鄧靈靈,劉珺,劉煌輝,劉華生,陳娟,劉文,容鵬飛,王維
2型糖尿病患者下丘腦功能連接的靜息態(tài)功能磁共振研究
鄧靈靈,劉珺,劉煌輝,劉華生,陳娟,劉文,容鵬飛,王維*
目的 利用靜息態(tài)功能磁共振技術(shù)探索2型糖尿病(T2DM)患者下丘腦與其他腦區(qū)功能連接的改變,明確T2DM是否損傷下丘腦的相關(guān)功能連接。材料與方法 本研究共納入59名T2DM患者及49名對(duì)照組志愿者,通過(guò)德國(guó)西門(mén)子 MR儀采集T1WI、T2W I、T2壓水序列、高分辨率3D T1W I結(jié)構(gòu)像和靜息態(tài)功能數(shù)據(jù),計(jì)算下丘腦與全腦體素的功能連接值并進(jìn)行組間比較,然后提取組間存在顯著差異腦區(qū)的功能連接平均值并對(duì)其與臨床數(shù)據(jù)進(jìn)行相關(guān)性分析。結(jié)果 T2DM患者左、右側(cè)下丘腦與右側(cè)橋腦、左背外側(cè)前額葉、眶額皮層、左頂下小葉、右側(cè)枕中回間的功能連接強(qiáng)度均低于正常組(P<0.05)。除此之外,左側(cè)下丘腦與左側(cè)梭狀回、右側(cè)顳下回、左側(cè)楔前葉間的功能連接強(qiáng)度顯著減低,左側(cè)下丘腦與左側(cè)島葉間的功能連接強(qiáng)度顯著增高(P<0.05);右側(cè)下丘腦與左側(cè)舌回、右側(cè)中央前回/右側(cè)中央后回間的功能連接強(qiáng)度顯著減低(P<0.05)。相關(guān)性分析結(jié)果顯示左側(cè)下丘腦-左背外側(cè)前額葉間功能連接強(qiáng)度的減低與糖化血紅蛋白值存在負(fù)相關(guān)性(r=–0.24,P=0.04)。結(jié)論 T2DM損害了下丘腦與多個(gè)腦區(qū)的功能連接,其中同側(cè)下丘腦與背外側(cè)前額葉間功能連接減低與糖尿病嚴(yán)重程度相關(guān)。靜息態(tài)功能磁共振能夠反映2型糖尿病的嚴(yán)重程度。
2型糖尿??;下丘腦;靜息態(tài)功能磁共振;功能連接
Received 14 Jan 2016, Accepted 2 Mar 2016
ACKNOW LEDGMENTSThis work was part of project of National Key Clinical Specialty(No. 2013-544); National Natural Science Foundation of China (No. 8
1471715).
糖尿病是一種以能量代謝失衡為主要特征的代謝性疾病,大腦是能量平衡調(diào)節(jié)的關(guān)鍵部位[1]。研究發(fā)現(xiàn)大腦能量調(diào)節(jié)功能異常是促進(jìn)糖尿病發(fā)生的重要因素[2]。下丘腦作為能量信息傳入和調(diào)節(jié)信息傳出的關(guān)鍵點(diǎn),在糖尿病個(gè)體中,下丘腦的功能是受損的。研究發(fā)現(xiàn)正常人口服葡萄糖后下丘腦區(qū)域的血氧水平依賴(lài)(blood oxygenation level dependent, BOLD)會(huì)被抑制,2型糖尿病(T2DM)患者這種抑制作用消失[3]。除下丘腦外,研究發(fā)現(xiàn)大腦中營(yíng)養(yǎng)物質(zhì)感受神經(jīng)元存在廣泛分布[4],下丘腦作為血糖調(diào)節(jié)的中樞,與多個(gè)腦區(qū)間存在信息交換和傳遞[5]。如何相互協(xié)同完成感知和調(diào)節(jié)任務(wù),以及下丘腦與這些腦區(qū)的協(xié)同作用在T2DM中是否受損均需進(jìn)一步探討。
靜息態(tài)功能磁共振(resting-state functional MRI, rs-fMRI)可以評(píng)價(jià)大腦神經(jīng)活動(dòng)激活的模式和程度[6],具有無(wú)創(chuàng)和操作簡(jiǎn)單的優(yōu)點(diǎn)。大腦各腦區(qū)間是不斷進(jìn)行信息交換的。靜息態(tài)功能連接度量腦區(qū)間神經(jīng)生理活動(dòng)的時(shí)間依賴(lài)[7],反映腦區(qū)間信息交換的程度,是分析大腦組織情況及功能異常的重要手段[8-9]。許多研究采用rs-fMRI對(duì)T2DM認(rèn)知損害進(jìn)行了分析[10-12],但T2DM是否影響下丘腦的功能連接缺乏研究。因此采用rs-fMRI研究病程在5年以?xún)?nèi)且沒(méi)有腦血管病變影像學(xué)證據(jù)的T2DM患者與正常人下丘腦相關(guān)功能連接的差異,以明確T2DM患者下丘腦與周?chē)X區(qū)間的功能連接關(guān)系,為T(mén) 2DM神經(jīng)損傷機(jī)制研究提供依據(jù)。
1.1 一般資料
本研究擬招募T2DM患者及匹配的正常志愿者,T2DM組納入標(biāo)準(zhǔn):(1)符合2009年美國(guó)糖尿病協(xié)會(huì)(American Diabetes Association, ADA)T2DM診斷標(biāo)準(zhǔn),確診為T(mén)2DM;(2)病程1~5年;(3)年齡30~80歲;(4)右利手。排除標(biāo)準(zhǔn):(1)患與糖尿病無(wú)關(guān)的神經(jīng)精神、腦白質(zhì)異常信號(hào)及腦血管疾病等;(2)患腫瘤、結(jié)締組織病、凝血功能障礙或其他影響腦功能的慢性疾病;(3)有冠心病史及高血壓病史;(4)有酗酒史及藥物濫用史;(5)磁共振檢查禁忌癥。
患者一般資料主要有性別、年齡、受教育程度;臨床資料包括身高、體重、腰圍、體重指數(shù)、血壓、空腹血糖和2小時(shí)餐后血糖、空腹胰島素、空腹C肽水平、糖化血紅蛋白(HbA1C)、甘油三脂、總膽固醇、高低密度脂蛋白、低密度脂蛋白、尿常規(guī)。并根據(jù)糖尿病穩(wěn)態(tài)模型(homeostasis model assessment, HOMA)計(jì)算胰島素抵抗指數(shù)HOMA2-IR用來(lái)測(cè)量胰島素抵抗水平。本研究通過(guò)中南大學(xué)湘雅三醫(yī)院倫理委員會(huì)審查,所有受試者被告知試驗(yàn)流程并簽訂知情同意書(shū)。
1.2 MRI數(shù)據(jù)采集
所有被試者均采用Avanto 1.5 T MR儀(德國(guó)西門(mén)子公司)進(jìn)行掃描,受試者在掃描過(guò)程中保持清晰,頭部不動(dòng)。掃描序列如下:(1)MRI常規(guī)序列包括T1W I、T2W I以及T2壓水序列,排除腦器質(zhì)性疾病及腦白質(zhì)變性;(2) rs-fMRI,EPI序列,掃描參數(shù):TR/TE 2000/40 ms,F(xiàn)A=90°,層厚=4.0 mm,層間距=1.0 mm,層數(shù)=28,矩陣=64×64,F(xiàn)OV=240 mm×240 mm,NEX=1.0,掃描時(shí)間= 8 m in 26 s;(3)高分辨率全腦3D T1W I結(jié)構(gòu)像,掃描參數(shù):TR/TE 1900/2.93 ms,F(xiàn)A=15°,層厚=1.0 mm,層間距=0 mm,層數(shù)=176,矩陣=256×256,F(xiàn)OV=240 mm×240 mm,NEX=1.0,掃描時(shí)間=7 m in 3 s。
1.3 MR數(shù)據(jù)處理
靜息態(tài)數(shù)據(jù)采用DPARSF (http://restfm ri.net)軟件進(jìn)行預(yù)處理,為了使受試者適應(yīng)掃描,排除前10個(gè)全腦EPI數(shù)據(jù),對(duì)余下的240個(gè)全腦EPI數(shù)據(jù)進(jìn)行圖像層校準(zhǔn)、運(yùn)動(dòng)校正;采用仿射變換和非線性變形把數(shù)據(jù)轉(zhuǎn)換到標(biāo)準(zhǔn)MNI(Montreal NeurologicalInstitute)空間,并把體素大小重采樣為3 mm×3 mm× 3 mm;為了去除噪聲和運(yùn)動(dòng)的干擾,對(duì)數(shù)據(jù)采用0.01~0.1 Hz的數(shù)據(jù)濾波,并根據(jù)Friston 24 參數(shù)模型[13]剔除頭動(dòng),腦脊液和白質(zhì)信號(hào)帶來(lái)的混雜效應(yīng)。最后采用半徑為6 mm高斯濾波器進(jìn)行空間平滑。
表1 受試者基本信息和部分臨床資料Tab. 1 Demographic information and part clinical data of two groups
表2 T2DM患者中與雙側(cè)下丘腦存在異常連接的腦區(qū)Tab. 2 Brain regions w ith significant altered functional connection w ith bilateral hypothalamus in T2DM group
選取雙側(cè)下丘腦為種子點(diǎn),根據(jù)文獻(xiàn)[14]定義的M NI坐標(biāo)(左側(cè)x=–4,y=–1,z=–13;右側(cè):x=5,y=–1,z=–13)構(gòu)建2個(gè)半徑為2 mm的球形種子點(diǎn),計(jì)算種子點(diǎn)與大腦各體素之間的功能連接獲得大腦功能連接圖。并采用Fisher轉(zhuǎn)換把計(jì)算得到的功能連接值轉(zhuǎn)換為Z值。
1.4 統(tǒng)計(jì)分析
采用SPSS 19軟件對(duì)兩組受試者的一般資料、臨床指標(biāo)等進(jìn)行雙樣本t檢驗(yàn),對(duì)性別行χ2檢驗(yàn)。采用單向AVONA分析對(duì)兩組被試者下丘腦與全腦體素間功能連接進(jìn)行組內(nèi)比較;為了比較兩組受試者下丘腦與全腦體素間功能連接的差異,采用雙樣本t檢驗(yàn)進(jìn)行組間統(tǒng)計(jì),所有結(jié)果經(jīng)A lphaSim多重比較校正(閾值設(shè)置為P<0.005,體素?cái)?shù)>30,對(duì)應(yīng)為校正后的閾值P<0.05)。顯著性結(jié)果用xjview軟件(http://www. alivelearn.net/xjview 8/)呈現(xiàn)。最后,在T2DM組提取存在顯著組間差異的腦區(qū)的功能連接平均值,與患者的糖尿病相關(guān)指標(biāo)(如糖化血紅蛋白、胰島素抵抗指數(shù))作皮爾遜相關(guān)性分析,并去除被試者年齡、性別和受教育程度的影響。
2.1 一般資料
共有108例對(duì)象納入實(shí)驗(yàn),T2DM組59例(男36,女23),正常對(duì)照組49例(男28,女21),兩組的年齡、性別、受教育年限基本匹配,體重指數(shù)、空腹血糖、餐后血糖、HbA 1c、空腹胰島素、HOMA2-IR等指標(biāo)有顯著差異(表1)。
圖1 與左側(cè)下丘腦功能連接存在顯著組間差異的腦區(qū)。 A:右側(cè)橋腦;B:左側(cè)梭狀回;C:右側(cè)顳下回;D:右側(cè)眶額皮層;E:右側(cè)枕中回;F:左側(cè)頂下小葉;G、I:左背外側(cè)前額葉;H:左側(cè)楔前葉;J:左側(cè)腦島Fig. 1 Brain regions w ith significantly altered functional connection w ith left hypothalamus. A: Right brainstem; B: Left fusiform; C: Right inferior temporal gyrus; D: Right orbitofrontal cortex; E: Right m iddle occipital gyrus; F: Left inferior parietal lobule; G, I: Left dorsolateral prefrontal cortex; H: Left precuneus; J: Left insula.
2.2 下丘腦功能連接分析
功能連接圖組內(nèi)統(tǒng)計(jì)結(jié)果顯示T2DM患者組及正常對(duì)照組中雙側(cè)下丘腦與多個(gè)腦區(qū)間存在顯著的功能連接。
功能連接圖的組間比較結(jié)果顯示T2DM組相較于正常組下丘腦與多個(gè)腦區(qū)間功能連接存在顯著性改變,其中雙側(cè)下丘腦與右側(cè)橋腦、左側(cè)額中回、眶額皮層、右側(cè)枕中回、左側(cè)頂下小葉間的功能連接強(qiáng)度低于正常組(P<0.05)(表2,圖1、2);左側(cè)下丘腦與左側(cè)梭狀回、右側(cè)顳下回、左側(cè)楔前葉間的功能連接強(qiáng)度低于正常組(P<0.05),左側(cè)下丘腦與左側(cè)島葉間的功能連接強(qiáng)度高于正常組(P<0.05)(表2,圖1);右側(cè)下丘腦與左側(cè)舌回、右側(cè)中央前回/右側(cè)中央后回間的功能連接強(qiáng)度低于正常組(P<0.05)(表2,圖2)。
2.3 相關(guān)性分析
對(duì)存在顯著組間差異的腦區(qū)功能連接平均值與HbA 1c、HOMA 2-IR進(jìn)行相關(guān)性分析,結(jié)果顯示左側(cè)下丘腦與左背外側(cè)前額葉間功能連接與糖化血紅蛋白存在負(fù)相關(guān)性(r=–0.24,P=0.04,F(xiàn)DR校正),見(jiàn)圖3。即糖化血紅蛋白值越高,左下丘腦與左背外側(cè)前額葉間功能連接強(qiáng)度越低;與胰島素抵抗指數(shù)之間無(wú)明顯相關(guān)性(P>0.05)。
圖3 T2DM患者中左側(cè)下丘腦與左背外側(cè)前額葉間的功能連接強(qiáng)度減低與糖化血紅蛋白值存在負(fù)相關(guān)性Fig. 3 HbA 1c w as inversely correlated w ith functional connection values betw een left hypothalamus and left dorsolateral prefrontal cortex in T2DM patients group.
本研究探討了 T2DM 患者靜息狀態(tài)下下丘腦相關(guān)功能連接的變化。結(jié)果發(fā)現(xiàn),T2DM 患者下丘腦與多個(gè)腦區(qū)間功能連接出現(xiàn)異常,這些腦區(qū)主要位于前額葉(左背外側(cè)前額葉、左眶額皮層、左側(cè)腦島)、腦干(右側(cè)橋腦)。除此之外,頂葉(右側(cè)中央前回/中央后回、左頂下小葉、左側(cè)楔前葉)、枕葉(枕中回、舌回)以及顳葉(右側(cè)顳下回)葉也存在部分腦區(qū)與下丘腦間的功能連接顯著減低。并且左側(cè)下丘腦與左背外側(cè)前額葉間功能連接強(qiáng)度與H1ABc值存在顯著負(fù)相關(guān)。
上述結(jié)果說(shuō)明T2DM 損害了下丘腦與其他多個(gè)腦區(qū)間的協(xié)同作用。下丘腦功能受損在糖尿病或糖尿病相關(guān)因素實(shí)驗(yàn)中均有體現(xiàn),在肥胖動(dòng)物模型、肥胖病人中下丘腦的營(yíng)養(yǎng)物質(zhì)感受是受損的[15-16]。T2DM 患者中葡萄糖對(duì)下丘腦的抑制作用減弱[3]。下丘腦作為能量感知和調(diào)節(jié)的關(guān)鍵部位,存在多種類(lèi)型神經(jīng)核團(tuán),并且各自的功能不同,能感知血糖及其他營(yíng)養(yǎng)物質(zhì)的刺激并調(diào)節(jié)其代謝[17]。而筆者的研究進(jìn)一步發(fā)現(xiàn)了下丘腦與其他多個(gè)腦區(qū)間的功能連接顯著減低,因此T2DM不僅能損害下丘腦神經(jīng)元對(duì)血糖等營(yíng)養(yǎng)物質(zhì)的感知和調(diào)節(jié)代謝的功能,而且能損害下丘腦與其他腦區(qū)間的協(xié)同作用。
其中,T2DM 患者下丘腦與右側(cè)橋腦間功能連接強(qiáng)度低于正常組。正常人功能連接研究發(fā)現(xiàn)下丘腦與腦干存在功能連接[18]。橋腦是腦干的重要組成部分,腦干作為能量物質(zhì)感知和調(diào)節(jié)其代
謝的另一關(guān)鍵部位,是內(nèi)臟感覺(jué)傳遞中間通路的組成部分[19],與下丘腦存在廣泛連接[20]。目前已有研究發(fā)現(xiàn)T1DM 患者在低血糖狀態(tài)下下丘腦與腦干間的連接出現(xiàn)增加[21];下丘腦-腦干間的通路是感受營(yíng)養(yǎng)物質(zhì)的中間通路[22-23]。因此本試驗(yàn)的結(jié)果從功能磁共振的角度證實(shí)了上述發(fā)現(xiàn),并進(jìn)一步反映了下丘腦與腦干間通路在T2DM中是受損的,為體外探測(cè)2型糖尿神經(jīng)損傷機(jī)制提供了實(shí)驗(yàn)依據(jù)。
本研究除了發(fā)現(xiàn)T2DM患者下丘腦與多個(gè)腦區(qū)間的功能連接減低之外,還發(fā)現(xiàn)左側(cè)下丘腦與左側(cè)腦島前部間的功能連接增高。目前已有研究發(fā)現(xiàn)肥胖者島葉的灰質(zhì)體積較正常人減小[24],并且在1型糖尿病患者其功能是受損的[25]。腦島綜合內(nèi)臟、軀體及自穩(wěn)態(tài)信息,調(diào)節(jié)適應(yīng)性的行為來(lái)反饋外界刺激:島葉后部區(qū)域收集包括血糖、胰島素在內(nèi)的軀體穩(wěn)態(tài)信號(hào),并傳遞到島葉前部[26];在島葉前部區(qū)域,軀體自穩(wěn)態(tài)信號(hào)與食物的視覺(jué)、嗅覺(jué)等飲食相關(guān)信號(hào)整合形成對(duì)進(jìn)食的適應(yīng)性調(diào)節(jié)[27],影響機(jī)體的葡萄糖代謝。因此,T2DM可能損傷了腦島對(duì)軀體感覺(jué)及自穩(wěn)態(tài)信號(hào)的感知功能,但具體機(jī)制需要進(jìn)一步研究。
T2DM患者下丘腦與眶額皮層間的功能連接也有減低??纛~皮層是位于額葉前下方的前額皮層,是獎(jiǎng)賞通路中的重要部份。早期的實(shí)驗(yàn)證據(jù)表明眶額皮層是匯聚食物刺激相關(guān)感覺(jué)信息的關(guān)鍵部位[28],不僅能感知食物刺激,也能根據(jù)信息來(lái)調(diào)節(jié)獎(jiǎng)賞行為和攝食行為[29]。最近研究發(fā)現(xiàn)T2DM 患者眶額皮層灰質(zhì)體積較正常人減少[30],肥胖志愿者眶額皮層對(duì)食物的響應(yīng)降低[31]。而本研究發(fā)現(xiàn)T2DM患者下丘腦與眶額皮層間功能連接減低,提示T2DM可能損傷了攝食相關(guān)的獎(jiǎng)賞機(jī)制,但其具體機(jī)制有待于進(jìn)一步研究。
另外,T2DM 患者左下丘腦與左背外側(cè)前額葉間的功能連接減低,提示T2DM 可能損害了兩者之間的協(xié)同作用。已有研究發(fā)現(xiàn)T2DM 患者中,背外側(cè)前額葉是出現(xiàn)異常的[32];肥胖者背外側(cè)前額葉的腦灰白質(zhì)密度低[33],并在進(jìn)食時(shí)背外側(cè)前額葉神經(jīng)活動(dòng)明顯降低[34];本研究的發(fā)現(xiàn)為T(mén)2DM的進(jìn)食失調(diào)可能提供了新的神經(jīng)生理依據(jù)。背外側(cè)前額葉是執(zhí)行控制網(wǎng)絡(luò)的重要節(jié)點(diǎn),是認(rèn)知控制和決策的重要區(qū)域。最近的研究發(fā)現(xiàn)背外側(cè)前額葉在中樞調(diào)控進(jìn)食行為中發(fā)揮關(guān)鍵作用,接受視覺(jué)、味覺(jué)、嗅覺(jué)以及軀體感覺(jué)信號(hào)的傳入[35]。因此,筆者認(rèn)為下丘腦與背外側(cè)前額葉間的功能連接減低可能是T2DM 患者飲食控制受損的神經(jīng)基礎(chǔ)。本試驗(yàn)還發(fā)現(xiàn)背外側(cè)前額葉的功能連接減低與糖化血紅蛋白值存在負(fù)相關(guān)性,即糖化血紅蛋白值越高,背外側(cè)前額葉的功能連接越低可能是由于飲食控制失調(diào)和血糖控制不理想導(dǎo)致的,與T2DM的嚴(yán)重程度有關(guān)。
總之,本研究采用功能磁共振研究了靜息狀態(tài)下T2DM患者下丘腦與其它腦區(qū)間功能連接的改變情況,證實(shí)了T2DM患者下丘腦與多個(gè)腦區(qū)間功能連接存在異常,其中同側(cè)下丘腦與同側(cè)背外側(cè)前額葉間功能連接減低與糖尿病嚴(yán)重程度相關(guān),可能反映了T2DM患者對(duì)血糖等營(yíng)養(yǎng)物質(zhì)感知和調(diào)節(jié)通路的異常及對(duì)飲食控制的異常,說(shuō)明靜息態(tài)功能磁共振能夠反映T2DM的嚴(yán)重程度。
[References]
[1]Luquet S, M agnan C. The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schol Ed), 2009, 1(1): 448-465.
[2]Schw artz MW, Seeley RJ, Tsch?p MH, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503(7474): 59-66.
[3]Vidarsdottir S, Smeets PAM, Eichelsheim DL, et al. G lucose ingestion fails to inhibit hypothalam ic neuronal activity in patients w ith type 2 diabetes. Diabetes, 2007, 56(10): 2547-2550.
[4]Kievit P, Howard JK, Badman MK, et al. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell metabolism, 2006, 4(2): 123-132.
[5]Levin BE, Kang L, Sanders NM, et al. Role o f neuronal glucosensing in the regulation of energy homeostasis. Diabetes, 2006, 55(Suppl2): 122-130.
[6]Lam CKL, Chari M, Lam TKT. CNS regulation of glucose homeostasis. Physiology, 2009, 24(3): 159-170.
[7]Xie SH, Niu GM, Gao Y, et al. Com parative study of local consistency w ith the resting state m agnetic resonance im aging under ifrst-episode depression. Chin J Magn Reson Imaging, 2015, 6(1): 10-14.
謝生輝, 牛廣明, 高陽(yáng), 等. 首發(fā)抑郁癥腦局部一致性靜息態(tài)MRI 對(duì)比研究. 磁共振成像, 2015, 6(1): 10-14.
[8]Van M P, Hulshoff Pol HE. Exp loring the brain netw ork: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 2010, 20(8): 519-534.
[9]Fang JF, W ang Q, W ang B, et al. Application and prospect of functional magnetic resonance imaging reveals changes in brain structure and function in depression. Chin J Magn Reson Imaging, 2015, 6(1): 52-57.
房俊芳, 王倩, 王濱, 等. 功能 MRI 揭示抑郁癥腦結(jié)構(gòu)及功能變化的應(yīng)用及展望. 磁共振成像, 2015, 6(1): 52-57.
[10]Zhou H, Lu W, Shi Y, et al. Im pairments in cognition and resting-state connectivity of the hippocampus in elderly subjects w ith type 2 diabetes. Neuroscience letters, 2010, 473(1): 5-10.
[11]Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014, 63(2): 749-760.
[12]Xia W, Wang S, Sun Z, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology, 2013, 38(11): 2493-2501.
[13]Friston KJ, W illiams S, Howard R, et al. Movement-related effects in fM RI time-series. M agnetic resonance in m edicine, 1996, 35(3): 346-355.
[14]Lips MA, W ijngaarden MA, van der Grond J, et al. Restingstate functional connectivity of brain regions involved in cognitive control,motivation,and reward is enhanced in obese fem ales. The Am erican journal of clinical nutrition, 2014, 100(2): 524-531.
[15]Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose hom eostasis and is impaired in obesity. Nature, 2007, 449(7159): 228-232.
[16]Thaler JP, Yi CX, Schur EA, et al. Obesity is associated w ith hypothalamic injury in rodents and humans. The Journal of clinical investigation, 2012, 122(1): 153.
[17]Suzuki K, Jayasena CN, B loom SR. Obesity and appetite control. Experimental diabetes research, 2012, 2012(3): 824.
[18]Kullmann S, Heni M, Linder K, et al. Resting-state functional connec tivity o f the hum an hypothalam us. Hum an b rain mapping, 2014, 35(12): 6088-6096.
[19]Broberger C, H?kfelt T. Hypothalam ic and vagal neuropeptide circuitries regulating food intake. Physiology & behavior, 2001,74(4): 669-682.
[20]Geerling JC, Shin JW, Chim enti PC, et al. Paraventricular hypothalam ic nucleus: axonal projections to the brainstem. Journal of Comparative Neurology, 2010, 518(9): 1460-1499.
[21]M usen G, Simonson DC, Bolo NR, et al. Regional brain activation during hypoglycem ia in type 1 diabetes. The Journal of C linical Endocrinology & M etabolism, 2008, 93(4): 1450-1457.
[22]W oods SC. The control of food intake: behavioral versus molecular perspectives. Cell metabolism, 2009, 9(6): 489-498.
[23]Blouet C, Schwartz GJ. Hypothalam ic nutrient sensing in the control of energy homeostasis. Behavioural brain research, 2010, 209(1): 1-12.
[24]Jauch-Chara K, Binkofski F, Loebig M, et al. Blunted brain energy consumption relates to insula atrophy and im paired glucose tolerance in obesity. Diabetes, 2015, 64(6): 2082-2091.
[25]Bolo NR, M usen G, Simonson DC, et al. Functional connectivity of insula,basal ganglia,and prefrontal executive control networks during hypoglycemia in type 1 diabetes. The Journal of Neuroscience, 2015, 35(31): 11012-11023.
[26]Simmons WK, Rapuano KM, Kallman SJ, et al. Categoryspecific integration of homeostatic signals in caudal but not rostral human insula. Nature neuroscience, 2013, 16(11): 1551-1552.
[27]Naqvi NH, Bechara A. The insula and drug addiction: an interoceptive view of pleasure,urges,and decision-making. Brain Structure and Function, 2010, 214(5-6): 435-450.
[28]W ang GJ, Volkow ND, Telang F, et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroim age, 2004, 21(4): 1790-1797.
[29]St-Onge MP, Sy M, Heym sfield SB, et al. Hum an cortical specialization for food: a functional m agnetic resonance imaging investigation. The Journal of nutrition, 2005, 135(5): 1014-1018.
[30]Kumar A, Haroon E, Darw in C, et al. Gray matter prefrontal changes in type 2 diabetes detected using MRI. Journal of M agnetic Resonance Imaging, 2008, 27(1): 14-19.
[31]Killgore WDS, Yurgelun-Todd DA. Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods. Neuroreport, 2005, 16(8): 859-863.
[32]M arder TJ, Flores VL, Bolo NR, et al. Task-induced brain activity patterns in type 2 diabetes: a potential biomarker for cognitive decline. Diabetes, 2014, 63(9): 3112-3119.
[33]Le DS, Pannacciulli N, Chen K, et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. The American journal of clinical nutrition, 2006, 84(4): 725-731.
[34]Scharmüller W, übel S, Ebner F, et al. Appetite regulation during food cue exposure: a com parison of normal-weight and obese women. Neuroscience letters, 2012, 518(2): 106-110.
[35]Davids S, Lauffer H, Thoms K, et al. Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. International Journal of Obesity, 2010, 34(1): 94-104.
The functional connectivity of hypothalam us in T2DM patients: a resting-state fMRI study
DENG Ling-ling, LIU Jun, LIU Huang-hui, LIU Hua-sheng, CHEN Juan, LIU Wen, RONG Peng-fei, WANG Wei*
Department of Radiology, the Third Xiangya Hospital of Central South University, Changsha 410013, China
Ob jective: To investigate w hether functional connection betw een hypothalamus and other brain regions is impaired in type 2 diabetes mellitus (T2DM), the resting-state MRI was utilized to analyze the connectivity between hypothalamus and other brain regions. M aterials and M ethods: This study included the T2DM patients who were diagnosed w ithin 1-5years (T2DM, n=59), and age, sex, educationmatched healthy control subjects(HC, n=49). T2W I, FLAIR, 3D-T1W I and restingstate fMRI data were collected by Siemens MR scanner. Functional connection values between bilateral hypothalamus and other voxels in the brain were calculated, the resulted values of both groups were compared using two-sample t-test to locate the regions w ith significant change. Then correlation analysis was conducted between clinical data and functional connection values extracted from significantly different brain regions. Results: Compared to healthy control subjects, T2DM patients showed significantly decreased functional connection values between left hypothalamus, right hypothalamus and right brainstem, left dorsolateral prefrontal cortex, orbitofrontal cortex, left Inferior parietal lobule, right m iddle occipital gyrus. In T2DM patients, functional connection values between left hypothalamus and inferior temporal gyrus,left precuneus, left fusiform also decreased significantly, however, the functional connection values in left insula increased; the functional connection values between right hypothalamus and left lingual gyrus, right precentral gyrus/postcentral gyrus decreased. M oreover, negative correlations were found between HbA1c and functional connection values between left hypothalamus and left dorsol ateral prefrontal cortex (r=–0.24, P=0.04) in T2DM patients group. Conclusion: The functional connection between hypothalamus and other brain regions is impaired in T2DM patients. Moreover, this study indicated that the change of functional connection values between left dorsolateral prefrontal cortex and left hypothalamus was significantly associated with diabetes mellitus severity. Resting-state MRI can reflect the severity of T2DM.
Type 2 diabetes mellitus; Hypothalamus; Resting-state MRI; Functional connectivity
國(guó)家臨床重點(diǎn)專(zhuān)科基金項(xiàng)目(編號(hào):2013-544);國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81471715)
中南大學(xué)湘雅三醫(yī)院放射科,長(zhǎng)沙410013
王維,E-m ail: c jr.w angw ei@v ip. 163.com
2016-01-14
接受日期:2016-03-02
R445.2;R587.1
A
10.12015/issn.1674-8034.2016.04.006
鄧靈靈, 劉珺, 劉煌輝, 等. 2型糖尿病患者下丘腦功能連接的靜息態(tài)功能磁共振研究. 磁共振成像, 2016, 7(4): 270–276.
*Correspondence to: Wang W, E-mail: cjr.wangwei@vip.163.com