陳思思,朱 滿,堅(jiān)增運(yùn)(西安工業(yè)大學(xué)材料與化工學(xué)院,西安710021)
?
三元Fe1-xNb9Bx非晶合金的非晶形成能力和軟磁性能研究*
陳思思,朱滿,堅(jiān)增運(yùn)
(西安工業(yè)大學(xué)材料與化工學(xué)院,西安710021)
摘 要:為了研究三元鐵基非晶合金的合金成分對(duì)非晶形成能力以及軟磁性能的影響規(guī)律,采用單輥甩淬法制備Fe1-xNb9Bx(x=19,20,21)合金薄帶,用X射線衍射儀、差示掃描量熱儀和振動(dòng)樣品磁強(qiáng)計(jì)對(duì)制備的合金薄帶分別進(jìn)行合金結(jié)構(gòu)、合金的非晶形成能力以及軟磁性能分析.研究結(jié)果表明:當(dāng)合金成分中的鈮(Nb)原子分?jǐn)?shù)為9%時(shí),隨硼(B)原子分?jǐn)?shù)在19%~21%范圍內(nèi)增加時(shí),所制備的合金均為非晶帶材.合金的過(guò)冷液相區(qū)(ΔTx)逐漸增大,表明非晶形成能力逐漸增強(qiáng),最大的ΔTx=52 K.這與熱力學(xué)參數(shù)PHSS所預(yù)測(cè)的非晶形成能力的結(jié)果一致.飽和磁化強(qiáng)度(Ms)隨Fe含量的降低,逐漸減小.Fe72Nb9B19的Ms達(dá)到最大(Ms=65 emu·g—1).
關(guān)鍵詞:鐵基非晶;非晶形成能力;軟磁性能;熱力學(xué)參數(shù)
在很多己經(jīng)開發(fā)的非晶態(tài)合金材料中,由于鐵基非晶合金具有極高的強(qiáng)度、優(yōu)良的軟磁性能、優(yōu)異的耐腐蝕性能和明顯的成本優(yōu)勢(shì),在變壓器等領(lǐng)域有比較良好的應(yīng)用[1-2],因而成為最早開發(fā)和最具商業(yè)價(jià)值的非晶態(tài)合金材料.文獻(xiàn)[3]首次制備出Fe-P-B非晶態(tài)軟磁合金,文獻(xiàn)[4]首次采用金屬模鑄造方法制備出厚度為0.1 mm的Fe75Si10B15金屬玻璃板材,取得了Fe基金屬玻璃塊體化的突破性進(jìn)展;文獻(xiàn)[5]報(bào)道了三元Fe-M-B(M=Zr,Nb,Hf)系新型軟磁合金,飽和磁感應(yīng)強(qiáng)度為1.5~1.7 T,讓很多材料科學(xué)工作者致力于研究具有大的過(guò)冷液相區(qū)和良好軟磁性能的Fe-M-B(M= Zr,Nb,Hf)系非晶合金;文獻(xiàn)[6]研究了Fe66Nb4B30塊體非晶的晶化動(dòng)力學(xué)以及磁學(xué)性能,ΔTx為31 K,具有較好的熱力學(xué)穩(wěn)定性,非晶帶材的飽和磁感應(yīng)強(qiáng)度為120 T,矯頑力為2 A·m—1;文獻(xiàn)[7]研究了Fe71Nb6B23非晶薄帶的變溫晶化動(dòng)力學(xué),其中當(dāng)升溫速率為40 K·min—1時(shí),ΔTx=24 K.但合金Fe66Nb4B30和Fe71Nb6B23的ΔTx都相對(duì)較小,不利于非晶的形成.
對(duì)于已經(jīng)研究的(Fe,Co)-(Zr,Hf)-B系統(tǒng)的過(guò)冷液相區(qū)ΔTx超過(guò)60 K,最大的ΔTx已經(jīng)達(dá)到90 K[8-10].但是,對(duì)于Fe-Nb-B非晶合金,當(dāng)硼(B)含量達(dá)到30%時(shí),合金的過(guò)冷液相區(qū)才能達(dá)到60 K以上.因此,對(duì)具有高過(guò)冷液相區(qū)的Fe-Nb-B三元非晶合金的研究非常重要.文獻(xiàn)[11-12]提出了可以用熱力學(xué)模型預(yù)測(cè)形成非晶的合金范圍,且已經(jīng)應(yīng)用在一系列Fe基非晶合金系中,解決了非晶合金的成分設(shè)計(jì)問(wèn)題,為研究具有高非晶形成能力和良好軟磁性能的Fe基非晶合金奠定了良好的理論基礎(chǔ).
文中制備了具有高過(guò)冷液相區(qū)的Fe1-xNb9Bx(x=19,20,21)系非晶合金帶材,討論了硼(B)的含量對(duì)非晶形成能力以及軟磁性能的影響.本次研究硼(B)的含量在21%時(shí),合金的過(guò)冷液相區(qū)就可以達(dá)到52 K,遠(yuǎn)高于文獻(xiàn)[13]制備的非晶合金Fe75Nb10B15的過(guò)冷液相區(qū)33 K.另一個(gè)新的預(yù)測(cè)非晶形成能力的參數(shù)PHSS,它結(jié)合了混合焓、構(gòu)型熵和錯(cuò)配熵,能比較好地預(yù)測(cè)合金的非晶形成能力.因此本文對(duì)Fe1-xNb9Bx(x=19,20,21)合金的熱力學(xué)參數(shù)也進(jìn)行了計(jì)算,研究熱力學(xué)模型預(yù)測(cè)與所得到的實(shí)驗(yàn)結(jié)果的關(guān)系.
Fe1-xNb9Bx(x=19,20,21)母合金在高頻感應(yīng)爐中進(jìn)行原位熔配,實(shí)驗(yàn)所用原材料為工業(yè)純Fe的質(zhì)量分?jǐn)?shù)為(99.8%)、Fe-60%Nb和Fe-17.5% B中間合金.按照合金名義成分Fe1-xNb9Bx(x= 19,20,21),將裝有原材料和B2O3凈化劑的石英管置于感應(yīng)線圈中,通過(guò)循環(huán)過(guò)熱和凈化法熔配母合金.將母合金經(jīng)打磨和清洗后置于底部為方形的石英管內(nèi),在單輥甩淬及懸浮熔煉聯(lián)合設(shè)備上采用單輥甩淬法制備得到厚度為30~40μm的Fe基非晶帶材,實(shí)驗(yàn)條件:銅輥轉(zhuǎn)速40 m·s—1,噴射壓力20 kPa.
采用日本島津公司生產(chǎn)的XRD-6000型X射線衍射(X-Ray Diffraction,XRD)儀對(duì)制備的Fe1-xNb9Bx(x=19,20,21)帶材進(jìn)行結(jié)構(gòu)鑒定,掃描步長(zhǎng)為0.02°,衍射角為20°~80°.采用Mettler-Toledo TGA/DSC1型差示掃描量熱(Differential Scanning Calorimetry,DSC)儀檢測(cè)非晶帶材的熱學(xué)性能,實(shí)驗(yàn)參數(shù):Ar氣保護(hù),升溫速率40 K· min—1,升溫區(qū)間750~1 600 K.利用Lake Shore 7410型振動(dòng)樣品磁強(qiáng)計(jì)(Vibrating Sample Magnetometer,VSM)測(cè)量各樣品的室溫磁滯回線,獲得飽和磁感應(yīng)強(qiáng)度和矯頑力磁性能參數(shù),實(shí)驗(yàn)檢測(cè)過(guò)程中施加的最大外加磁場(chǎng)強(qiáng)度為1 T.
由Gallego模型[14]可知,忽略組元間相互作用的彈性和結(jié)構(gòu)因素情況下,二元合金的混合焓ΔHc,ΔHcij分別為
式中:n為組元數(shù);xi和xj分別為組元i和j的原子分?jǐn)?shù);ΔHinterfacei—j為組元i在組元j的無(wú)限稀溶液中的固溶焓,其值見(jiàn)文獻(xiàn)[15];ΔHinterfacej—i為組元j在組元i的無(wú)限稀溶液中的固溶焓.
標(biāo)準(zhǔn)化錯(cuò)配熵[16]為
式中:ΔSσ為錯(cuò)配熵;kB為玻爾茲曼常數(shù);參數(shù)ζ= 1/(1—ξ),ξ為堆積系數(shù)(取0.64);y1,y2和y3分別為
式中:di和dj分別為第i個(gè)和第j個(gè)元素的原子直徑;di和dj的數(shù)據(jù)取自文獻(xiàn)[17].構(gòu)型熵ΔSc的表達(dá)式為
式中:R為氣體常數(shù);xi為第i組元的摩爾分?jǐn)?shù).對(duì)于金屬-金屬型非晶,ΔSc/R在0.8~1.0之間;對(duì)于金屬-非金屬型非晶,ΔSc/R為0.6~1.0.
參數(shù)PHS和PHSS分別為
3.1XRD分析
圖1為Fe1-xNb9Bx(x=19,20,21)合金的XRD圖譜.由圖1可知,不同成分的Fe1-xNb9Bx合金的XRD圖譜上在35°~55°范圍內(nèi)均有一個(gè)較寬衍射峰存在,沒(méi)有檢測(cè)到與晶體相相對(duì)應(yīng)的尖銳衍射峰.說(shuō)明制備得到的Fe1-xNb9Bx合金均為完全的非晶態(tài)結(jié)構(gòu).
3.2熱力學(xué)模型預(yù)測(cè)
根據(jù)式(1)~(10)計(jì)算得出Fe1-xNb9Bx(x=19,20,21)合金的ΔHc、ΔSσ/kB、ΔSc/R、PHS和PHSS的值,見(jiàn)表1.其中δ為原子尺寸差百分?jǐn)?shù).Fe1-xNb9Bx合金的ΔSσ/kB和ΔSc/R分別為0.44~0.48和0.77~0.79.隨著硼(B)含量從19 at%增加到21 at%.組元之間混合焓的負(fù)值越大,越有利于形成非晶.隨著合金中硼(B)含量的增加,熱力學(xué)參數(shù)PHS和PHSS的值分別從—4.65 kJ·mol—1減小到—5.16 kJ· mol—1和從—3.58 kJ·mol—1減小到—4.07 kJ· mol—1.根據(jù)文獻(xiàn)[18]報(bào)道,當(dāng)—7.00 kJ·mol—1<PHS<—1.2 kJ·mol—1、—6.00 kJ·mol—1<PHSS<—0.55 kJ·mol—1時(shí),合金熔體凝固后形成非晶;當(dāng)PHSS>—0.55 kJ·mol—1時(shí),合金凝固時(shí)易于形成固溶體相;當(dāng)PHSS<—6.00 kJ·mol—1時(shí),合金凝固時(shí)易于形成化合物相.PHS≈—5 kJ· mol—1時(shí),合金的非晶形成能力最好.對(duì)于Fe1-xNb9Bx(x=19,20,21)合金,—5.16 kJ·mol—1<PHS<—4.65 kJ·mol—1、—4.07 kJ·mol—1<PHSS<—3.58 kJ·mol—1,說(shuō)明Fe1-xNb9Bx(x= 19,20,21)合金熔體凝固后容易形成非晶.Fe71Nb9B20和Fe70Nb9B21合金的PHS值最接近于—5 kJ·mol—1時(shí),因而,從理論上來(lái)講,F(xiàn)e71Nb9B20和Fe70Nb9B21合金的非晶形成能力最佳.
圖1 Fe1-xNb9Bx合金的XRD圖譜Fig.1 XRD patterns of the melt-spun Fe1-xNb9Bx(x=19,20,21)alloys
3.3非晶形成能力
圖2為Fe1-xNb9Bx(x=19,20,21)非晶合金在升溫加熱過(guò)程中的DSC曲線.Fe1-xNb9Bx(x=19,20,21)非晶合金在升溫過(guò)程中均具有顯著的玻璃化轉(zhuǎn)變和晶化階段,且都經(jīng)歷了兩次晶化過(guò)程,如圖2(a)所示.圖2(b)表明,F(xiàn)e1-xNb9Bx合金都存在兩個(gè)吸熱峰,這說(shuō)明合金成分偏離了共晶點(diǎn).
表2為Fe1-xNb9Bx(x=19,20,21)非晶合金的玻璃化轉(zhuǎn)變溫度Tg,晶化溫度Tx1和Tx2,晶化峰溫度Tp1和Tp2以及固相線溫度Tm和液相線溫度Tl.過(guò)冷液相區(qū)ΔTx、參數(shù)Trg和γ.Tg和Tx1分別在835~955 K和879~905 K之間變化.隨著合金中硼(B)含量的增加,Tx1逐漸增加,表明合金的熱穩(wěn)定性得到提高.ΔTx、參數(shù)Trg和γ分別在44~52 K,0.523~0.545和0.361~0.372之間變化. ΔTx逐漸增大說(shuō)明合金的非晶形成能力逐漸增強(qiáng).Tm和Tl分別在1 399~1 414 K和1 570~1 597 K之間變化.
表1 Fe1-xNb9Bx(x=19,20,21)合金的熱力學(xué)參數(shù)Tab.1 Thermodynamic parameters for Fe1-xNb9Bxalloys
圖2 Fe1-xNb9Bx(x=19,20,21)非晶合金的DSC曲線Fig.2 DSC traces of the melt-spun Fe1-xNb9Bx(x=19,20,21)alloys
研究結(jié)果表明,F(xiàn)e1-xNb9Bx(x=19,20,21)非晶合金的熱穩(wěn)定性和非晶形成能力隨著B含量的增加而增加.B含量的改變對(duì)Fe-Nb-B合金非晶形成能力的影響可用Inoue提出的三條經(jīng)驗(yàn)準(zhǔn)則[19]予以解釋.合金體系由Fe、Nb、B三種元素所組成;Fe、Nb、B三種元素的半徑分別為0.124 nm、0.143 nm、0.082 nm,由式(11)[20]可計(jì)算出原子尺寸差百分?jǐn)?shù)δ,見(jiàn)表1.原子尺寸差百分?jǐn)?shù)表達(dá)式為
表2 Fe1-xNb9Bx(x=19,20,21)非晶帶材的熱力學(xué)性質(zhì)Tab.2 Thermal properties for the melt-spun Fe1-xNb9Bx(x=19,20,21)ribbons
3.4軟磁性能
Fe1-xNb9Bx(x=19,20,21)非晶帶材的室溫磁滯回線如圖3所示,其中給出了室溫飽和磁感應(yīng)強(qiáng)度(Ms)和矯頑力(Hc)隨著硼(B)含量的變化規(guī)律.當(dāng)外加磁場(chǎng)較小時(shí),磁化強(qiáng)度急劇增大,當(dāng)外加磁場(chǎng)達(dá)到某一數(shù)值后逐漸趨于穩(wěn)定,直到最終達(dá)到最大值.磁滯回線結(jié)果表明,F(xiàn)e1-xNb9Bx(x=19,20,21)非晶帶材屬于典型的軟磁材料,矯頑力較低,為5×10—6~8×10—6T.B原子分?jǐn)?shù)為19%時(shí),合金的飽和磁感應(yīng)強(qiáng)度為65 emu·g—1;隨硼(B)含量的增加,Ms逐漸減小至57 emu·g—1.Fe72Nb9B19非晶合金的飽和磁感應(yīng)強(qiáng)度最高.
圖3 Fe1-xNb9Bx(x=19,20,21)非晶帶材的室溫磁滯回線Fig.3 Room-temperature magnetic hysteresis loops for the melt-spun Fe1-xNb9Bx(x=19,20,21)ribbons
Fe1-xNb9Bx非晶合金的Ms隨著合金中Fe含量減小、硼(B)含量增加而逐漸減小,良好的軟磁性能主要與非晶合金的結(jié)構(gòu)和合金組成元素的種類有關(guān).Fe屬于鐵磁性元素,硼(B)屬于非金屬元素.Fe具有未填滿的3d電子層,當(dāng)相鄰的Fe原子相互靠近并達(dá)到一定距離時(shí),原子的d層電子云能夠在較大空間內(nèi)形成重疊區(qū),產(chǎn)生的交換能使相鄰未被抵消的原子磁矩同向排列,形成磁矩[21].因此,F(xiàn)e的含量越高,有利于增強(qiáng)磁化強(qiáng)度.當(dāng)B原子的電子云與Fe原子的電子云重疊時(shí),B原子的價(jià)電子將會(huì)轉(zhuǎn)移到Fe原子的d層電子,降低合金磁矩,使得合金的飽和磁感應(yīng)強(qiáng)度減?。?2].對(duì)于淬火狀態(tài)和納米晶合金,隨Fe含量的降低,飽和磁極減小,因?yàn)殡S著B/Fe的增大,F(xiàn)e-Fe原子間距增大,導(dǎo)致飽和磁化強(qiáng)度(Ms)降低[23].因此,對(duì)于Fe1-xNb9Bx(x=19,20,21)合金隨Fe含量的減少和B含量的增加,Ms越小.
采用低純工業(yè)原材料制備得到Fe1-xNb9Bx(x =19,20,21)非晶合金的Hc介于5×10—6~8× 10—6T之間,F(xiàn)e1-xNb9Bx(x=19,20,21)非晶合金的Hc的值小于用高純合金制備的非晶合金Fe77Nb6B17
[24]的Hc值(Hc=2.77×10—5T).主要是實(shí)驗(yàn)通過(guò)對(duì)合金熔體采用凈化處理工藝,減少了合金中的雜質(zhì)元素含量,削弱了由雜質(zhì)元素所引起的釘扎效應(yīng),減小了合金的矯頑力.工業(yè)原材料中的雜質(zhì)元素含量要高于高純?cè)牧系碾s質(zhì)元素含量,這些雜質(zhì)元素的存在導(dǎo)致其結(jié)構(gòu)的不均勻性增加,在磁疇壁產(chǎn)生顯著的釘扎效應(yīng).
1)熱力學(xué)模型預(yù)測(cè)結(jié)果表明,F(xiàn)e1-xNb9Bx(x =19,20,21)非晶合金的PHS和PHSS與合金成分密切相關(guān).PHS和PHSS隨著合金中B含量的增加而逐漸減小,有利于非晶形成能力的提高.
2)隨著合金中硼(B)含量的增加,F(xiàn)e1-xNb9Bx(x=19,20,21)非晶合金的熱穩(wěn)定性增加,且非晶形成能力亦得到顯著提高.Fe70Nb9B21合金的非晶形成能力達(dá)到最佳,過(guò)冷液相區(qū)寬度ΔTx為52 K.實(shí)驗(yàn)結(jié)果與熱力學(xué)模型預(yù)測(cè)結(jié)果相一致.
3)磁學(xué)性能測(cè)試表明,F(xiàn)e1-xNb9Bx(x=19,20,21)非晶合金的Ms為57~65 emu·g—1,Hc介于5×10—6~8×10—6T之間.
參考文獻(xiàn):
[1] DUWEZ P,WILLENS R H,KLEMENT W.Continuous Series of Metastable Solid Solutions in Sliver-copper Alloys[J].Journal of Applied Physics,1960,31 (6):1136.
[2] CHEN H S,MILLER C E.A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids[J].Review of Scientific Instruments,1970,41(8):1237.
[3] DUWEZ P,LIN S C H.Amorphous Ferromagnetic Phase in Iron-carbon-phosphorus Alloys[J].Journal of Applied Physics,1967,38(10):4096.
[4] INOUE A,GOOK J S.Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region[J].Mater Trans JIM,1995,36(9):1180.
[5] SUZUKI K,MAKINO A,INOUE A,et al.Soft Magnetic Properties of Nanocrystalline Bcc Fe-Zr-B and Fe-M-B-Cu(M=Transition Metal)Alloys with HighSaturation Magnetization[J].Journal of Applied Physics,1991,70(10):6232.
[6] STOICA M,KUMAR S,ROTH S,et al.Crystallization Kinetics and Magnetic Properties of Fe66Nb4B30Bulk Metallic Glass[J].Journal of Alloys and Compounds,2009,483(1):632.
[7] 朱滿,李俊杰,堅(jiān)增運(yùn),等.Fe71Nb6B23非晶薄帶的非等溫晶化動(dòng)力學(xué)研究[J].稀有金屬材料與工程,2012,41(10):1730. ZHU Man,LI Junjie,JIAN Zengyun,et al.Non-isothermal Crystallization Kinetics of Fe71Nb6B23Amorphous Ribbons[J].Rare Metal Materials and Engineering,2012,41(10):1730.(in Chinese)
[8] INOUE A,ZHANG T,ITOI T,et al.New Fe-Co-Ni-Zr-B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties[J]. Materials Transactions JIM,1997,38(4):359.
[9] INOUE A,ZHANG T,TAKEUCHI A.Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-TM-B(TM=IV -VIII Group Transition Metal)System[J].Applied Physics Letters,1997,71(4):464.
[10] INOUE A,KOSHIBA H,ZHANG T,et al.Thermal and Magnetic Properties of Fe56Co7Ni7Zr10—xNbxB20Amorphous Alloys with Wide Supercooled Liquid Range[J].Materials Transactions JIM,1997,38 (7):577.
[11] RAO B R,SHAH A K,SRINIVAS M,et al.On Prediction of Amorphous Phase Forming Compositions in the Iron-Rich Fe-Zr-B Ternary System and Their Synthesis[J].Metallurgical&Materials Transactions A,2011,42(13):3913.
[12] BHATT J,WU J,XIA J H,et al.Optimization of Bulk Metallic Glass Forming Compositions in Zr-Cu-Al System by Thermodynamic Modeling[J].Intermetallics,2007,15(5):716.
[13] TORRENS-SERRA J,RODRIGUEZ-VIEJO J,CLAVAGUERE-MORA M T.Influence of Composition in the Crystallization Process of Fe75-xNb10B15+xMetallic Glasses[J].Journal of Non-Crystal-Line Solids,2007,353(8):842.
[14] GALLEGO L J,SOMOZA J A,ALONSO J A.Glass Formation in Ternary Transition Metal Alloys[J]. Journal of Physics:CondensedMatter,1990,2(29):6245.
[15] BOER F R.Cohesion in Metals:Transition Metal Alloys[M].Amsterdam:North Holland,1988.
[16] MANSOORI G A,CARNAHAN N F,STARLING K E,et al.Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres[J].The Journal of Chemical Physics,1971,54(4):1523.
[17] SENKOV O N,MIRACLE D B.Effect of the Atomic Size Distribution on Glass Forming Ability of A-morphous Metallic Alloys[J].Materials Research Bulletin,2001,36(12):2183.
[18] RAO B R,SRINIVAS M,SHAH A K,et al.A New Thermodynamic Parameter to Predict Glass Forming Ability in Iron Based Multi-component Systems Containing Zirconium[J].Intermetallics,2013,35 (2):73.
[19] SHINDO T,WASEDA Y,INOUE A.Prediction of Glass-forming Composition Ranges in Zr-Ni-Al Alloys[J].Materials Transactions,2002,43(10):2502.
[20] GUO S,LIU C T.Phase Stability in High Entropy Alloys:Formation of Solid-solution Phase or Amorphous Phase[J].Progress in Natural Science:Materials International,2011,21(6):433.
[21] 張雅楠,王有駿,孔令體,等.Y對(duì)Fe-Si-B合金非晶形成能力及軟磁性能的影響[J].物理學(xué)報(bào),2012,61 (15):157502. ZHANG Yanan,WANG Youjun,KONG Lingti,et al.Y Has an Impact on the Amorphous Formation Ability and the Soft Magnetic Properties of Fe-Si-B Alloy[J]. Acta Phys,2012,61(15):157502.(in Chinese)
[22] SHI M,LIU Z,ZHANG T.Effects of Metalloid B Addition on the Glass Formation,Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses [J].Journal of Materials Science&Technology,2015,31(5):493.
[23] TORRENS-SERRA J,BRUNA P,RODRIGUEZ-VIEJO J,et al.Effect of Minor Additions on the Glass Forming Ability and Magnetic Properties of Fe-Nb-B Based Metallic Glasses[J].Intermetallics,2010,18(5):773.
[24] SONG D S,KIM J H,F(xiàn)LEURY E,et al.Synthesis of Ferromagnetic Fe-based Bulk Glassy Alloys in the Fe-Nb-B-Y System[J].Journal of Alloys and Compounds,2005,389(1):159.
(責(zé)任編輯、校對(duì) 張 超)
Glass Forming Ability and Soft Magnetic Properties of Ternary Fe1-xNb9BxGlassy Alloy
CHEN Sisi,ZHU Man,JIAN Zengyun
(School of Materials and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China)
Abstract:The purpose of this study is to study compositions of the ternary iron-based amorphous alloys having influence on the properties glass forming ability and soft magnetic properties of amorphous alloys.The Fe1-xNb9Bx(x=19,20,21,22)amorphous ribbons were successfully prepared by means of melt-spinning method.The alloy structure,glass forming ability and soft magnetic properties of these glasses were systematically studied by the combination use of X-ray diffraction(XRD),differential scanning calorimetry(DSC)and vibrating sample magnetometer(VSM).The results showed the Fe1-xNb9Bx(x=19,20,21)alloys were glasses with increasing of B contents.The supercooled liquid region (ΔTx)increased gradually with increasing of B contents,which indicated glass forming ability(GFA)gradually enhanced.The largestΔTxof 52 K was obtained for Fe69Nb9B21.The results and the predicted results of parameter PHSSwere consistent.The saturation magnetization(Ms)was weaken with thebook=156,ebook=73decreasing of Fe contents.The largest Msof 65 emu·g—1was obtained for Fe72Nb9B19.
Key Words:Fe-based amorphous alloy;glass forming ability;soft magnetic properties;thermodynamic parameters
通訊作者:朱 滿(1982—),男,西安工業(yè)大學(xué)副教授,主要研究方向?yàn)殍F基非晶合金.E-mail:zhuman0428@126.com.
作者簡(jiǎn)介:陳思思(1987—),女,西安工業(yè)大學(xué)碩士研究生.
基金資助:國(guó)家自然科學(xué)基金(51071115;51171136;51301125;51401156)
*收稿日期:2015-10-15
DOI:10.16185/j.jxatu.edu.cn.2016.02.012
文獻(xiàn)標(biāo)志碼:中圖號(hào): TG146.4 A
文章編號(hào):1673-9965(2016)02-0155-06