王蕓姣 韓文祺 李若菲 杜尊贖 王學(xué)江 江 瑛
(首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)與病理生理學(xué)系病理生理學(xué)教研室,北京 100069)
?
AMPK參與調(diào)節(jié)大鼠脂肪肝相關(guān)性肝癌前病變的形成
王蕓姣韓文祺李若菲杜尊贖王學(xué)江江瑛*
(首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)與病理生理學(xué)系病理生理學(xué)教研室,北京 100069)
【摘要】目的 探討單磷酸腺苷活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)在低劑量二乙基亞硝胺(diethylnitrosamine, DEN)合并高脂飲食誘導(dǎo)的大鼠肝癌前病變發(fā)生中的作用及其機(jī)制。方法體內(nèi)實(shí)驗(yàn)采用腹腔注射DEN(30 mg/kg)合并高脂飲食飼喂大鼠16周誘導(dǎo)肝癌前病變模型,通過(guò)HE染色、Western blotting、Real-time PCR、免疫組織化學(xué)等方法觀察谷胱甘肽S轉(zhuǎn)移酶(glutathione S-transferase-π,GST-π)、固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element binding protein-1c, SREBP-1c)、脂肪酸合成酶(fatty acid synthase,FAS)、乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)、硬脂酰輔酶A去飽和酶1(stearoyl-CoA desaturase 1,SCD1)及AMPK、p-AMPK的表達(dá)變化;體外實(shí)驗(yàn)觀察AMPK對(duì)棕櫚酸(palmitic acid, PA)誘導(dǎo)的大鼠H4IIE細(xì)胞脂質(zhì)代謝的影響。結(jié)果與單純DEN處理組比較,DEN+高脂組大鼠肝細(xì)胞脂肪變性、氣球樣變、伴有炎性細(xì)胞浸潤(rùn)及小灶性壞死;GST-π表達(dá)水平增高;三酰甘油(triglyceride,TG)及SREBP-1c、FAS、ACC、SCD1表達(dá)水平上升;p-AMPK水平下降。 AMPK通過(guò)抑制SREBP-1c的表達(dá)水平降低棕櫚酸誘導(dǎo)的H4IIE細(xì)胞內(nèi)脂質(zhì)合成。結(jié)論AMPK可能通過(guò)抑制SREBP-1c的表達(dá)水平參與大鼠肝癌前病變的形成。
【關(guān)鍵詞】二乙基亞硝胺;非酒精性脂肪性肝炎; 肝癌前病變;單磷酸腺苷活化蛋白激酶AMPK;固醇調(diào)節(jié)元件結(jié)合蛋白1c(SREBP-1c)
隨著人們生活水平的提高,因高脂高糖等不良飲食習(xí)慣導(dǎo)致的非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)成為我國(guó)僅次于病毒性肝炎的第二大肝病[1]。NAFLD是以肝細(xì)胞脂肪變性為病理特征而患者無(wú)過(guò)量飲酒史的臨床綜合征,按照其病理學(xué)改變分為單純性脂肪肝、非酒精性脂肪性肝炎 (nonalcoholic steatohepatitis,NASH)、肝纖維化和肝硬化4個(gè)階段,并可進(jìn)展為肝癌和肝衰竭[2]。近年來(lái),脂肪性肝病與肝癌的關(guān)系日益引起世界的關(guān)注[3],研究[4]報(bào)道脂肪性肝炎可以不依賴(lài)于脂肪性肝炎-肝硬化-肝癌的發(fā)病模式而直接進(jìn)展為肝癌。動(dòng)物實(shí)驗(yàn)[5-6]的研究結(jié)果表明,無(wú)論是遺傳性肥胖的ob/ob小鼠還是高脂飲食誘導(dǎo)的脂肪肝小鼠或NASH大鼠,脂肪肝和脂肪性肝炎均可促進(jìn)肝癌或肝癌前病變的形成,但是關(guān)于脂肪肝相關(guān)性肝癌的發(fā)生機(jī)制尚不十分清楚。腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)是一種在真核細(xì)胞中廣泛表達(dá)的絲氨酸/蘇氨酸蛋白激酶,研究[7]證實(shí)磷酸化的AMPK可降低肝臟內(nèi)三酰甘油(triglyceride,TG)堆積,AMPK的磷酸化程度與肝癌的進(jìn)展和預(yù)后呈現(xiàn)一定相關(guān)性[8]。但是AMPK與脂肪肝相關(guān)性肝癌前病變的關(guān)系,至今尚不明確。本研究利用低劑量二乙基亞硝胺合并高脂飲食誘導(dǎo)大鼠脂肪肝相關(guān)性肝癌前病變模型[6],試圖探討AMPK在脂肪肝相關(guān)性肝癌前病變形成中的作用。
1材料與方法
1.1主要試劑
兔抗鼠GST-π多克隆抗體購(gòu)自MBL公司(日本);兔抗鼠SREBP-1c多克隆抗體購(gòu)自Santa Cruz公司(美國(guó));兔抗鼠FAS、 ACC、 SCD1、AMPK、p-AMPK多克隆抗體均購(gòu)自Cell Signaling Technology公司(美國(guó));免疫組化試劑盒購(gòu)自中杉金橋公司(中國(guó)); TG試劑盒購(gòu)自普利萊公司(中國(guó)); Real-time PCR 試劑盒購(gòu)自Promega公司(美國(guó));引物根據(jù)Genbank數(shù)據(jù)庫(kù)設(shè)計(jì),由上海生工生物工程技術(shù)服務(wù)有限公司合成;二乙基亞硝胺(diethylnitrosamine, DEN)、棕櫚酸(palmitic acid, PA)、5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside(AICAR)購(gòu)自Sigma公司(美國(guó));無(wú)脂肪酸牛血清白蛋白(bovine serum albumin,BSA)購(gòu)自WAKO公司(日本)。
1.2動(dòng)物及分組
雄性 SD大鼠30只,6周齡,體質(zhì)量120 ~140g,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,實(shí)驗(yàn)動(dòng)物許可證號(hào):SCXK(京) 2012-00011;高脂飼料購(gòu)自軍事醫(yī)學(xué)科學(xué)院(基礎(chǔ)飼料88%, 豬油 10%, 膽固醇 2%)。采用數(shù)字表法將大鼠隨機(jī)分為對(duì)照組(DEN+正常飼料組)和模型組(DEN+高脂組)。對(duì)照組動(dòng)物腹腔注射30 mg/kg的DEN后給予普通飲食,而模型組動(dòng)物腹腔注射30 mg/kg的DEN后給予高脂飲食;每周記錄一次體質(zhì)量變化,16周后造模結(jié)束,于取材前24 h空腹,10%(質(zhì)量分?jǐn)?shù))的水合氯醛腹腔麻醉(3 mL/kg),手術(shù)快速收集肝臟標(biāo)本。
1.3細(xì)胞及分組
大鼠肝癌細(xì)胞H4IIE購(gòu)自中國(guó)協(xié)和醫(yī)科大學(xué)細(xì)胞庫(kù),細(xì)胞根據(jù)處理方式不同分為BSA組、PA刺激組、AICAR組及AICAR+PA刺激組。PA濃度為200 μmol/L,刺激時(shí)間為24 h;AICAR濃度為1 mmol/L, 刺激時(shí)間為24 h。
1.4方法
1)肝組織病理學(xué):5μm厚度的石蠟切片,行HE染色,光學(xué)顯微鏡下觀察肝組織結(jié)構(gòu);按照PV-9001二步法行GST-π免疫組織化學(xué)染色,光學(xué)顯微鏡下觀察肝癌前病變。
2)Real-time PCR:采用Trizol提取肝組織總RNA,利用Promega反轉(zhuǎn)錄試劑盒將其反轉(zhuǎn)錄為cDNA,利用實(shí)時(shí)熒光定量PCR方法檢測(cè)SREBP-1基因和內(nèi)參基因18S的表達(dá)水平。引物序列:SREBP-1c上游:5′-GCA ACA CTG GCA GAG ATC TAC GT-3′;下游:5′-TGG CGG GCA CTA CTC AGG AA-3′;18S上游:5′-GTA ACC CGT TGA ACC CCA TT-3′,下游:5′-CCA TCC AAT CGG TAG TAG CG-3′。PCR條件為:95 ℃ 2 min;95 ℃ 15 s;60 ℃ 30 s;72 ℃ 30 s共 40 循環(huán)。以18S為內(nèi)參,用2ΔΔCt計(jì)算mRNA表達(dá)。
3)Western blotting:用含蛋白酶抑制劑的裂解液裂解組織或細(xì)胞蛋白,按30~50μg的蛋白量加樣,經(jīng)SDS-PAGE電泳后,低溫恒壓電轉(zhuǎn)至PVDF膜上,5%(質(zhì)量分?jǐn)?shù))脫脂奶粉封閉1 h,一抗4 ℃孵育過(guò)夜(SREBP-1c:1∶1 000,ACC:1∶1 000,F(xiàn)AS:1∶1 000,SCD1:1∶1 000,p-AMPK:1∶1 000,AMPK:1∶1 000,GST-π:1∶2 000,β-actin:1∶3 000),加入鼠抗兔HRP標(biāo)記的二抗(1∶5 000),室溫下孵育1 h,ECL化學(xué)發(fā)光, Image J進(jìn)行定量分析。
4)三酰甘油(triglyceride,TG)測(cè)定:采用 GPO-PAP 法測(cè)定,按照三酰甘油測(cè)定試劑盒提供的操作方法進(jìn)行,方法如下:加入裂解液,冰上進(jìn)行組織破碎勻漿, 37 ℃保溫 5 min,在500 nm波長(zhǎng)下測(cè)定吸光度值。
5)棕櫚酸(PA)與無(wú)脂肪酸BSA的連接:用0.1 mol/L NaOH皂化PA儲(chǔ)存液(100 mmol/L)后,置于80 ℃水浴鍋中30 min,之后與10%(質(zhì)量分?jǐn)?shù))無(wú)脂肪酸BSA混合,該體系中PA與BSA的比值為3.5∶1。
1.5統(tǒng)計(jì)學(xué)方法
數(shù)據(jù)以 SPSS17. 0 統(tǒng)計(jì)學(xué)軟件進(jìn)行分析,兩組比較采用Student’st檢驗(yàn),多組比較采用單因素方差分析和均數(shù)多重比較方法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié) 果
2.1脂肪性肝炎促進(jìn)DEN啟動(dòng)的大鼠肝癌前病變的形成
與對(duì)照組比較,模型組肝細(xì)胞排列紊亂,細(xì)胞出現(xiàn)明顯的脂肪變性、氣球樣變及小灶性壞死,并可見(jiàn)大量炎性細(xì)胞浸潤(rùn)(圖1A)。免疫組織化學(xué)染色的結(jié)果顯示,肝癌前病變的標(biāo)志物GST-π蛋白[9]在對(duì)照組僅見(jiàn)散在的單個(gè)細(xì)胞表達(dá),而模型組肝組織中GST-π蛋白表達(dá)明顯增加,呈小灶狀分布(連續(xù)陽(yáng)性細(xì)胞的數(shù)量不少于6個(gè))[6](圖1A);Western blotting的結(jié)果表明,模型組肝臟GST-π蛋白表達(dá)較對(duì)照組明顯增高(P<0.05)(圖1B),上述結(jié)果提示高脂飲食誘導(dǎo)的脂肪性肝炎促進(jìn)了低劑量DEN啟動(dòng)的大鼠肝癌前病變模型的形成。兩組動(dòng)物的體質(zhì)量和肝系數(shù)指標(biāo)差異無(wú)統(tǒng)計(jì)學(xué)意義。
圖1 脂肪性肝炎促進(jìn)DEN啟動(dòng)的大鼠肝癌前病變的形成
A.a&b:HE staining (Scale bar: 50 μm); c&d:IHC staining of GST-π (Scale bar:100 μm); B:Western blotting of GST-π expression.*P<0.05vsDEN group,n=8; GST-π: glutathione S-transferase-π; DEN: diethylnitrosamine; HFD:high fat diet.
2.2脂肪肝相關(guān)性肝癌前病變的大鼠肝組織p-AMPK蛋白表達(dá)水平降低
與對(duì)照組比較,低劑量DEN+高脂飲食誘導(dǎo)的脂肪肝相關(guān)性肝癌前病變模型組肝臟p-AMPK蛋白的表達(dá)水平降低(P<0.05),總AMPK未見(jiàn)明顯變化(圖2),提示AMPK信號(hào)通路可能參與了脂肪肝相關(guān)性肝癌前病變的發(fā)生。
2.3脂肪肝相關(guān)性肝癌前病變的大鼠肝臟TG濃度及SREBP-1c、FAS、ACC、SCD1的表達(dá)水平明顯增加
與對(duì)照組相比,低劑量DEN+高脂飲食誘導(dǎo)的脂肪肝相關(guān)性肝癌前病變模型組大鼠肝臟TG濃度明顯升高(P<0.001)(圖3A),脂肪酸合成的關(guān)鍵因子SREBP-1c在mRNA(P<0.01)(圖3B)及蛋白(P<0.05)(圖3C、D)濃度顯著上升,其下游靶基因FAS(P<0.01)、ACC(P<0.05)、SCD1(P<0.05)蛋白濃度也明顯升高(圖3C),表明脂肪肝相關(guān)性肝癌前病變的大鼠肝臟的脂質(zhì)堆積可能與其脂肪酸合成增加有關(guān)。
圖2 脂肪肝相關(guān)性肝癌前病變大鼠肝組織p-AMPK的表達(dá)
*P<0.05vsDEN group,n=8. AMPK: adenosine monophosphate-activated protein kinase; DEN: diethylnitrosamine; HFD:high fat diet.
圖3 脂肪肝相關(guān)性肝癌前病變的大鼠肝臟TG濃度及SREBP-1c、FAS、ACC、SCD1的表達(dá)
A: TG content measurement; B: mRNA level of SREBP-1c; C, D: protein levels of SREBP-1c、 FAS、ACC、SCD1.*P<0.05,**P<0.01,***P<0.001vsDEN group.n=8; TG: triglyceride; SREBP-1c: sterol regulatory element binding protein-1c; FAS: fatty acid synthase; ACC: acetyl-CoA carboxylase; SCD1: stearoyl-CoA desaturase 1; DEN: diethylnitrosamine; HFD:high fat diet.
2.4 AMPK通過(guò)抑制SREBP-1c的表達(dá)而降低棕櫚酸誘導(dǎo)的脂質(zhì)合成
Western blotting 結(jié)果顯示,棕櫚酸可誘導(dǎo)H4IIE細(xì)胞脂質(zhì)堆積,引起TG(P<0.01)(圖4A)、SREBP-1c(P<0.001)、FAS(P<0.01)、ACC(P<0.01)、SCD1(P<0.001)蛋白表達(dá)水平上升(圖4B);給予AMPK激動(dòng)劑AICAR后,TG濃度下降(P<0.05)(圖4A),SREBP-1c(P<0.01)、FAS(P<0.05)、ACC (P<0.01)、SCD1(P<0.001)蛋白濃度降低(圖4B)。表明AMPK可通過(guò)SREBP-1c而調(diào)節(jié)棕櫚酸誘導(dǎo)的肝癌細(xì)胞脂質(zhì)堆積。
圖4 AMPK通過(guò)抑制SREBP-1c的表達(dá)而降低棕櫚酸誘導(dǎo)的脂質(zhì)合成
A: TG content among different groups; B: protein levels of SREBP-1c,FAS,ACC,SCD1.*P<0.05,**P<0.01,***P<0.001.n=3; AMPK: adenosine monophosphate-activated protein kinase; TG: triglyceride; SREBP-1c: sterol regulatory element binding protein-1c; FAS: fatty acid synthase; ACC: acetyl-CoA carboxylase; SCD1: stearoyl-CoA desaturase 1; BSA: bovin serum albumin; PA: palmitic acid; AICAR:5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside.
3討論
肝癌(hepatocellular carcinoma, HCC) 是全球第7位常見(jiàn)的惡性腫瘤,其發(fā)病隱匿,進(jìn)展迅速,且愈后兇險(xiǎn),在全世界腫瘤患者病死率中高居第3位。研究[10]證實(shí)肝癌的發(fā)生與肝炎病毒感染、肥胖、酒精性/非酒精性脂肪肝、肝硬化等因素相關(guān)。文獻(xiàn)[11-12]報(bào)道肥胖可促使肝癌發(fā)生率增加1.5~4.5倍, 近年來(lái),非酒精性脂肪肝的發(fā)病率呈逐漸升高的趨勢(shì),研究[13-14]報(bào)道40%~62%的NASH患者在歷時(shí)5~7年的隨訪中逐漸發(fā)展為肝硬化及肝癌。動(dòng)物試驗(yàn)的研究[5]結(jié)果表明,飲食誘導(dǎo)的脂肪肝小鼠常伴隨白細(xì)胞介素-6(interleukin-6,IL-6)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等炎性反應(yīng)因子的上升,并在一定程度上促進(jìn)肝癌的發(fā)生。Wang等[6]發(fā)現(xiàn),高脂飲食可促進(jìn)低劑量DEN誘導(dǎo)的大鼠肝癌前病變形成,伴有明顯的炎性細(xì)胞浸潤(rùn)和NF-κB通路的激活,推測(cè)脂肪性肝炎可能通過(guò)活化NF-κB調(diào)控cyclin D1而促進(jìn)肝癌前病變的形成[15]。本研究結(jié)果顯示,DEN+高脂組肝臟GST-π表達(dá)較單純DEN組明顯升高,伴有明顯的細(xì)胞脂肪變性、氣球樣變性、炎細(xì)胞浸潤(rùn)、灶性壞死等脂肪性肝炎的表現(xiàn),這些結(jié)果與 Wang等[6]一致,證實(shí)高脂飲食導(dǎo)致的脂肪性肝炎可以促進(jìn)肝癌前病變的形成。
AMPK信號(hào)通路在調(diào)節(jié)糖類(lèi)、脂肪代謝及能量調(diào)控方面發(fā)揮了重要作用[16]。研究[3, 7]證實(shí)AMPK可在多靶點(diǎn)緩解NASH的病變程度,AMPK可通過(guò)下調(diào)mTORC1、抑制LXR的轉(zhuǎn)錄以及上調(diào)PPARα等途徑,從而降低脂肪酸合成或增加脂肪酸氧化;此外,AMPK與腫瘤的發(fā)生發(fā)展也有密切的關(guān)系[17]。AMPK參與了乳腺癌、肺癌、肝癌等疾病的發(fā)生[18-20]。肝癌組織p-AMPK的濃度較癌旁組織明顯降低,且AMPK的磷酸化和腫瘤組織大小呈明顯負(fù)相關(guān)[20],提示AMPK可能在一定程度上抑制肝癌的發(fā)生。但AMPK是否在肝癌前病變中也發(fā)揮了一定作用,尚未見(jiàn)報(bào)道。本實(shí)驗(yàn)結(jié)果表明,脂肪肝性肝癌前病變組織p-AMPK蛋白水平較單純DEN組下降,提示AMPK可能參與脂肪肝性肝癌前病變的形成。
SREBP-1c作為肝臟脂肪合成過(guò)程中重要的轉(zhuǎn)錄調(diào)節(jié)因子,可通過(guò)調(diào)節(jié)其下游脂肪酸合成靶基因,如FAS、ACC、SCD1的表達(dá),參與NASH的發(fā)生發(fā)展[21]。已知SREBP-1c受mTORC1、LXR及AMPK等信號(hào)分子的調(diào)控,Park等[7]發(fā)現(xiàn),AMPK可通過(guò)下調(diào)SREBP-1c的表達(dá)而減輕脂肪性肝病的程度。最近的研究[22]表明, SREBP-1c在人的肝癌組織中表達(dá)較癌旁組織增高,且其表達(dá)程度與TNM分期、腫瘤體積、生存時(shí)間均呈現(xiàn)一定相關(guān)性。本研究結(jié)果表明,脂肪肝性肝癌前病變大鼠肝臟SREBP-1c及其靶基因FAS、ACC、SCD1升高,推測(cè)SREBP-1c可能參與了脂肪肝性肝癌前病變的發(fā)生過(guò)程。本研究結(jié)果表明,棕櫚酸導(dǎo)致H4IIE細(xì)胞三酰甘油濃度增加,伴有SREBP-1c及其靶基因FAS、ACC、SCD1的蛋白濃度升高,AMPK通過(guò)降低SREBP-1c及其靶基因FAS、ACC、SCD1的蛋白濃度減少了棕櫚酸誘導(dǎo)H4IIE細(xì)胞內(nèi)的脂質(zhì)沉積。上述結(jié)果提示AMPK可能通過(guò)抑制SREBP-1c的表達(dá)而參與了低劑量DEN合并高脂飲食誘導(dǎo)的肝癌前病變的形成。
本實(shí)驗(yàn)結(jié)果首次證實(shí)了AMPK信號(hào)調(diào)節(jié)通路可能通過(guò)調(diào)節(jié)SREBP-1c等脂肪酸合成因子參與了低劑量DEN合并高脂飲食誘導(dǎo)的肝癌前病變的發(fā)生,為進(jìn)一步探討脂肪肝性肝癌前病變發(fā)生發(fā)展的分子機(jī)制提供了新的思路。
4參考文獻(xiàn)
[1] Rinella M E. Nonalcoholic fatty liver disease: a systematic review[J]. JAMA, 2015,313(22):2263-2273.
[2] Farrell G C, Larter C Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis[J]. Hepatology, 2006,43(2 Suppl 1):S99-S112.
[3] Saran U, Humar B, Kolly P, et al. Hepatocellular carcinoma and lifestyles[J]. J Hepatol, 2016,64(1):203-214.
[4] Guzman G, Brunt E M, Petrovic L M, et al. Does nonalcoholic fatty liver disease predispose patients to hepatocellular carcinoma in the absence of cirrhosis?[J]. Arch Pathol Lab Med, 2008,132(11):1761-1766.
[5] Park E J, Lee J H, Yu G Y, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression[J]. Cell, 2010,140(2):197-208.
[6] Wang Y, Ausman L M, Greenberg A S, et al. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine initiated early hepatocarcinogenesis in rats[J]. Int J Cancer,2009,124(3):540-546.
[7] Park K G, Min A K, Koh E H, et al. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways[J]. Hepatology, 2008,48(5):1477-1486.
[8] Zheng L, Yang W, Wu F, et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma[J]. Clin Cancer Res, 2013,19(19):5372-5380.
[9] Sato K, Kitahara A, Satoh K, et al. The placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis[J]. Gan, 1984,75(3):199-202.
[10] Dyson J, Jaques B, Chattopadyhay D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team[J]. J Hepatol, 2014,60(1):110-117.
[11] Caldwell S H, Crespo D M, Kang H S, et al. Obesity and hepatocellular carcinoma[J]. Gastroenterology, 2004,127(5 Suppl 1):S97-103.
[12] Oh S W, Yoon Y S, Shin S A. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study[J]. J Clin Oncol, 2005,23(21):4742-4754.
[13] 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì)脂肪肝和酒精性肝病學(xué)組.非酒精性脂肪性肝病診療指南(2010年修訂版)[J]. 胃腸病學(xué)和肝病學(xué)雜志,2010,19(6):483-487.
[14] Adams L A, Lymp J F, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study[J]. Gastroenterology, 2005,129(1):113-121.
[15] Szlosarek P W, Balkwill F R. Tumour necrosis factor alpha: a potential target for the therapy of solid tumours[J]. Lancet Oncol, 2003,4(9):565-573.
[16] Novikova D S, Garabadzhiu A V, Melino G, et al. AMP-activated protein kinase: structure, function, and role in pathological processes[J]. Biochemistry (Mosc), 2015,80(2):127-144.
[17] Dasgupta B, Chhipa R R. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer[J]. Trends Pharmacol Sci,2016,37(3):192-206.
[18] Li N S, Zou J R, Lin H, et al. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells[J]. Tumour Biol, 2015.[Epub ahead of print]
[19] Wu T, Wang M C, Jing L, et al. Autophagy facilitates lung adenocarcinoma resistance to cisplatin treatment by activation of AMPK/mTOR signaling pathway[J]. Drug Des Devel Ther, 2015,9:6421-6431.
[20] Cheng J, Huang T, Li Y, et al. AMP-activated protein kinase suppresses theinvitroandinvivoproliferation of hepatocellular carcinoma[J]. PLoS One, 2014,9(4):e93256.
[21] Jeon T I, Osborne T F. SREBPs: metabolic integrators in physiology and metabolism[J]. Trends Endocrinol Metab, 2012,23(2):65-72.
[22] Li C, Yang W, Zhang J, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma[J]. Int J Mol Sci, 2014,15(5):7124-7138.
編輯陳瑞芳
Adenosine monophosphate-activated protein kinase involved in early hepatocarcinogenesis associated with nonalcoholic steatohepatitis in rats
Wang Yunjiao, Han Wenqi, Li Ruofei, Du Zunshu, Wang Xuejiang, Jiang Ying*
(DivisionofPathophysiology,DepartmentofPhysiologyandPathophysiology,SchoolofBasicMedicalSciences,CapitalMedicalUniversity,Beijing100069,China)
【Abstract】ObjectiveTo explore the role of adenosine monophosphate-activated protein kinase(AMPK) in the development of precancerosis induced by a high-fat diet and diethylnitrosamine and its molecular mechanism.MethodsThe low dose of diethylnitrosamine(DEN,30mg/kg,ip) and high fat diet(16 weeks)induced liver precancerosis of rat model in vivo was established to observe the pathological changes of rat livers by HE staining.The expression levels of glutathione S-transferase-π(GST-π),sterol regulatory element binding protein-1c (SREBP-1c),fatty acid synthase (FAS),acetyl-CoA carboxylase (ACC),stearoyl-CoA desaturase 1(SCD1),AMPK,p-AMPK were detected by Western blotting, Real-time PCR and immunohistochemistry. The rat cells H4IIE were disposed by palmitic acid(PA) to mimic lipid overload in hepatocarcinoma cells and evaluate the role of AMPK in modulating fat metabolism of hepatocarcinoma.ResultsWe found lipid droplets overload evidently in hepatocytes of rats in DEN+HFD group compared with DEN group, some of which behaving ballooning change,necrosis and inflammatory; meanwhile,GST-π and triglyceride(TG) expression were both elevated significantly in the livers of rats treated with DEN+HFD group when compared with that of DEN group, indicating the precancerosis of rat model induced by NASH was successful.Similarly, the expression of SREBP-1c and its target genes FAS,ACC,SCD1 were all elevated statistically. Furthermore, p-AMPK level was decreased. The in vitro model indicated that TG,SREBP-1c, FAS,ACC,SCD1 were all increased in PA treated cells, while treating cells with AICAR,activator of AMPK,can reverse the effect of PA. ConclusionAMPK is involved in liver precancerosis induced by high-fat diet and diethylnitrosamine, and this process may happen through the inhibition of SREBP-1c.
【Key words】diethylnitrosamine; non-alcoholic steatohepatitis; liver precancerosis; adenosine monophosphate-activated protein kinase; sterol regulatory element binding protein-1c
(收稿日期:2016-01-12)
【中圖分類(lèi)號(hào)】R 575.5
[doi:10.3969/j.issn.1006-7795.2016.02.019]
*Corresponding author, E-mail:jiangy@ccmu.edu.cn
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81070319),北京市自然科學(xué)基金(710201),北京市中醫(yī)藥科技發(fā)展資金(JJ2013-02)。This study was supported by National Natural Science Foundation of China (81070319), Natural Science Foundation of Beijing (7102013), Beijing Traditional Chinese Research Program (JJ2013-02).
網(wǎng)絡(luò)出版時(shí)間:2016-04-1314∶41網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.3662.r.20160413.1441.002.html
· 基礎(chǔ)研究 ·
首都醫(yī)科大學(xué)學(xué)報(bào)2016年2期