景琛,劉華,景曉,馮月琳,趙萌
(1.中國石油大學地球科學與技術(shù)學院,山東青島266580;2.中國石油華北油田分公司第一采油廠,河北任丘062552)
?
膨脹性流體超壓預測方法及其應用
景琛1,劉華1,景曉2,馮月琳1,趙萌1
(1.中國石油大學地球科學與技術(shù)學院,山東青島266580;2.中國石油華北油田分公司第一采油廠,河北任丘062552)
摘要:在分析不同成因增壓機理對巖石物理特征影響的基礎(chǔ)上,探討了膨脹性流體超壓的預測方法。研究結(jié)果指出,Eaton法適用于流體膨脹成因超壓的預測,并以濟陽坳陷沾化凹陷渤南洼陷為例,采用Eaton法對其多成因超壓的地層壓力進行了預測。初步確定伊頓指數(shù)為1~4,然后引入預測壓力相對誤差平方和參數(shù),利用迭代法,通過對比不同伊頓指數(shù)所對應的相對誤差平方和來擬合伊頓指數(shù)。當伊頓指數(shù)取2.6時,渤南洼陷預測壓力的相對誤差平方和最小,預測效果最好。
關(guān)鍵詞:濟陽坳陷;渤南洼陷;超壓機理;流體膨脹作用;壓力預測;Eaton法
孔隙壓力的準確預測是安全鉆井、井身結(jié)構(gòu)設(shè)計的基礎(chǔ),也是油藏開發(fā)、儲量計算的重要依據(jù)[1-2]。根據(jù)巖石物理響應特征的變化,可以定量分析孔隙壓力的變化情況,預測壓力分布[3-4],然而,巖石物理響應特征與超壓的成因密切相關(guān)[5-6],要準確預測孔隙流體壓力,需要了解超壓的形成機理及其對沉積物物理性質(zhì)的影響[1,3,7-9]。超壓形成的機理主要包括欠壓實、流體膨脹、超壓傳遞等作用,其中,欠壓實作用和流體膨脹作用是沉積盆地內(nèi)可以獨立形成大規(guī)模超壓的2種主要機理[10-12]。由欠壓實作用形成的高壓常與異常高孔隙、低密度相伴生,同時,也會使地震波傳播速度明顯減小[10-11];而流體膨脹作用則不會導致地層孔隙度的明顯增大。目前,基于地震資料的層速度法、測井資料的等效深度法等超壓預測方法,都側(cè)重于欠壓實作用引起的地層壓力預測[2,6],并沒有考慮不同超壓形成機理對巖石物理響應特征的影響[13]。這種基于欠壓實作用的壓力預測方法,不能較好地預測由流體膨脹作用而形成的超壓[5,13],這在一定程度上制約了含油氣盆地中壓力的有效預測及分布規(guī)律分析。本文在前人研究基礎(chǔ)上,總結(jié)超壓形成的各種機理,探討流體膨脹超壓的巖石物理響應特征及預測方法,并以濟陽坳陷沾化凹陷渤南洼陷為例,進行了地層壓力的預測。
沉積盆地超壓的形成機理主要包括3類:欠壓實作用、流體膨脹作用和超壓傳遞作用[10-11,14]。不同機理形成的超壓具有不同的巖石物理響應特征,可作為流體超壓預測的重要依據(jù)。
1.1欠壓實作用
欠壓實作用是增加的壓應力與地層排水能力之間不平衡的一種現(xiàn)象,由于孔隙流體排出的速率小于上覆載荷增加的速率,孔隙流體會額外承受部分上覆沉積物的重量,形成超壓[10-11,15]。而構(gòu)造運動導致的封閉系統(tǒng)內(nèi)部沉積物載荷增大[10-11],可視為側(cè)向的壓實作用[16]。欠壓實作用可以形成盆地規(guī)模的超壓,是超壓形成的重要機理之一,尤其是在快速沉降、以細粒沉積物為主的新生代盆地中[10,17]。欠壓實作用產(chǎn)生的超壓帶通常具有較高的孔隙度和較低的密度,地震波傳播速度會明顯減小[10-11]。
1.2流體膨脹作用
流體膨脹超壓機理涉及到巖石格架內(nèi)部孔隙流體體積的增大。由于壓實作用引起的孔隙度減小是不可逆的,膨脹性流體的形成僅使地層孔隙發(fā)生輕微的彈性形變[18],孔隙體積不會顯著增大,增大的流體體積會導致孔隙流體壓力增大,形成超壓。因此,流體膨脹作用發(fā)育的地層不具有異常高孔隙度,檢測和預測難度較大[19-20]。含油氣盆地常見的流體膨脹作用主要包括生烴作用、載荷轉(zhuǎn)移作用、黏土礦物脫水作用、水熱增壓作用等[10-11,15,21]。
生烴作用是沉積盆地重要的超壓形成機理[22-26]。文獻[23]的研究表明,固體干酪根轉(zhuǎn)換為液態(tài)油、氣體、殘渣以及其他產(chǎn)物的過程中會使其體積增大25%.文獻[24]對法國巴黎盆地下侏羅統(tǒng)托爾階黑色頁巖的生烴過程研究發(fā)現(xiàn),生烴作用使干酪根體積增大近50%.文獻[25]的研究表明,標準溫壓條件下1單位體積的原油裂解會生成534.3單位體積的天然氣;理論上,即使封閉巖石體系內(nèi)只有1%的原油發(fā)生裂解,也會形成超壓。這種超壓機理的主要證據(jù)來自烴源巖的初次運移,僅靠浮力不能使烴類通過裂縫或微裂縫排出,因此烴源巖內(nèi)部一定存在異常高孔隙流體壓力[26-27]。美國Piceance盆地的最大孔隙流體壓力與生烴高峰、裂縫發(fā)育階段相匹配[28],紐約西部的盆地、北海中部和北部的盆地、落基山脈的部分盆地、渤海灣盆地等,超壓開始發(fā)育層段與烴源巖系相匹配,超壓平面分布也與優(yōu)質(zhì)烴源巖分布吻合[26-33]。
黏土礦物也可以通過載荷轉(zhuǎn)移作用形成超壓[21,34]。載荷轉(zhuǎn)移作用是指黏土礦物成巖和埋藏壓實作用過程中,承受載荷的顆粒發(fā)生溶解,束縛水轉(zhuǎn)變?yōu)榭蓜铀?,早期形成的顆粒重新定向排列導致沉積載荷轉(zhuǎn)移至孔隙流體之中[21]。載荷轉(zhuǎn)移作用會使沉積物中形成有效的封閉條件,同時使上覆載荷壓力從基質(zhì)中轉(zhuǎn)移到孔隙流體中,形成超壓,此過程也是通過欠壓實作用形成超壓。但是由黏土礦物成巖作用引發(fā)的,同時有載荷轉(zhuǎn)移作用和流體膨脹作用導致的沉積物的物理性質(zhì)發(fā)生相似的變化,則很難區(qū)分,因此,將載荷轉(zhuǎn)移作用也歸結(jié)為流體膨脹作用。文獻[21]對墨西哥灣盆地進行研究,認為其超壓主要由載荷轉(zhuǎn)移作用所形成,最大壓力可達13.8 MPa.
黏土礦物脫水作用、水熱增壓作用也可以產(chǎn)生膨脹性流體而形成超壓,但模擬結(jié)果表明,如蒙脫石完全轉(zhuǎn)化為伊利石,即使在理想條件下,形成的超壓規(guī)模、幅度也是有限的[11-12]。因此,認為所有的流體膨脹機理中,只有生烴作用、載荷轉(zhuǎn)移作用才可以產(chǎn)生大規(guī)模異常高孔隙流體壓力[35],其他的流體膨脹機理都是次要的,只能引起局部地區(qū)的超壓發(fā)育[36]。
1.3超壓傳遞作用
超壓傳遞作用也是沉積盆地超壓形成的一種重要機理,是由超壓系統(tǒng)釋放或泄漏的超壓流體的幕式流動,導致其流動方向上的孔隙流體壓力增加[37],包括沿砂體的側(cè)向傳遞和沿斷裂的垂向傳遞。具有異常高流體壓力的傾斜、孤立的儲集層內(nèi)部超壓形成后,可能會通過砂體側(cè)向傳遞至構(gòu)造高部位[6,38]。斷層的幕式活動也會導致深部超壓垂向傳遞至另一個壓力較低的封閉空間[35,39]。文獻[5]研究表明,文萊Baram地區(qū)內(nèi)陸棚三角洲序列中的超壓為超壓傳遞作用所形成,此外,鶯歌海、塔里木、柴達木等盆地中超壓傳遞作用對超壓的形成也起著重要作用[40-42]。但由此機理單獨產(chǎn)生的超壓地層一般不會具有異常高孔隙度。
目前,超壓預測主要有3種方法:①以地震資料為主的層速度法,此方法建立在壓實理論的基礎(chǔ)上,認為超壓地層表現(xiàn)為高孔隙度、低密度的特征,其地震波傳播速度通常比正常壓實地層??;②以測井資料為主的等效深度法、Eaton法等,主要基于壓實理論、有效應力理論和均衡理論建立正常壓實曲線,計算泥巖地層在實際測井資料中偏離正常壓實趨勢線時的地層壓力;③以實測壓力為主的經(jīng)驗關(guān)系法和數(shù)值模擬法,主要利用重復測試壓力或隨鉆測試壓力等資料來預測地層壓力特征[43]。
流體膨脹成因的超壓不具有異常高孔隙,地震波傳播速度不會發(fā)生明顯異常,且具有多解性,因此,利用地震資料很難準確預測地層壓力;而實測壓力需要大量的實測壓力數(shù)據(jù),主要用于勘探成熟區(qū)的壓力預測;測井資料具有準確性高、連續(xù)性好等優(yōu)點,應用較廣。等效深度法和Eaton法是利用測井資料預測地層壓力的2種主要方法,其中,等效深度法是基于孔隙度的壓力預測方法,只適用于欠壓實作用成因超壓,而Eaton法引入了伊頓指數(shù),可以通過改變伊頓指數(shù)校正不同超壓機理的影響[35]。文獻[44]研究馬來西亞盆地干酪根生氣成因的超壓特征時,利用Eaton法對地層壓力進行了預測;文獻[9]和文獻[45]也采用Ea?ton法,對流體膨脹成因的超壓進行了預測,并取得了較好的效果。綜合分析前人研究成果,認為Eaton法可以有效地預測流體膨脹成因的超壓。
Eaton法根據(jù)同一深度點正常壓實泥巖聲波時差與實測聲波時差的比值,預測地層壓力[46],地層孔隙壓力(pp)計算公式如下:
式中σv——上覆巖層壓力,MPa;
ph——靜水壓力,MPa;
Δt——實測聲波時差,μs/m;
Δtnorm——同一深度正常壓實趨勢線上的聲波時差,μs/m;
c——伊頓指數(shù);
Δto——地表泥巖聲波時差,μs/m;
D——壓實系數(shù);
H——埋深,m.
渤南洼陷是濟陽坳陷沾化凹陷中部的一個三級負向構(gòu)造單元,是重要的油氣產(chǎn)區(qū)。地層以砂泥巖序列為主,始新統(tǒng)沙河街組沙三段下—中亞段及沙四段上亞段為研究區(qū)2套主要的烴源巖系,也是超壓廣泛發(fā)育的層系,超壓對研究區(qū)的油氣生成、運聚和分布具有重要的影響。渤南洼陷生烴作用普遍存在,且與超壓層系相吻合,表明生烴對超壓的產(chǎn)生具有重要的作用[47],同時研究區(qū)欠壓實作用也較顯著,因此認為欠壓實作用和生烴作用是研究區(qū)主要的增壓機理[47-49]。對于多種機理形成的超壓,等效深度法不適用,筆者采用Eaton法進行壓力預測。
3.1正常壓實趨勢線的建立
選擇34口井的測井、錄井、實測壓力數(shù)據(jù),擬合渤南洼陷正常壓實趨勢線。測井資料表明,渤南洼陷聲波時差、密度異常段的埋深都大于2 500 m,與研究區(qū)超壓段相對應。因此,選擇埋深小于2 500 m的正常壓實段進行擬合,根據(jù)自然伽馬、自然電位、井徑、聲波時差等曲線,選擇厚層(>2 m)、井徑規(guī)則(擴徑率<15%)的泥巖段,用其平均聲波時差擬合正常壓實趨勢線。擬合結(jié)果如圖1a所示。相應的正常壓實趨勢線方程為:lnΔt=6.956-0.000 47H.
3.2 Eaton公式的擬合
Eaton公式所計算的為上覆巖層壓力,計算時需要先擬合地層密度與深度的關(guān)系曲線(圖1b),由此可得出密度與深度的關(guān)系式:ρ=0.001 8H+1.915.在此基礎(chǔ)上,根據(jù)(3)式計算上覆巖層壓力梯度,進而求出上覆巖層壓力。通過地層水資料分析,可知研究區(qū)地層水平均密度為1 g/cm3,據(jù)此可計算靜水壓力(ph)。
圖1 渤南洼陷正常壓實泥巖段聲波時差(a)和地層密度(b)與深度關(guān)系
式中Goi——一定深度上覆巖層壓力梯度,g/cm3;
hw——海水水深,m;
ρw——海水密度,g/cm3;
ho——上部無密度測井地層段平均厚度,m;ρo——上部無密度測井地層段平均密度,g/cm3;Δh——深度間隔,m;
ρbi——一定深度密度,g/cm3.
伊頓指數(shù)的確定是計算壓力的關(guān)鍵。對于欠壓實成因的超壓,伊頓指數(shù)取3時,預測效果較好[10]。但流體膨脹成因的超壓不會引起孔隙度增大,從而導致實測聲波時差相對減小,因此,需要采用更大的伊頓指數(shù)來校正這種影響。文獻[44]研究文萊Baram地區(qū)超壓特征時,采用不同的伊頓指數(shù)研究不同成因的超壓,對于前三角洲欠壓實成因的超壓,所用的伊頓指數(shù)為3,而對于三角洲前緣流體膨脹成因的超壓,所用的伊頓指數(shù)為6.5.但不能表明伊頓指數(shù)的下限即為3,因為伊頓指數(shù)也受盆地地質(zhì)特征、巖性等的影響。文獻[50]利用Eaton法對伊朗南部盆地欠壓實機理為主形成的超壓分布特征進行了預測,確定伊頓指數(shù)取0.5時,預測效果最好。綜合分析前人研究結(jié)果,認為伊頓指數(shù)為-5~50都可能,主要集中于0~12.6[44]。本文引入了預測壓力相對誤差平方和,采用迭代法確定合適的伊頓指數(shù)。
計算結(jié)果表明,研究區(qū)伊頓指數(shù)為1~4,設(shè)定伊頓指數(shù)的初始值為1,用迭代的方法,取c=c0+k*0.2(k= 1,2,…,n),選擇12口具有實測壓力的井,求出不同伊頓指數(shù)所對應實測壓力深度處的壓力,并計算實測壓力與預測壓力的相對誤差,考慮到相對誤差有正有負,選擇相對誤差平方和最小的伊頓指數(shù)作為最終結(jié)果。根據(jù)渤南洼陷不同伊頓指數(shù)和預測壓力相對誤差平方和關(guān)系(圖2),可以確定伊頓指數(shù)取2.6時,預測效果最好。
圖2 渤南洼陷伊頓指數(shù)與預測壓力相對誤差平方和關(guān)系
3.3地層壓力預測
根據(jù)所建立的正常壓實趨勢線和密度隨深度變化曲線,伊頓指數(shù)取2.6,利用(1)式、(3)式對渤南洼陷12口井的地層壓力進行了預測。結(jié)果表明,預測壓力與實測壓力的相對誤差主要集中在-6%~10%,平均相對誤差為3.04%(表1),能夠滿足工程要求,該模型可用以預測渤南洼陷的地層壓力。
表1 渤南洼陷預測壓力數(shù)據(jù)
(1)不同成因的超壓會有不同的巖石物理響應特征,流體膨脹成因的超壓不會形成異常高孔隙度,因此,基于孔隙度的流體壓力預測方法不能準確預測其分布特征。Eaton法引入了伊頓指數(shù),可以通過改變伊頓指數(shù)大小來校正不同超壓機理的影響,適用于流體膨脹成因的超壓預測。
(2)利用Eaton法對濟陽坳陷沾化凹陷渤南洼陷多成因超壓的地層壓力進行了預測,明確了伊頓指數(shù)的獲取思路。初步計算結(jié)果表明,研究區(qū)沙三段下—中亞段和沙四段上亞段的伊頓指數(shù)為1~4,引入預測壓力相對誤差平方和來擬合伊頓指數(shù),通過迭代法確定伊頓指數(shù)取2.6時,所預測的壓力相對誤差平方和最小,此時預測的平均相對誤差為3.04%,可用此模型預測研究區(qū)地層壓力。
參考文獻:
[1]LAW B E,SPENCER C W.Abnormal pressure in hydrocarbon envi?ronments[C].AAPG Memoir,1998,70:1-11.
[2]SATERS C M,JOHNSON G M,DENYER G.Predrill pore?pressure prediction using seismic data[J].Geophysics,2002,67(4):1 286-1 292.
[3]BELL D W.Velocity estimation for pore?pressure prediction[C]// Pressure regimes in sedimentary basins and their prediction.AAPG Memoir,2002,76:177-215.
[4]SAYERS C M.An introduction to velocity?based pore pressure esti?mation[J].The LeadingEdge,2012,25(12):1 496-1 500.
[5]TINGAR M R P,HILLIS R R,SWARBRICK R E,et al.Origin of overpressure and porepressure prediction in the Baram delta prov?ince,Brunei[J].AAPG Bulletin,2009,93(1):51-74.
[6]徐寶榮,許海濤,于寶利,等.異常地層壓力預測技術(shù)在準噶爾盆地的應用[J].新疆石油地質(zhì),2015,36(5):597-601.XU Baorong,XU Haitao,YU Baoli,et al.Application of abnormal formation pressure prediction technologies in Junggar basin[J].Xin?jiangPetroleum Geology,2015,36(5):597-601.
[7]TINGAY M R P,HILLIS R R,MORLEY C K,et al.Variation in ver?tical stress in the Baram basin,Brunei:tectonic and geomechanical implications[J].Marine and Petroleum Geology,2003,20(10):1 201-1 212.
[8]BOWERS G L.Detecting high overpressure[J].The Leading Edge,2002,21(2):174-177.
[9]RUTH P V,HILLIS R,SWARBRICK R E,et al.The origin of over?pressure in the Carnarvon basin,western Australia:implications for pore?pressure prediction[J].Petroleum Geoscience,2004,10(3):247-257.
[10]MOUCHET J P,MITCHELL A.Abnormal pressures while drilling:origins,prediction,detecting,evaluation[M].Boussens:Elf Aquita?ine,1989.
[11]OSBORNE M J,SWARBRICK R E.Mechanisms for generating overpressure in sedimentary basins:a reevaluation[J].AAPG Bul?letin,1997,81(6):1 023-1 041.
[12]SWARBRICK R E,OSBORNE M J,YARDLEY G S,et al.Com?parison of overpressure magnitude resulting from the main generat?ing mechanisms[C]//Pressure regimes in sedimentary basins and their prediction.AAPG Memoir,2002,76:1-12.
[13]TINGAY M R P,HILLIS R,MORLEY C K,et al.Present?day stress and neotectonics of Brunei:implications for petroleum explo?ration and production[J].AAPG Bulletin,2009,93(1):75-100.
[14]管全中,董大忠,蘆慧,等.異常高壓對四川盆地龍馬溪組頁巖氣藏的影響[J].新疆石油地質(zhì),2015,36(1):55-60. GUAN Quanzhong,DONG Dazhong,LU Hui,et al.Influences of abnormal high pressure on Longmaxi shale gas reservoir in Sich?uan basin[J].XinjiangPetroleum Geology,2015,36(1):55-60.
[15]NEUZIL C E.Abnormal pressures as a hydrodynamic phenomena [J].American Journal of Science,1995,295(6):742-786.
[16]LUO Xiaorong,WANG Zhaoming,ZHANG Liqiang,et al.Over?pressure generation and evolution in a compressional tectonic set?ting,the southern margin of Junggar basin,northwestern China[J]. AAPG Bulletin,2007,91(8):1 123-1 139.
[17]ZHANG Jincai.Pore pressure prediction from well logs:methods,modifications,and new approaches[J].Earth-Science Reviews,2011,108(1):50-63.
[18]MAGARA K.Comparison of porosity?depth relationships of shale and sandstone[J].Petroleum Geology,1980,3(2):175-185.
[19]MILLER T W,LUK C H,OLGARD D L.The interrelationships be?tween overpressure mechanisms and in situ stress[C].AAPG Mem?oir,2002,76:13-20.
[20]GUTOERREZ M A,BRAUNSDORF N R,COUZENS B A.Calibra?tion and ranking of pore?pressure prediction models[J].The Lead?ingEdge,2006,25(12):1 516-1 523.
[21]LAHANN R W,SWARBICK R E.Overpressure generation by load transfer following shale framework weakening due to smectite dia?genesis[J].Geofluids,2011,11(4):362-375.
[22]MOMPER J A.Generation of abnormal pressure through organic matter transformations[J].AAPG Bulletin,1980,64(5):753.
[23]MEISSNER F F.Petroleum geology of the Bakken formation,Wil?liston basin,North Dakota and Montana[C]//Petroleum geochemis?try and basin evaluation.AAPG Memoir,1984,28:159-179.
[24]UNGERER P,BEHAR E,DISCAMPS D.Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data[C]//Implications for primary mi?gration.advances in organic geochemistry,1983,10:129-135.
[25]BARKER C.Calculated volume and pressure changes during ther?mal cracking of oil to gas in reservoirs[J].AAPG Bulletin,1990,74(8):1 254-1 261.
[26]LASH G G,ENGELDER T.An analysis of horizontal microcrack?ing during catagenesis:example from the Catskill delta complex [J].AAPG Bulletin,2005,89(11):1 433-1 449.
[27]ESEME E,KROOSS B M,LITTKE R.Evolution of petrophysical properties of oil shales during high?temperature compaction tests:implications for petroleum explusion[J].Marine and Petroleum Ge?ology,2012,31(1):110-124.
[28]FALL A,EICHHUBL P,CUMELLA S P,et al.Testing the basin?centered gas accumulation model using fluid?inclusion observa?tions:southern Piceance basin,Colorado[J].AAPG Bulletin,2012,96(12):2 297-2 318.
[29]BURRUS J.Overpressure models for clastic rocks,their relation to hydrocarbon expulsion:a critical review[C]//Abnormal pressures in hydrocarbon environments.AAPG Memoir,1998,70:35-63.
[30]孫波,蔣有錄,石小虎,等.渤海灣盆地東濮凹陷壓力演化與超壓形成機制[J].中國石油大學學報(自然科學版),2013,37 (2):28-35. SUN Bo,JIANG Youlu,SHI Xiaohu,et al.Pressure evolution and formation mechanism of overpressure in Dongpu depression,Bohai?wan basin[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(2):28-35.
[31]郝雪峰.東營凹陷沙三—沙四段砂巖儲層超壓成因與演化[J].石油與天然氣地質(zhì),2013,34(2):167-173. HAO Xuefeng.Overpressure genesis and evolution of sandstone reservoirs in the 3rd and 4th members of Shahejie formation,the Dongying depression[J].Oil&Gas Geology,2013,34(2):167-173.
[32]包友書,張林曄,李鉅源,等.濟陽坳陷古近系超高壓成因探討[J].新疆石油地質(zhì),2012,33(1):17-21. BAO Shuyou,ZHANG Linye,LI Juyuan,et al.Approach to Paleo?gene overpressure origin in Jiyang depression[J].Xinjiang Petro?leum Geology,2012,33(1):17-21.
[33]陳美玲,潘仁芳,潘進.黃河口地區(qū)中深層超壓成因機制及分布規(guī)律研究[J].石油天然氣學報,2014,36(7):8-11. CHEN Meiling,PAN Renfang,PAN Jin.On overpressure genera?tion mechanisms and distribution rules at mid?depth formation in Huanghekou region[J].Journal of Oil and Gas Technology,2014,36(7):8-11.
[34]LAHANN R W.Impact of smectite diagenesis on compaction mod?eling and compaction equilibrium[C]//Pressure regimes in sedi?mentary basins and their prediction.AAPG Memoir,2002,76:61-72.
[35]TINGAY M,HILLIS R,SWARBRICK R,et al.“Vertically trans?ferred”overpressures in Brunei:evidence for a new mechanism for the formation of high magnitude overpressures[J].Geology,2007,35(11):1 023-1 026.
[36]WANGEN M.A quantitive comparison of some mechanisms gener?atingoverpressure in sedimentary basins[J].Tectonophysics,2001,334(3-4):211-234.
[37]劉曉峰.超壓傳遞:概念和方式[J].石油實驗地質(zhì),2002,24 (6):533-536. LIU Xiaofeng.Overpressure transference:concept and ways[J]. Petroleum Geology&Experiment,2002,24(6):533-536.
[38]YARDLEY G S,SWARBRICK R E.Lateral transfer:a source of additional overpressure?[J].Marine and Petroleum Geology,2000,17(4):523-537.
[39]FINKBEINER T,ZOBACK M,STUMP B B,et al.Stress,pore pres?sure,and dynamically constrained hydrocarbon columns in the south Eugene Island 330 field,Gulf of Mexico[J].AAPG Bulletin,2001,85(6):1 007-1 031.
[40]LUO Xiaorong,DONG Weiliang,YANG Jihai,et al.Overpressur?ing mechanisms in the Yinggehai basin,South China Sea[J]. AAPG Bulletin,2003,87(4):629-645.
[41]范昌育,王震亮,張鳳奇.庫車坳陷克拉蘇沖斷帶傳遞型超壓的識別、計算及其主控因素[J].中國石油大學學報(自然科學版),2014,38(3):32-38. FAN Changyu,WANG Zhenliang,ZHANG Fengqi.Identification,calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa depression[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):32-38.
[42]范昌育,王震亮,王愛國,等.柴達木盆地北緣鄂博梁構(gòu)造帶超壓形成機制與高壓氣、水層成因[J].石油學報,2015,36(6):699-706. FAN Changyu,WANG Zhenliang,WANG Aiguo,et al.Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers,Eboliang structure belt,northern Qaidam basin[J]. ActaPetrolei Sinica,2015,36(6):699-706.
[43]卞從勝,柳廣弟.異常地層壓力的綜合預測方法及其在營爾凹陷的應用[J].地質(zhì)科技情報,2009,28(4):1-6. BIAN Congsheng,LIU Guangdi.Integrated approach for predicting abnormal formation pressure and its application in Ying’er sag[J]. Geological Science and Technology Information,2009,28(4):1-6.
[44]TINGAR M R P,MORLEY C K,LAIRD A,et al.Evidence for overpressure generation by kerogen?to?gas maturation in the north?ern Malay basin[J].AAPG Bulletin,2013,97(4):639-672.
[45]TINGAR M,HILLIS R,MORLEY C,et al.Pore pressure?stress couplingin Brunei Darussalam?Implications for shale injection[C]// Subsurface sediment mobilization.Geological Society(London)Special Publication,2003,216:369-379.
[46]EATON B A.The equation for geopressure prediction from well logs[R].SPE 5544,1975.
[47]劉華,蔣有錄,谷國翠,等.沾化凹陷渤南洼陷古近系壓力特征及成因機制[J].中國石油大學學報(自然科學版),2013,37 (4):46-51. LIU Hua,JIANG Youlu,GU Guocui,et al.Pressure characteristics and information mechanisms of paleogene in Bonan sag,Zhanhua depression[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(4):46-51.
[48]羅勝元,何生,金秋月,等.渤南洼陷超壓系統(tǒng)劃分及結(jié)構(gòu)特征[J].吉林大學學報(地球科學版),2015,45(1):37-51. LUO Shengyuan,HE Sheng,JIN Qiuyue,et al.Overpressure sys?tem classification and structure characteristic in Bonan sag[J].Jour?nal of Jilin University(Earth Science Editon),2015,45(1):37-51.
[49]王天福,操應長,王艷忠.渤南洼陷古近系深層異常壓力特征及成因[J].西安石油大學學報(自然科學版),2009,24(2):21-25. WANG Tianfu,CAO Yingchang,WANG Yanzhong.Characteris?tics and origin of the abnormal pressure in the deep Paleogene for?mation in Bonan sub?sag[J].Journal of Xi’an Shiyou University (Natural Science Edition),2009,24(2):21-25.
[50]MORTEZA A,NAVID S M,ALI K I,et al.Pore pressure predic?tion and modeling using well?logging data in one of the gas fields in south of Iran[J].Journal of Petroleum Science and Engineering,2015,128(2):15-23.
(編輯顧新元)
Prediction of Overpressures Generated by Fluid Expansion:Methods and Application
JING Chen1,LIU Hua1,JING Xiao2,FENG Yuelin1,ZHAO Meng1
(1.School of Geoscience,ChinaUniversity of Petroleum,Qingdao,Shandong 266580,China; 2.The First Oil Production Plant,Huabei Oilfield Company,PetroChina,Renqiu,Hebei 062552,China)
Abstract:Accurate pore?pressure prediction in overpressured regions is essential to ensure safe drilling operations,also provides essential data for reservoir planning and reserves estimation.Based on the differences of petrophysical signatures between different overpressure mechanisms,the prediction method for overpressure generated by fluid expansion mechanisms was syudied.The results showed that the Ea?ton method is suitable for estimating overpressure generated by different mechanisms.Taking Bonan sag of Zhanhua depression in the Ji?yang subbasin as an example,the procedure of determining the exponent c and predicting fluid pressure by Eaton method were explained. At first,it is initially identified that the exponent c was between 1 to 4.Then,introducing a parameter the sum of the squares of relative er?ror and using the iterative method,the exponent c could be determined by comparing the different sum of the squares of relative error.The results showed that the sum of the squares of relative error was the smallest when the Eaton exponent is 2.6,and the prediction was most ac?curate.
Keywords:Jiyangdepression;Bonan sub?sag;overpressure mechanisms;fluid expansion;pressure prediction;Eaton method
作者簡介:景?。?992-),男,山西運城人,碩士研究生,油氣勘探,(Tel)15588665332(E-mail)932998313@qq.com
基金項目:國家自然科學基金(41502129);國家油氣重大專項(2011ZX05006-003);中央高?;究蒲袠I(yè)務(wù)費專項(14CX05015A)
收稿日期:2015-08-13
修訂日期:2015-12-14
文章編號:1001-3873(2016)02-0240-06
DOI:10.7657/XJPG20160222
中圖分類號:TE112.23
文獻標識碼:A