張功學(xué), 葉 東
(陜西科技大學(xué) 機(jī)電工程學(xué)院, 陜西 西安 710021)
?
懸架參數(shù)對車輛平順性的影響研究
張功學(xué), 葉 東
(陜西科技大學(xué) 機(jī)電工程學(xué)院, 陜西 西安 710021)
以某款國產(chǎn)轎車為研究對象,運(yùn)用汽車動(dòng)力學(xué)理論將轎車簡化為二自由度振動(dòng)模型,推導(dǎo)出了復(fù)頻響應(yīng)函數(shù).利用MATLAB軟件計(jì)算并繪制出車身加速度、懸架動(dòng)撓度及車輪動(dòng)載的幅頻特性曲線,并求出汽車在C級(jí)路面上行駛時(shí)振動(dòng)響應(yīng)量的均方根值.研究懸架剛度、減震器阻尼系數(shù)對振動(dòng)響應(yīng)量的影響,最終得到了懸架參數(shù)對汽車行駛平順性的影響規(guī)律,對汽車平順性研究有一定價(jià)值.
汽車動(dòng)力學(xué)模型; 幅頻特性; 功率譜密度; 平順性
汽車在行駛中,由于路面的不平整、輪胎的動(dòng)不平衡以及發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng)的激勵(lì)都會(huì)引起汽車的振動(dòng).隨著車速的提高,人們對汽車行駛平順性(即乘坐舒適性)的要求也越來越高.汽車的平順性可以使乘客在汽車行駛過程中所處的振動(dòng)環(huán)境具有一定的舒適度,避免產(chǎn)生較大的噪聲、使人感覺不舒服、疲勞以及貨物損壞,它是衡量現(xiàn)代高速汽車的主要性能指標(biāo)之一[1].決定汽車行駛平順性的指標(biāo)有3個(gè):車身垂直方向的加速度、懸架動(dòng)撓度以及車輪動(dòng)載荷.
國內(nèi)外很多學(xué)者在這方面作了積極的研究,文獻(xiàn)[2-5]是基于線性懸架系統(tǒng)模型,分析了懸架阻尼對汽車平順性的影響,雖然確定了最佳阻尼系數(shù),但沒有考慮懸架剛度對平順性的影響;哈爾濱工業(yè)大學(xué)的徐斌等[6]通過建立十自由度空間模型,探討了懸架參數(shù)對駕駛員垂向加速度及車輪動(dòng)載的影響,但在平順性的評價(jià)指標(biāo)中沒有考慮懸架動(dòng)撓度;西安交大的呂彭民[7]采用統(tǒng)一目標(biāo)函數(shù)法對車輛懸架參數(shù)進(jìn)行優(yōu)化,減小了輪胎對路面的動(dòng)載,但是沒有分析該方法對懸架動(dòng)撓度的影響結(jié)果;Avesh[8]在SIMULINK環(huán)境下對車輛懸架系統(tǒng)進(jìn)行建模與仿真,利用PID控制器對集成系統(tǒng)的動(dòng)態(tài)性能進(jìn)行了改進(jìn),提高了懸架系統(tǒng)的性能;Soliman[9]論述了路面不平度對半主動(dòng)懸架車輛的行駛平順性的影響,但都沒有定性地得到對3個(gè)平順性指標(biāo)的影響規(guī)律.綜上,懸架各參數(shù)對汽車平順性影響規(guī)律的研究尚不充分,還值得繼續(xù)研究.
汽車模型簡化多種多樣,一般簡化為7自由度模型,即考慮車身垂直、俯仰、側(cè)傾以及4個(gè)車輪質(zhì)量的4個(gè)垂直自由度,共7個(gè)自由度.這里可做以下假設(shè):(1)在路面的激勵(lì)下,左右兩輪所受到的激勵(lì)相似,認(rèn)為左右輪的輸入一致,忽略車身左右兩邊的相互作用;(2)汽車對于其縱向軸線對稱;(3)忽略輪胎阻尼;(4)系統(tǒng)為線性系統(tǒng);(5)汽車的前后軸懸架質(zhì)量分配達(dá)到一定值,即ε≈1時(shí),前后懸架系統(tǒng)的垂直振動(dòng)相互獨(dú)立[10,11].
根據(jù)以上假設(shè),可以把復(fù)雜的汽車簡化為車身、車架等懸掛質(zhì)量和車輪、車軸等非懸掛質(zhì)量的二自由度振動(dòng)模型,如圖1所示.
圖1 二自由度振動(dòng)模型
二自由度振動(dòng)模型不僅可以反映車身部分的動(dòng)態(tài)性能,還能反映車輪部分在高頻共振時(shí)的動(dòng)態(tài)特性,能夠比較接近地反映車輛懸架系統(tǒng)的真實(shí)情況.
以國產(chǎn)某款汽車為例分析,具體參數(shù)如表1所示.
質(zhì)量分配系數(shù)
故汽車可簡化為二自由度振動(dòng)模型,設(shè)懸掛質(zhì)量和非懸掛質(zhì)量的垂直位移坐標(biāo)為z1和z2,取平衡位置為坐標(biāo)原點(diǎn)建立坐標(biāo)系,系統(tǒng)的振動(dòng)方程為:
(1)
即
(2)
ω1=7.31 rad/s,φ1=(10.127 7,1)T;
ω2=74.12 rad/s,φ2=(-0.010 9,1)T
2.1 響應(yīng)量的統(tǒng)計(jì)特征值
假設(shè)路面不平度為平穩(wěn)隨機(jī)過程,根據(jù)隨機(jī)振動(dòng)理論,在平穩(wěn)隨機(jī)過程中,系統(tǒng)響應(yīng)量的統(tǒng)計(jì)特征值可通過下式求得[12],即
(3)
根據(jù)激勵(lì)譜密度和復(fù)頻響應(yīng)函數(shù),可以求出系統(tǒng)響應(yīng)量的均方值,當(dāng)頻率指數(shù)取2時(shí),路面激勵(lì)速度的功率譜密度為不隨頻率變化的白噪聲[13,14],給計(jì)算帶來方便,將式(3)改為
(4)
式(4)中:Gq(n0),路面不平度;n0,參考空間頻率,n0=0.1 m-1;v,車速.
2.2 系統(tǒng)響應(yīng)量對路面激勵(lì)速度的幅頻特性
對式(1)作傅氏變換,可得到各響應(yīng)量對路面激勵(lì)速度的復(fù)頻響應(yīng)函數(shù),它的模反映了系統(tǒng)的幅頻特性,將式(1)變?yōu)?/p>
導(dǎo)出
H(ω)z1~q=
H(ω)z2~q=
(5)
(6)
(7)
式(5)~(7)中:
2.3 響應(yīng)量的幅頻特性曲線
將表1的參數(shù)帶入式(5)~(7),利用MATLAB軟件計(jì)算并繪制出系統(tǒng)3個(gè)振動(dòng)響應(yīng)量關(guān)于路面激勵(lì)速度的幅頻特性曲線如圖2所示.
(a)車身加速度幅頻特性曲線
(b)懸架動(dòng)撓度幅頻特性曲線
(c)車輪動(dòng)載荷幅頻特性曲線圖2 響應(yīng)量關(guān)于路面激勵(lì) 速度的幅頻特性曲線
2.4 響應(yīng)量的均方根值
本文取C級(jí)路面,由文獻(xiàn)[15-16]查得路面不平度Gq(n0)為256×10-6m3;車速取50 km/h,利用式(4)計(jì)算各個(gè)響應(yīng)量的均方根值,計(jì)算結(jié)果如表2所示.
表2 各響應(yīng)量的均方根值
2.5 當(dāng)路面激勵(lì)為簡諧位移激勵(lì)時(shí)系統(tǒng)的響應(yīng)
當(dāng)路面激勵(lì)為簡諧位移激勵(lì)q=q0sin(ωt)時(shí),q0為位移幅值,ω為激振頻率,前文算出了系統(tǒng)的二階固有頻率及相應(yīng)的主振型,則系統(tǒng)的振型矩陣Φ=[φ1,φ2] ,利用振型矩陣作坐標(biāo)變換,令Z=Φη,η為主坐標(biāo),并用φT左乘原方程式2,使原方程解耦,得主質(zhì)量矩陣Mp=ΦTMΦ,主剛度矩陣Kp=ΦTKΦ,主阻尼矩陣Cp=ΦTCΦ,原方程解耦為
式中:F=F0sin(ωt);F0=[0k2q0]T.由振型疊加法得原坐標(biāo)下的穩(wěn)態(tài)響應(yīng)
計(jì)算出車身位移
車身加速度
根據(jù)GB7031-87查得C級(jí)路面高程幅值在0.02m范圍內(nèi),取q0=0.02 m,路面統(tǒng)計(jì)分析的空間頻率在0.011 m-1 圖3 加速度均方根值隨激振 頻率的變化曲線 由圖3看出,車身加速度均方根值在固有頻率附近達(dá)到最大值1.8 m/s2,當(dāng)激勵(lì)頻率超過了固有頻率后,加速度趨近0.8 m/s2,所以車身加速度均方根應(yīng)在0.8~1.8 m/s2之間并接近0.8 m/s2,與前一種方法計(jì)算結(jié)果進(jìn)行對比,可以看出該方法能夠?yàn)轫憫?yīng)量的均方根預(yù)估出大致的范圍. 3.1 懸架剛度對平順性的影響 為探討懸架剛度對汽車平順性的影響,在其他參數(shù)不變的情況下,將懸架剛度k1由20 kN/m每2 kN/m逐級(jí)增加到50 kN/m,并計(jì)算出每個(gè)剛度下各平順性指標(biāo)的均方根值,繪制其隨懸架剛度的變化曲線如圖4所示. 圖4 平順性指標(biāo)的均方根值隨剛度變化曲線 由圖4看出,隨著懸架剛度k1的增大,車身垂向加速度的均方根值單調(diào)遞增,懸架動(dòng)撓度單調(diào)遞減,車輪動(dòng)載荷先減小后增大,說明減小懸架剛度可以提高乘坐舒適性,同時(shí)也會(huì)增加撞擊限位塊的概率.故不能為了追求舒適性而一味地降低懸架剛度,剛度過小也會(huì)增加車輪動(dòng)載荷,嚴(yán)重時(shí)會(huì)使車輪離開地面,在緊急制動(dòng)時(shí)會(huì)產(chǎn)生嚴(yán)重的汽車“點(diǎn)頭”現(xiàn)象.因此對于行駛路況比較好的轎車,采用適當(dāng)?shù)摹败洝睆椈煽梢蕴岣呤孢m性.對于一般的轎車,從舒適性的角度出發(fā),推薦懸架剛度k1取22~30 kN/m比較好. 3.2 阻尼系數(shù)對平順性的影響 為衰減車身自由振動(dòng)和抑制車身、車輪的共振,懸架系統(tǒng)中應(yīng)具有適當(dāng)?shù)淖枘?為探討減震器阻尼系數(shù)對平順性的影響,其他參數(shù)不變,將阻尼系數(shù)c由500 N·s/m每100 N·s/m逐級(jí)增加到2 500 N·s/m,并計(jì)算每個(gè)阻尼系數(shù)下各指標(biāo)的均方根值,繪制其隨減震器阻尼系數(shù)的變化曲線如圖5所示. 圖5 平順性指標(biāo)的均方根值隨 阻尼系數(shù)變化曲線 由圖5看出,隨著減震器阻尼系數(shù)c的增大,車身垂向加速度的均方根值先減小后增大,懸架動(dòng)撓度和車輪動(dòng)載荷的均方根值均大幅減小,說明提高減震器阻尼主要可以降低動(dòng)撓度,使撞擊限位塊的概率降低,也能防止車輪跳離地面,改善行駛穩(wěn)定性,提高汽車的安全性.綜合考慮三項(xiàng)指標(biāo),可以看出當(dāng)阻尼系數(shù)在1 100~2 000 N·s/m范圍內(nèi),汽車平順性最佳,相應(yīng)的阻尼比 在0.192 5~0.35,因此,對于一般型號(hào)的轎車,阻尼比設(shè)置在(0.19~0.35)范圍左右平順性最宜,與文獻(xiàn)[5]推薦范圍相吻合. 通過研究發(fā)現(xiàn)懸架參數(shù)(k1、c)的改變,對車身加速度、懸架動(dòng)撓度、車輪動(dòng)載荷的影響各異,本文依次改變懸架剛度k1和減震器阻尼系數(shù)c來研究對汽車平順性的影響,發(fā)現(xiàn)對于行駛路況較好的轎車,適當(dāng)?shù)販p小懸架剛度可以提高乘坐舒適性;而增大減震器阻尼系數(shù)主要可以改善汽車的安全性,降低撞擊限位塊的概率,對于一般型號(hào)的轎車,阻尼比推薦設(shè)置在(0.19~0.35)范圍左右. [1] 余志生.汽車?yán)碚揫M].5版.北京:機(jī)械工業(yè)出版社,2015. [2] 史廣奎,李 檳,孟憲民.汽車設(shè)計(jì)中減震器相對阻尼系數(shù)的確定[J].汽車工程,1995,17(6):367-373. [3] 畢鳳榮,郝志勇,謝慶森,等.汽車懸架系統(tǒng)非線性阻尼的優(yōu)化設(shè)計(jì)[J].天津大學(xué)學(xué)報(bào),2002,35(1):78-82. [4] 張振華,董明明.2自由度車輛懸架線性模型最佳相對阻尼系數(shù)的解析分析[J].北京理工大學(xué)學(xué)報(bào),2008,28(12):1 057-1 059. [5] 顧信忠,張鐵山.汽車減震器相對阻尼系數(shù)的確定[J].車輛與動(dòng)力技術(shù),2011,122(2):29-33. [6] 徐 斌,王國棟,曹立文.懸架參數(shù)對行駛平順性和道路友好性的影響[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2004,36(2):191-194. [7] 呂彭民,何麗梅,尤晉閩.基于舒適性和輪胎動(dòng)載的車輛懸架參數(shù)優(yōu)化[J].中國公路學(xué)報(bào),2007,20(1):112-117. [8] Avesh M,Srivastava R.Modeling simulation and control of active suspension system in MATLAB SIMULINK environment[C]//2012 Students Conference on Engineering and Systems.Piscataway:IEEE Computer Society,2012:1-6. [9] Soliman A.Effect of road roughness on the vehicle ride comfort using semiactive suspension system[C]//SAE 2010 World Congress and Exhibition.Warrendale:SAE International,2010:84-93. [10] 李 杰,秦玉英,趙 旗,等.用于分析車輛隨機(jī)振動(dòng)的一種新方法[J].機(jī)械設(shè)計(jì),2009,26(4):14-17. [11] 王 宇,秦 峰,高連興.汽車懸架主要性能參數(shù)的匹配研究[J].拖拉機(jī)與農(nóng)用運(yùn)輸車,2006,33(2):83-87. [12] 周長城,周金寶,任傳波,等.汽車振動(dòng)分析與測試[M].北京:北京大學(xué)出版社,2010. [13] 容一鳴,陽 杰.車輛隨機(jī)輸入的動(dòng)態(tài)仿真和試驗(yàn)研究[J].汽車工程,2001,23(5):349-351. [14] 段虎明,石 峰,謝 飛,等.路面不平度研究綜述[J].振動(dòng)與沖擊,2009,28(9):95-101. [15] GB 7031-86,車輛振動(dòng)輸入路面不平度表示方法[S]. [16] 陳杰平,陳無畏,祝 輝,等.基于MATLAB/SIMULINK的隨機(jī)路面建模與不平度仿真[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(3):11-15. 【責(zé)任編輯:陳 佳】 Study on the influence of suspension parameters on the vehicle ride comfort ZHANG Gong-xue, YE Dong (College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi′an 710021, China) A domestic car is chosen as the research object,which two DOF vibration model is established according to the vehicle dynamics theory.Then,the complex frequency-response functions are derived.The amplitude-frequency characteristic curves of vehicle body acceleration,suspension deflection and dynamic tire load are studied.And root mean square value of each vibration response is calculated by MATLAB when the car is running on grade C road.Next,the effect of suspension′s stiffness and damping coefficient on vibration response is studied respectively.In the end, the influence rule of each parameter of suspension on the vehicle ride comfort is obtained.It is valuable for the research of vehicle ride comfort. vehicle dynamics model; amplitude frequency characteristic; power spectral density; ride comfort. 2016-04-27 陜西省科技廳自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2014JM7264) 張功學(xué)(1964-),男,陜西蒲城人,教授,博士,研究方向:機(jī)械系統(tǒng)動(dòng)力學(xué)、機(jī)械可靠性 1000-5811(2016)05-0147-05 U461.4 A3 懸架參數(shù)對平順性的影響
4 結(jié)論