml cholesterol solution culture medium respectively for 24 hours. The protein levels of NF-κB and phosphorylation of Akt were detected by Western blot. The levels of IL-1α,IL-6 and TNF-α were detected by RT-qPCR and ELISA. Results High-level cholesterol increased the NF-κB protein level and decreased phosphorylation of Akt. High-level cholesterol increased not only the mRNA levels but also protein levels of IL-1α,IL-6 and TNF-α. Conclusions Together,these results have uncovered a role of cholesterol in osteoblasts and provided the evidence that treatment with cholesterol at a high dosage may influence the levels of inflammatory factors through Akt/NF-κB signaling pathway in osteoblasts.
Keywords:osteoblast;NF-κB;AKT;cholesterol
中圖分類號(hào):R589.9;R-332
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.3969/j.issn.1005-8982.2016.10.002
文章編號(hào):1005-8982(2016)10-0006-05
收稿日期:2015-10-26