王孝然 申永軍楊紹普
(石家莊鐵道大學(xué)機(jī)械工程學(xué)院,石家莊 050043)
接地式三要素型動(dòng)力吸振器的H∞優(yōu)化*
王孝然 申永軍?楊紹普
(石家莊鐵道大學(xué)機(jī)械工程學(xué)院,石家莊 050043)
以一種接地式三要素型動(dòng)力吸振器為對(duì)象,研究了基于H∞優(yōu)化準(zhǔn)則的系統(tǒng)參數(shù)最優(yōu)解析解.首先,將串聯(lián)型粘彈性模型引入到接地式的動(dòng)力吸振器中,并建立了運(yùn)動(dòng)微分方程,得到了系統(tǒng)的解析解.隨后,以系統(tǒng)的解析解為研究對(duì)象發(fā)現(xiàn)該系統(tǒng)存在著三個(gè)固定點(diǎn),利用固定點(diǎn)理論將三個(gè)固定點(diǎn)調(diào)到了同一高度得到了動(dòng)力吸振器的最優(yōu)調(diào)諧比和最優(yōu)剛度比設(shè)計(jì)公式,并依據(jù)H∞優(yōu)化準(zhǔn)則通過(guò)最小化幅頻曲線的最大值得到了系統(tǒng)最優(yōu)阻尼比設(shè)計(jì)公式.最后,通過(guò)數(shù)值解與解析解的對(duì)比說(shuō)明了解析解的正確性,并證明了接地式三要素型動(dòng)力吸振器有較好的吸振效果.
動(dòng)力吸振器, 固定點(diǎn)理論,H∞優(yōu)化, 參數(shù)優(yōu)化
振動(dòng)是生產(chǎn)和生活中的一種常見(jiàn)現(xiàn)象.隨著運(yùn)動(dòng)速度不斷提高,機(jī)械設(shè)備的振動(dòng)問(wèn)題越來(lái)越受到人們的關(guān)注.尤其在農(nóng)業(yè)機(jī)械領(lǐng)域,振動(dòng)不僅容易引起農(nóng)業(yè)機(jī)械的疲勞損傷,影響設(shè)備的壽命,還會(huì)降低儀器儀表的測(cè)量精度,導(dǎo)致繼電器等電氣部件和自控系統(tǒng)工作失靈.同時(shí)振動(dòng)還不可避免地產(chǎn)生噪音,影響操作人員的正常工作甚至危害健康.為了抑制有害的振動(dòng),長(zhǎng)期以來(lái)人們開(kāi)展了大量的研究,提出了緩沖隔振、阻尼減振、動(dòng)力吸振等多種振動(dòng)控制技術(shù).文獻(xiàn)[1]研究了拖拉機(jī)前橋懸架參數(shù)匹配及其對(duì)振動(dòng)特性的影響,能夠很好地降低拖拉機(jī)的振動(dòng).文獻(xiàn)[2]研究了懸掛農(nóng)具對(duì)電液懸掛系統(tǒng)拖拉機(jī)振動(dòng)的影響,為拖拉機(jī)主動(dòng)減振控制提供了理論依據(jù).文獻(xiàn)[3]研究了農(nóng)具質(zhì)量對(duì)拖拉機(jī)懸掛農(nóng)具系統(tǒng)振動(dòng)特性的影響,為拖拉機(jī)減振系統(tǒng)的設(shè)計(jì)提供了重要參考.文獻(xiàn)[4]分析了行星排式混合動(dòng)力汽車(chē)傳動(dòng)系扭轉(zhuǎn)振動(dòng),為混合動(dòng)力汽車(chē)的振動(dòng)及噪聲性能改善提供參考.文獻(xiàn)[5]研究了車(chē)廂壁面振動(dòng)對(duì)其內(nèi)部聲場(chǎng)的影響度分析與阻尼降噪,并試用阻尼減振方法,對(duì)以正影響度為主的壁面粘貼阻尼材料,使耳旁噪聲降低了2.2dB(A).
動(dòng)力吸振器又稱(chēng)調(diào)諧質(zhì)量阻尼器,自1909年Frahm[6]發(fā)明了第一個(gè)動(dòng)力吸振器以來(lái),人們對(duì)其研究已有一百多年的歷史.這種無(wú)阻尼的動(dòng)力吸振器雖然當(dāng)外激勵(lì)頻率與主系統(tǒng)頻率相等時(shí)會(huì)取得很好的減振效果,但在附加吸振器后,主系統(tǒng)會(huì)出現(xiàn)兩個(gè)新的共振頻率.一旦激勵(lì)頻率偏離主共振頻率時(shí)就有可能再次引起較大的共振幅值,所以說(shuō)該模型適用頻率范圍非常窄.1928年,Den Hartog和Ormondroyd[7]發(fā)現(xiàn)在無(wú)阻尼動(dòng)力吸振器中加入適當(dāng)?shù)淖枘釙?huì)拓寬動(dòng)力吸振器的減振頻率.現(xiàn)在該模型通常被稱(chēng)為Voigt型動(dòng)力吸振器而且已經(jīng)被視為動(dòng)力吸振器的經(jīng)典模型.
除了Voigt型動(dòng)力吸振器,人們也研究了許多其他形式動(dòng)力吸振器.典型的如2001年Ren等人[8]提出了一種接地式動(dòng)力吸振器模型,該模型中阻尼器并不是連接在主系統(tǒng)和子系統(tǒng)之間,而是直接連接子系統(tǒng)和結(jié)構(gòu)(或者地基).Ren等人對(duì)其參數(shù)進(jìn)行了優(yōu)化,與Voigt模型的對(duì)比說(shuō)明了該模型具有更好的減振效果.2005年Liu[9-10]等人對(duì)該模型采用另一種方法進(jìn)行了參數(shù)優(yōu)化,并在2010年對(duì)主系統(tǒng)含阻尼的情況通過(guò)固定點(diǎn)存在的假設(shè)得到了近似最優(yōu)參數(shù).由于振動(dòng)控制工程中大量采用粘彈性材料,而粘彈性材料不僅具有阻尼性質(zhì)也具有剛度性質(zhì),日本學(xué)者Asami等[11-12]提出了三要素動(dòng)力吸振器模型并對(duì)其進(jìn)行了優(yōu)化設(shè)計(jì),發(fā)現(xiàn)在相同質(zhì)量比情況下,該模型具有更好的減振效果.文獻(xiàn)[13-14]研究了時(shí)滯對(duì)動(dòng)力吸振器的影響,給出了如何利用時(shí)滯提高振動(dòng)控制效果的思想.文獻(xiàn)[15-16]研究了四種半主動(dòng)動(dòng)力吸振器的近似解析解,并分析了半主動(dòng)動(dòng)力吸振器的參數(shù)設(shè)計(jì)和時(shí)滯對(duì)半主動(dòng)控制規(guī)律的影響.文獻(xiàn)[17-18]研究了寬帶動(dòng)力吸振器優(yōu)化設(shè)計(jì).文獻(xiàn)[19]研究了連續(xù)型參數(shù)吸振器的優(yōu)化設(shè)計(jì).文獻(xiàn)[20]研究了一種含負(fù)剛度元件的新型動(dòng)力吸振器的參數(shù)優(yōu)化.
本文研究了一種接地式三要素型動(dòng)力吸振器,應(yīng)用H∞優(yōu)化方法對(duì)該動(dòng)力吸振器進(jìn)行動(dòng)力學(xué)分析和參數(shù)優(yōu)化,得到了最優(yōu)調(diào)頻比、最優(yōu)剛度比和最優(yōu)阻尼比的設(shè)計(jì)公式.并通過(guò)分析比較驗(yàn)證了該吸振器的振動(dòng)控制效果.
如圖1所示為本文研究的接地式三要素型動(dòng)力吸振器模型,其中,m1代表主系統(tǒng)質(zhì)量,m2代表動(dòng)力吸振器質(zhì)量,k1和k2分別代表主系統(tǒng)和動(dòng)力吸振器的剛度,ka和c分別是串聯(lián)型粘彈性模型的剛度和阻尼,F(xiàn)0和ω分別表示激振力振幅和頻率,x1、x2、x3分別表示主系統(tǒng)、動(dòng)力吸振器以及串聯(lián)彈簧和阻尼分割點(diǎn)的位移.
圖1 接地式三要素型動(dòng)力吸振器模型Fig.1 Model of grounded three-element type dynamic vibration absorber
根據(jù)牛頓第二定律可以得到系統(tǒng)的動(dòng)力學(xué)方程
由式(6)通過(guò)簡(jiǎn)單推導(dǎo),可以證明其歸一化的幅頻曲線都將通過(guò)三個(gè)獨(dú)立于阻尼比的點(diǎn),這三個(gè)點(diǎn)稱(chēng)為該動(dòng)力吸振器的固定點(diǎn).為了直觀說(shuō)明該結(jié)論,圖2給出了阻尼比為0、0.276和∞時(shí)的歸一化幅頻曲線.從圖中可以清楚地看出曲線均通過(guò)P、Q和R三點(diǎn).因?yàn)楣潭c(diǎn)與阻尼比無(wú)關(guān),為了解出固定點(diǎn),只需令
圖2 不同阻尼比下幅頻曲線Fig.2 The amplitude-frequency curves under different damping ratios
當(dāng)把三個(gè)固定點(diǎn)的縱坐標(biāo)調(diào)到同一高度,就可以得到最優(yōu)調(diào)頻比.這個(gè)調(diào)整需要兩步完成.第一步把P點(diǎn)和R點(diǎn)的縱坐標(biāo)調(diào)到同一高度,可以得到
把(15)式代入到(9)式可以得到
由(16)式解得
式(14)可以寫(xiě)成
第二步,把P或R點(diǎn)與Q點(diǎn)的縱坐標(biāo)調(diào)整到同一高度,可以得到最優(yōu)頻率比
把(19)式代入到(15)式得到
此時(shí),
當(dāng)把三個(gè)固定點(diǎn)調(diào)整到同一高度后,如圖3所示.此時(shí)改變阻尼比,可以改變共振峰的高度,最優(yōu)阻尼比可以通過(guò)調(diào)整兩個(gè)共振峰為同一高度時(shí)實(shí)現(xiàn).
為了得到最優(yōu)阻尼比,需要知道在兩個(gè)共振峰處的橫坐標(biāo),即λ1,2.令
由上式可以得到ξ1和ξ2的值,然后得到但是這樣很難得到解析結(jié)果.
圖3 不同阻尼比下的幅頻曲線Fig.3 The amplitude-frequency curves under different damping ratios
由圖3我們可以清晰地觀察到當(dāng)兩個(gè)共振峰在同一高度時(shí),Q點(diǎn)的附近正好是幅頻曲線斜率為零的區(qū)域,Q點(diǎn)的橫坐標(biāo)已經(jīng)求出,可以根據(jù)Q點(diǎn)的橫坐標(biāo)得出近似的最優(yōu)阻尼比.
根據(jù)
從而得到近似最優(yōu)阻尼比
圖4給出了根據(jù)前述優(yōu)化結(jié)果得到的幅頻曲線,可以發(fā)現(xiàn)基本達(dá)到了優(yōu)化目的.
圖4 近似最優(yōu)阻尼比時(shí)的幅頻曲線Fig.4 The amplitude-frequency curve under approximate optimal damping ratio
為了驗(yàn)證前文得到結(jié)果的正確性,任選激勵(lì)幅值為F=1000,選取質(zhì)量比為μ=0.1,從而根據(jù)前述結(jié)果得到其他系統(tǒng)參數(shù)為k=0.632,v=0.907,ξ=0.2765.利用四階龍格庫(kù)塔法,選取計(jì)算時(shí)間為100倍的激勵(lì)周期,可以得到給定激勵(lì)頻率下系統(tǒng)響應(yīng)的數(shù)值解.略去瞬態(tài)響應(yīng),取穩(wěn)態(tài)解的最大值為響應(yīng)幅值可以得到歸一化的幅頻曲線,如圖5中圓圈所示.根據(jù)式(6),圖5中也同時(shí)用實(shí)線畫(huà)出了系統(tǒng)解析解的曲線.從圖中可以明顯看出,與圖3未優(yōu)化結(jié)果相比較,通過(guò)優(yōu)化使其兩個(gè)共振峰處于相等高度.同時(shí)數(shù)值解與解析解的吻合,也說(shuō)明了本文求解過(guò)程的正確性.
圖5 數(shù)值解和解析解對(duì)比Fig.5 Numerical solution compared with analytical solution
本文將串聯(lián)型粘彈性模型引入到接地式的動(dòng)力吸振器中,并以其為研究對(duì)象根據(jù)固定點(diǎn)理論得到了系統(tǒng)取得最優(yōu)減振效果時(shí)的動(dòng)力吸振器參數(shù),通過(guò)數(shù)值解驗(yàn)證了所得結(jié)果的正確性.證明了接地式三要素型動(dòng)力吸振器有較好的吸振效果.
1 伊力達(dá)爾·伊力亞斯,朱思洪,徐剛,袁加奇.拖拉機(jī)前橋懸架參數(shù)匹配及其對(duì)振動(dòng)特性的影響.農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):29~36(Yilidaer Y L Y S,Zhu SH,Xu G,Yuan JQ.Front axle suspension parametersmatch and its impacton vibration characteristics of tractor.Transactions of the Chinese Society of Agricultural Engineering,2015,31(10):29~36(in Chinese))
2 承鑒,遲瑞娟,毛恩榮.懸掛農(nóng)具對(duì)電液懸掛系統(tǒng)拖拉機(jī)振動(dòng)的影響.農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):24~32(Cheng J,Chi R J,Mao E R.Influence of hanging farm implement on vibration of tractor with electro-hydraulic hitch system.Transactionsof the Chinese Society of Agricultural Engineering,2015,31(7):24~32(in Chinese))
3 朱思洪,徐剛,袁加奇,馬佳富,伊力達(dá)爾,李科.農(nóng)具質(zhì)量對(duì)拖拉機(jī)懸掛農(nóng)具系統(tǒng)振動(dòng)特性的影響.農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):30~37(Zhu SH,Xu G,Yuan JQ,Ma JF,Yi Lidaer,Li K.Influence of implement′smass on vibration characteristics of tractor-implement system.Transactions of the Chinese Society of Agricultural Engineering,2014,30(24):30~37(in Chinese))
4 于海生,張彤,馬智濤,王瑞平.行星排式混合動(dòng)力汽車(chē)傳動(dòng)系扭轉(zhuǎn)振動(dòng)分析.農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):57~64(Yu H S,Zhang T,Ma Z T,Wang R P.Torsional vibration analysis of planetary hybrid electric vehicle driveline.Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):57~64(in Chinese))
5 劉紅光,陸森林,曾發(fā)林.車(chē)廂壁面振動(dòng)對(duì)其內(nèi)部聲場(chǎng)的影響度分析與阻尼降噪.農(nóng)業(yè)工程學(xué)報(bào),2002,18(2):62~64(Liu H G,Lu S L,Zeng F L.Influence of wall vibration on the sound in a cab and noise reduction with damping.Transactionsof the Chinese Society of Agricultural Engineering,2002,18(2):62~64(in Chinese))
6 Frahm H.Device for damping vibrations of bodies.U.S.Patent989,958.1911
7 Ormondroyd J,Den Hartog JP.The theory of the dynamic vibration absorber.Journal of Applied Mechanics,1928,50:9~22
8 Ren M Z.A variant design of the dynamic vibration absorber.Journal of Sound and Vibration,2001,245(4):762~770
9 Liu K,Liu J.The damped dynamic vibration absorbers:revisited and new result.Journal of Sound and Vibration,2005,284(3):1181~1189
10 Liu K,Coppola G.Optimal design of damped dynamic vibration absorber for damped primary systems.Transactions of the Canadian Society for Mechanical Engineering,2010,34(1):119
11 Asami T,Nishihara O.Analytical and experimental evaluation of an air damped dynamic vibration absorber:design optimizations of the three-element type model.Journal ofVibration and Acoustics,1999,121(3):334~342
12 Asami T,Nishihara O.H2optimization of the three-element type dynamic vibration absorbers.Journal of Vibration and Acoustics,2002,124(4):583~592
13 趙艷影,李昌愛(ài).時(shí)滯反饋控制扭轉(zhuǎn)振動(dòng)系統(tǒng)的振動(dòng).物理學(xué)報(bào),2011,60(10)114305(Zhao Y Y,Li CA.The delayed feedback control to suppress the vibration in a torsional vibrating system.Acta Physica Sinica,2011,60(10)114305(in Chinese))
14 Zhao Y Y,Xu J.Effects of delayed feedback control on nonlinear vibration absorber system.Journal of Sound and Vibration,2007,308:212~230
15 Shen Y J,Wang L,Yang S P,Gao G S.Nonlinear dynamical analysis and parameters optimization of four semiactive on-off dynamic vibration absorbers.Journal of Vibration and Control,2013,19(1):143~160
16 Shen Y J,Ahmadian M.Nonlinear dynamical analysis on four semi-active dynamic vibration absorbers with time delay.Shock and Vibration,2013,20(4):649~663
17 李俊,金咸定.動(dòng)力吸振器的寬帶數(shù)值優(yōu)化設(shè)計(jì).振動(dòng)與沖擊,2001,20(2):16~18(Li J,Jin X D.Broadband numerical optimization design of dynamic vibration absorber.Journal of VIibration and Shock,2001,20(2):16~18(in Chinese))
18 肖和業(yè),盛美萍,吳偉浩.新型寬帶動(dòng)力吸振器優(yōu)化設(shè)計(jì).振動(dòng)與沖擊,2011,30(1):98~101(Xiao H Y,Sheng M P,Wu W H.Optimization analysis of new type of broadband dynamic vibration absorber based on particle swarm optimization.Journal of VIibration and Shock,2011,30(1):98~101(in Chinese))
19 肖和業(yè),盛美萍,雷燁.連續(xù)參數(shù)型吸振器吸振分析及優(yōu)化.振動(dòng),測(cè)試與診斷,2012,32(3):447~451(Xiao H Y,Sheng M P,Lei Y.Analysis and optimization of continuous parameter type dynamic vibration absorber.Journal of Vibration,Measurement&Diagnosis,2012,32(3):447~451(in Chinese))
20 彭海波,申永軍,楊紹普.一種含負(fù)剛度元件的新型動(dòng)力吸振器的參數(shù)優(yōu)化.力學(xué)學(xué)報(bào),2015,47(2):320~327(Peng H B,Shen Y J,Yang SP.Parameters optimization of a new type of dynamic vibration absorber with negative stiness.Chinese Journalof Theoretical and Applied Mechanics,2015,47(2):320~327(in Chinese))
H∞OPTIM IZATION OF THE GROUNDED THREE-ELEMENT TYPE DYNAM IC VIBRATION ABSORBER*
Wang Xiaoran Shen Yongjun?Yang Shaopu
(Department of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang050043,China)
Taking a new type of the grounded three-element type dynamic vibration absorber as the research object,the optimal analytical solution is studied based on H∞optimization principle in this paper.Firstly,a series viscoelasticmodel is introduced into the grounded dynamic vibration absorber,and the analytical solution of the system is obtained based on the established motion differential equation.Three fixed points are found in the amplitude-frequency curves of the primary system.Moreover,the design formulae for the optimal tuning ratio and the optimal stiffness ratio of the dynamic vibration absorber are developed by adjusting the three fixed points to the same height according to the fixed point theory.Then,the optimal damping ratio is obtained by minimizing the maximum value of the amplitude-frequency curves according to H∞optimization principle.In addition,the comparison between the numerical solution and the analytical solution is investigated.It verifies the correctness of the analytical solution,and illustrates that the grounded three-element type dynamic vibration absorber exhibites better performance of vibration absorption.
dynamic vibration absorber, fixed point theory, H∞optimization, Parameter optimization
10.6052/1672-6553-2015-82
2015-11-11收到第1稿,2015-11-16收到修改稿.
*國(guó)家自然科學(xué)基金(11372198)、河北省高等學(xué)校創(chuàng)新團(tuán)隊(duì)領(lǐng)軍人才計(jì)劃(LJRC018)、河北省高等學(xué)校高層次人才科學(xué)研究項(xiàng)目(GCC2014053)、河北省高層次人才資助項(xiàng)目(A201401001)
?通訊作者E-mail:shenyongjun@126.com
Received 11 November 2015,revised 16 November 2015.
*The project supported by the National Natural Science Foundation of China(11372198),the Cultivation plan for Innovation team and leading talent in Colleges and universitiesof Hebei Province(LJRC018),the Program for advanced talent in the universitiesofHebei Province(GCC2014053),and the Program for advanced talent in Hebei Province(A201401001)
?Corresponding author E-mail:shenyongjun@126.com