楊美娟,林云昊,王文樑,林志霆,李國(guó)強(qiáng),2
1.華南理工大學(xué)發(fā)光材料與器件國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510640;
2.華南理工大學(xué)廣東省半導(dǎo)體照明與信息化工程技術(shù)研究中心,廣東 廣州 510640
?
H2氣氛對(duì)采用MOCVD法在Si襯底上外延生長(zhǎng)AlN薄膜性能的影響*
楊美娟1,林云昊1,王文樑1,林志霆1,李國(guó)強(qiáng)1,2
1.華南理工大學(xué)發(fā)光材料與器件國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510640;
2.華南理工大學(xué)廣東省半導(dǎo)體照明與信息化工程技術(shù)研究中心,廣東 廣州 510640
摘要:采用金屬有機(jī)化合物氣相沉積法(MOCVD)在Si(111)襯底上外延生長(zhǎng)AlN薄膜,用高分辨X射線(xiàn)衍射、掃描電子顯微鏡和原子力顯微鏡對(duì)外延生長(zhǎng)所得AlN薄膜的性能進(jìn)行表征,并研究了適量H2的引入對(duì)AlN薄膜的晶體結(jié)構(gòu)和表面形貌的影響.結(jié)果表明:在Si襯底上外延生長(zhǎng)AlN薄膜過(guò)程中引入適量H2,有利于提高AlN島間愈合程度,薄膜表面缺陷減少,表面粗糙度由4.0 nm減少至2.1 nm;適量H2的引入可使AlN薄膜的(0002)和(10-12)面的X射線(xiàn)搖擺曲線(xiàn)的半峰寬(FWHM)值從0.7及1.1分別減小到0.6和0.9,即刃型穿透位錯(cuò)密度和螺型穿透位錯(cuò)密度減少.
關(guān)鍵詞:Si襯底;AlN薄膜;H2;MOCVD
在現(xiàn)存半導(dǎo)體材料中AlN具有超過(guò)6 eV的最寬直接帶隙,且其載流子飽和遷移率、熱導(dǎo)率、壓電性能及耐高溫抗輻射能力,相比其他很多半導(dǎo)體材料有著不可替代的優(yōu)勢(shì)[1-2].因此,AlN在深紫外探測(cè)器、抗輻射器件、大功率器件等領(lǐng)域中有著廣闊的應(yīng)用前景[3-4].目前,常用于生長(zhǎng)AlN薄膜的襯底材料有藍(lán)寶石、SiC和Si等.但藍(lán)寶石襯底不導(dǎo)電,使用范圍有限;SiC襯底價(jià)格偏高;Si襯底相比前兩者成本低、尺寸大、導(dǎo)熱導(dǎo)電性好及加工方便等諸多優(yōu)勢(shì)受到廣泛關(guān)注.在Si襯底上外延生長(zhǎng)AlN薄膜,已成為研究界和產(chǎn)業(yè)界的焦點(diǎn)[5-6].采用金屬有機(jī)化合物氣相沉積法(MOCVD),在Si襯底上制備AlN薄膜是目前主要的研究方向.想要在Si襯底上獲得高質(zhì)量的AlN薄膜依然存在以下問(wèn)題[7-9]:AlN與Si襯底間存在較大的晶格失配(19.3%),容易因?yàn)檩^大的失配應(yīng)力而產(chǎn)生大量位錯(cuò)與裂紋;Al元素化學(xué)性能活潑,容易與O及C等雜質(zhì)元素發(fā)生反應(yīng),難以獲得高質(zhì)量的AlN薄膜.研究者已經(jīng)對(duì)AlN薄膜的生長(zhǎng)速率、反應(yīng)溫度、反應(yīng)室氣壓等工藝條件進(jìn)行了深入地研究,以提高AlN薄膜的質(zhì)量而獲得高性能的器件[10-12].對(duì)于反應(yīng)腔內(nèi)氣氛,其對(duì)AlN膜生長(zhǎng)至關(guān)重要[13-14],特別是H2載氣對(duì)AlN薄膜性能影響的研究卻不多見(jiàn).
本文采用MOCVD技術(shù)在Si(111)襯底上外延生長(zhǎng)AlN薄膜,研究了反應(yīng)腔內(nèi)通入適量H2載氣對(duì)AlN薄膜晶體結(jié)構(gòu)和表面形貌的影響,并詳細(xì)討論引入適量H2載氣的作用機(jī)理.這是對(duì)高質(zhì)量AlN薄膜生長(zhǎng)研究的進(jìn)一步完善,為獲得高性能AlN基器件奠定基礎(chǔ).
1實(shí)驗(yàn)部分
用Veeco公司研制的K465i型MOCVD設(shè)備外延生長(zhǎng)AlN薄膜,以三甲基鋁(TMAl)和氨氣(NH3)作為Al源和N源,材料中不進(jìn)行任何故意摻雜.在生長(zhǎng)前,用酸性溶液(濃度為98%的H2SO4、濃度為30%的H2O2和H2O,其比例為3:1:1)和濃度為5%的HF,對(duì)尺寸為101.6 mm的Si襯底進(jìn)行清洗,以除去表面的污染物.襯底放入反應(yīng)室后,在H2氣氛壓力為6666.1 Pa高壓下再次進(jìn)行襯底清潔.本實(shí)驗(yàn)準(zhǔn)備了兩組樣品,樣品A是只采用N2為載氣而得到的AlN薄膜,樣品B是通入適量H2和N2混合氣體為載氣而得到的AlN薄膜.除此之外,兩個(gè)樣品的生長(zhǎng)溫度均為1100 ℃,壓力為6666.1 Pa,生長(zhǎng)厚度為110 nm.
用高分辨X射線(xiàn)衍射儀(HRXRD,Bruker D8,Cu K1X射線(xiàn)源=1.5406?)、掃描電子顯微鏡(SEM)、原子力顯微鏡(AFM)對(duì)樣品進(jìn)行測(cè)試.
2結(jié)果與討論
2.1通入適量H2對(duì)AlN薄膜表面形貌的影響
圖1 AlN薄膜的SEM圖樣品A;(b)樣品BFig.1 SEM images for AlN films (a) sample A;(b) sample B
對(duì)樣品A和B的表面進(jìn)行SEM表征,結(jié)果如圖1所示.從圖1(a)可見(jiàn),AlN薄膜表面存在大量凹坑,尺寸不一,且沒(méi)有合并的AlN孤島.從圖1(b)可見(jiàn),AlN薄膜表面凹坑逐漸愈合,凹坑數(shù)量顯著減少.表明通入適量H2有利于A(yíng)lN逐漸成膜,并且呈現(xiàn)2D層狀生長(zhǎng)模式.進(jìn)一步對(duì)兩個(gè)樣品進(jìn)行AFM測(cè)試,圖2為樣品A和B的表面三維形貌,掃描面積為5m×5m.從圖2可見(jiàn):樣品A及樣品B對(duì)應(yīng)的表面粗糙度分別為4.0 和2.1 nm;樣品A表面的島密度較大且形狀尖銳不一,這增加了表面的起伏程度,從而導(dǎo)致表面粗糙度較大;樣品B中AlN島的縱向生長(zhǎng)速度較樣品A的慢,但AlN島的橫向生長(zhǎng)速度較快并開(kāi)始愈合,這說(shuō)明適量H2的引入促進(jìn)了AlN島的愈合,加快了AlN從3D生長(zhǎng)模式向2D的轉(zhuǎn)變,與SEM測(cè)試結(jié)果相吻合.這是由于A(yíng)lN與Si襯底間存在較大的晶格失配(19.3%),且Al原子在襯底表面的原子遷移率低,從而導(dǎo)致AlN很容易以島狀形式生長(zhǎng)[15].在反應(yīng)腔體內(nèi)總氣壓不變的情況下,通入適量H2后降低了NH3的分壓,使反應(yīng)界面附近的氣體分子密度有所下降,從而使反應(yīng)物擴(kuò)散距離較長(zhǎng),緩解了AlN的島狀生長(zhǎng)并有利于A(yíng)lN島的橫向生長(zhǎng)與合并成膜[16].
2.2通入適量H2對(duì)AlN薄膜結(jié)構(gòu)性能的影響
圖2 AlN薄膜的表面三維形貌圖(a)樣品A;(b)樣品BFig.2 3D images for the surface of AlN films (a) sample A; (b) sample B
圖3 樣品A和B的2θ-ω和φ的掃描圖(a)2θ-ω掃描圖;(b)φ的掃描圖Fig.3 XRD 2θ-ω measurements and XRD φ scans for sample A and sample B(a) XRD2θ-ω measurements;(b) XRD φ scans
圖3為樣品的2θ-ω和φ掃描圖.從圖3(a)可見(jiàn):當(dāng)2θ分別為36.02和76.40時(shí),對(duì)應(yīng)的是AlN(0002)和AlN(0004)晶面的衍射峰;當(dāng)2θ分別為28.40,58.5和94.90時(shí),分別對(duì)應(yīng)Si(111),(222)和(333)晶面衍射峰,此外無(wú)其他的衍射峰.這表明,兩個(gè)樣品均具有良好的c軸擇優(yōu)取向.對(duì)兩個(gè)樣品(10-12)晶面進(jìn)行φ掃描(圖3(b))發(fā)現(xiàn),兩個(gè)樣品均表現(xiàn)出面內(nèi)六次旋轉(zhuǎn)對(duì)稱(chēng),說(shuō)明生長(zhǎng)的AlN薄膜和Si襯底具有良好的面內(nèi)對(duì)稱(chēng)關(guān)系.因此,結(jié)合X射線(xiàn)的面外和面內(nèi)掃描結(jié)果可知,本實(shí)驗(yàn)外延生長(zhǎng)的AlN薄膜為單晶薄膜.為了進(jìn)一步研究通入適量H2后對(duì)AlN薄膜晶體質(zhì)量的影響,對(duì)兩個(gè)樣品進(jìn)行了對(duì)稱(chēng)(0002)面和非對(duì)稱(chēng)(10-12)面的X射線(xiàn)搖擺曲線(xiàn)(RC)掃描.由于(0002)面RC掃描對(duì)于螺位錯(cuò)的分布密度較敏感,(10-12)面RC掃描代表刃位錯(cuò)和混合位錯(cuò)的分布情況,因此可利用不同晶面的RC掃描半峰寬(FWHM)的大小研究薄膜晶體的質(zhì)量[17-18].RC掃描FWHM值越小,意味著晶體生長(zhǎng)的質(zhì)量越好.表1為樣品A和樣品B中AlN薄膜的(0002)面和(10-12)面的RC掃描FWHM值.由表1可以看出,在Si襯底上外延AlN薄膜過(guò)程中引入適量H2可使AlN薄膜的(0002)和(10-12)面的RC曲線(xiàn)的半峰寬值(FWHM)分別從0.7和1.1減小到0.6和0.9.通過(guò)公式D=β2/9b2[19-20],對(duì)AlN薄膜的刃型位錯(cuò)和螺型位錯(cuò)分別進(jìn)行計(jì)算,其中D代表位錯(cuò)密度,β代表RC曲線(xiàn)半峰寬,b代表位錯(cuò)的伯氏矢量大小.經(jīng)計(jì)算樣品A的螺位錯(cuò)密度、刃位錯(cuò)和混合位錯(cuò)密度,分別是樣品B的1.17和1.22倍.結(jié)果再一次表明,通入適量H2后AlN薄膜位錯(cuò)大大減少,晶體質(zhì)量得到提高.通入適量H2有利于A(yíng)lN島的橫向生長(zhǎng)及合并成膜,穿透位錯(cuò)也在A(yíng)lN橫向生長(zhǎng)過(guò)程中發(fā)生彎曲閉合,使其在繼續(xù)生長(zhǎng)的過(guò)程中不能延伸至薄膜表面.同時(shí),H2在反應(yīng)過(guò)程中可以與O及C等雜質(zhì)元素反應(yīng),有利于減少外延生長(zhǎng)中的非故意摻雜,從而減少點(diǎn)缺陷和位錯(cuò)的形成[21].H2相對(duì)分子質(zhì)量小、黏度小、純度高及攜帶靈活,也容易使雜質(zhì)成分散出.
表1 AlN薄膜(0002)和(10-12)面RC掃描半峰寬值對(duì)照表
2.3通入適量H2對(duì)AlN薄膜界面性能的影響
X射線(xiàn)小角度反射(GIXR)是一種小角度(2θ15)的θ/2θ測(cè)量方式,探測(cè)得到的是X射線(xiàn)的強(qiáng)度隨入射角的變化曲線(xiàn),并可運(yùn)用X射線(xiàn)動(dòng)力學(xué)理論對(duì)實(shí)驗(yàn)測(cè)量曲線(xiàn)進(jìn)行數(shù)值模擬,獲得有關(guān)薄膜厚度、表面與界面特性等方面的信息.X射線(xiàn)在界面各處發(fā)生反射是由于各層介質(zhì)對(duì)X射線(xiàn)的折射率不同,故GIXR曲線(xiàn)對(duì)表面/界面的粗糙度很敏感.如果是粗糙或者擴(kuò)散的表面/界面會(huì)增加散射矢量和角度,表面/界面越粗糙反射強(qiáng)度下降越快,并會(huì)影響到曲線(xiàn)的振蕩性[22].因此,常用GIXR曲線(xiàn)來(lái)研究Si襯底上外延生長(zhǎng)AlN薄膜的表面/界面情況[23-24].
在MOCVD高溫高壓的生長(zhǎng)條件下,Si原子容易從襯底中逃逸.一方面,Si原子會(huì)與N及Al發(fā)生化學(xué)反應(yīng),形成原子排列混亂的粗糙界面層[25];另一方面,Si原子的逸出造成了襯底與外延層更大的晶格失配,在后續(xù)薄膜生長(zhǎng)中因失配應(yīng)力而產(chǎn)生更多位錯(cuò)和裂紋,對(duì)薄膜的晶體質(zhì)量產(chǎn)生不利的影響[26].圖4為樣品A與樣品B的GIXR曲線(xiàn).從圖4可見(jiàn):樣品A的GIXR曲線(xiàn)強(qiáng)度下降較快,且低于樣品B的GIXR曲線(xiàn)強(qiáng)度;樣品A的GIXR曲線(xiàn)振蕩性不如樣品B.這表明樣品A的表面/界面性能較差,粗糙度高于樣品B.
3結(jié)論
對(duì)在Si(111)襯底上采用MOCVD技術(shù)外延生長(zhǎng)AlN薄膜,通入適量H2對(duì)AlN薄膜性能的影響進(jìn)行了探討.結(jié)果表明,在Si襯底上生長(zhǎng)AlN薄膜過(guò)程中,通入適量H2,AlN薄膜的表面形貌、晶體質(zhì)量及界面性能均有所改善.適量H2的引入有利于A(yíng)lN島的橫向生長(zhǎng)與合并成膜.H2能與雜質(zhì)元素反應(yīng)并攜帶其散出,減少外延生長(zhǎng)過(guò)程中的非故意摻雜.
參考文獻(xiàn):
[1] KONG Susu,WEI Hongyuan,YANG Shaoyan,et al. Morphology and structure controlled growth of one-dimensional AlN nanorod arrays by hydride vapor phase epitaxy[J]. RSC Adv,2014 (4):54902.
[2] WANG Wenliang,LIU Zuolian,YANG Weijia,et al. Nitridation effect of theα-Al2O3substrates on the quality of the GaN films grown by pulsed laser deposition[J]. RSC Adv,2014(4):39651.
[3] MOHD YUSOFF M Z,MAHYUDDIN A,HASSAN Z,et al. AlN/GaN/AlN heterostructures grown on Si substrate by plasma-assisted MBE for MSM UV photodetector applications[J]. Materials Science in Semiconductor Processing,2015,29:231.
[4] ZHOU J,DEMIGUEL-RAMOS M,GARCIA-GANCEDO L,et al. Characterisation of aluminium nitride films and surface acoustic wave devices for microfluidic applications[J]. Sensors and Actuators B:Chemical,2014,202:984.
[5] LIN Kungliang,CHANG E Y,HSIAO Y L,et al. Growth of GaN film on 150mm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method[J]. Appl Phys Lett,2007,91:222111.
[6] LIN Yunhao,ZHOU Shizhong,WANG Wenliang,et al. Performance improvement of GaN-based light-emitting diodes grown on Si(111) substrates by controlling the reactor pressure for the GaN nucleation layer growth[J]. Journal of Materials Chemistry C,2015(3): 1484.
[7] BOURRET A,BARSKI A,ROUVIRE J L,et al. Growth of aluminum nitride on Si (111): Microstructure and interface structure[J]. J Appl Phys,1998,83,2003.
[8] LI Xiaohang,WANG Shuo,XIE Hongen,et al. Growth of high-quality AlN layers on sapphire substrates at relatively low temperatures by metalorganic chemical vapor deposition[J]. Phys Status Solidi:B,2015,252:1089.
[9] SIGNORE M A,TAURINO A,VALERINI D,et al. Role of oxygen contaminant on the physical properties of sputtered AlN thin films[J]. J Alloy Compds,2015,649:1267.
[10] MATSUMOTO K,TACHIBANA A. Growth mechanism of atmospheric pressure MOVPE of GaN and its alloys: gas phase chemistry and its impact on reactor design[J]. J Crystal G rowth,2004,272:360.
[11] MENG Jianping,LIU Xiaopeng,F(xiàn)U Zhiqiang,et al. Thermal stability of AlN films prepared by ion beam assisted deposition[J]. Appl Surf Sci,2015,347:109.
[12] TOMOAKI F,KAZUMA S,REMI O,et al. Fabrication and Characterization of AlN/InN Heterostructures[J]. Appl Phys Express,2009(2):011002.
[13] BAO Q,ZHU T,ZHOU N,et al. Effect of hydrogen carrier gas on AlN and AlGaN growth in AMEC prismo D-blue? MOCVD platform[J]. J Crystal Growth,2015,419:52.
[14] JUMPEI T,CHIKASHI E,RIE T,et al. Carrier gas dependence at initial processes forα-plane aln growth onγ-plane sapphire substrates by hydride vapor phase epitaxy[J]. Jap J Appl Phys,2011,50:055501.
[15] SHELDON B W,RAJAMANI A,BHANDARI A,et al. Competition between tensile and compressive stress mechanisms during volmer-weber growth of aluminum nitride films[J]. J Appl Phys,2005,98:043509.
[16] WANG H X,AMIJIMA Y,ISHIHAMA Y,et al. Influence of carrier gas on the morphology and structure of GaN layers grown on sapphire substrate by six-wafer metal organic chemical vapor deposition system[J]. J Crystal Growth,2001,233:681.
[17] HEINKE H,KIRCHNER V,EINFELDT S,et al. X-ray diffraction analysis of the defect structure in epitaxial GaN[J]. Appl Phys Lett,2000,77:2145.
[18] WANG Wenliang,YANG Weijia,WANG Haiyan,et al. Epitaxial growth of GaN films on unconventional oxide substrates[J]. Journal of Materials Chemistry C,2014(2):9342.
[19] LUO Weike,LI Liang,LI Zhonghui,et al. Influence of the nucleation layer annealing atmosphere on the resistivity of GaN grown by metalorganic chemical vapor deposition[J]. J Alloys Compds,2015,633:494.
[20] WANG Wenliang,YANG Hui,LI Guoqiang. Growth and characterization of GaN-based LED wafers on La0.3Sr1.7AlTaO6substrates[J]. Journal of Materials Chemistry C,2013(1): 4070.
[21] AMBACHER O,ANGERER H,DIMITROV R,et al. Hydrogen in gallium nitride grown by MOCVD[J]. Phys Status Solidi:A,1997,159:105.
[22] MORAM M A,VICKERS M E. X-ray diffraction of III-nitrides[J]. Rep Prog Phys,2009,72:036502.
[23] LI Guoqiang,WANG Wenliang,YANG Weijia,et al. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices[J]. Rep Prog Phys,2015,70:380.
[24] WANG Wenliang,YANG Weijia,LIU Zuolian,et al. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(Ⅲ) substrates by pulsed laser deposition[J]. Sci Rep,2015(5):11480.
[25] WANG Yuanzhang,LI Jinchai,LI Shuping,et al. X-ray reflectivity and atomic force microscopy studies of MOCVD grown AlxGa1-xN/GaN superlattice structures [J]. J Semicon, 2011,32:043006.
[26] LOSURDO M, CAPEZZUTO P,BRUNO G,et al. Interfacial reactions during GaN and AiN epitaxy on 4H-6H-SiC(0001)[J]. Appl Phys Lett,2005,86:021920.
Effect of hydrogen atmosphere on the properties of AlN films epitaxially grown on Si substrate by MOCVD
YANG Meijuan1,LIN Yunhao1,WANG Wenliang1,LIN Zhiting1,LI Guoqiang1,2
1.StateKeyLaboratoryofLuminescentMaterialsandDevices,SouthChinaUniversityofTechnology,Guangzhou510640,China;2.EngineeringResearchCenteronSolid-StateLightinganditsInformationisationofGuangdongProvince,SouthChinaUniversityofTechnology,Guangzhou510640,China
Abstract:AlN epitaxial films were grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The surface morphology, crystalline quality, and interfacial property of as-grown AlN films have been investigated systematically, and the effect of hydrogen atmosphere on the properties of AlN films were studied in detail. The results reveal that the root-mean-square (RMS) roughness of ~110 nm-thick AlN films is greatly reduced from 4.0 nm to 2.1 nm, and the full-width at half-maximum (FWHM) value of X-ray rocking curve of AlN(10-12) is dramatically decreased from 1.1 to 0.9 by introducing a certain amount of hydrogen when compared with that grown without hydrogen.
Key words:Si substrates;AlN films;hydrogen;MOCVD.
中圖分類(lèi)號(hào):TN304.2
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1673-9981(2016)01-0010-06
作者簡(jiǎn)介:楊美娟(1992-),女,福建省平潭縣人,碩士研究生.
*基金項(xiàng)目:國(guó)家優(yōu)秀青年科學(xué)家基金(51422203);廣東省杰出青年科學(xué)家基金(S2013050013882);廣東省重大科技專(zhuān)項(xiàng)資助項(xiàng)目(2014B010119001)
收稿日期:2015-11-11