王遠微,劉 雄*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.西南民族大學(xué)生命科學(xué)與技術(shù)學(xué)院,四川 成都 610041)
辣椒素降糖降脂的機理研究進展
王遠微1,2,劉 雄1,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.西南民族大學(xué)生命科學(xué)與技術(shù)學(xué)院,四川 成都 610041)
辣椒素是一種香草酰胺類生物堿,是從辣椒中獲取的活性物質(zhì),近年的國內(nèi)外研究表明辣椒素具有降糖降脂的功效。本文綜述了辣椒素通過與辣椒素受體結(jié)合、調(diào)節(jié)褐色脂肪組織和白色脂肪組織、釋放脂肪細胞因子、改變腸道菌群結(jié)構(gòu)、調(diào)節(jié)飲食和肌肉組織功能等幾種途徑發(fā)揮降糖降脂作用的機理,以期為辣椒素作為降糖降脂藥物或者保健產(chǎn)品的開發(fā)利用提供參考依據(jù)。
辣椒素;降糖降脂;機理
辣椒素是一種香草酰胺類生物堿,是從辣椒中獲取的活性物質(zhì),主要存在辣椒屬中的紅辣椒中。它與二氫辣椒素、降二氫辣椒素共同組成了辣椒素類物質(zhì),辣椒素是主要成分。紅辣椒70%的紅、熱作用源于辣椒素[1]。辣椒素具有強烈的刺激氣味,是辣椒為了抵御食草動物和真菌類病原的侵害產(chǎn)生的一種天然物質(zhì)[2]。辣椒素具有廣泛的藥理作用,其對人類的健康的作用已經(jīng)研究了近百年?,F(xiàn)代藥理學(xué)證明辣椒素具有止癢鎮(zhèn)痛[3]、減肥調(diào)脂4]、抗癌效果[5]、抗菌、降低血壓[6]、調(diào)節(jié)內(nèi)分泌系統(tǒng)[7]、保護心腦血管和消化系統(tǒng)[8]等功效,可用于治療神經(jīng)疼痛、關(guān)節(jié)炎、肥胖、糖尿病以及癌癥等疾病。
國內(nèi)外研究表明,辣椒素是通過調(diào)節(jié)機體糖類和脂類的代謝,從而達到降糖降脂的作用。因此可用于糖尿病、肥胖等疾病的治療。隨著研究的不斷深入,辣椒素降糖降脂的機理得到不斷的完善,本文就辣椒素的降糖降脂機理進行闡述。
1.1 與受體結(jié)合
瞬時受體電位香草酸亞型1(transient receptor potential vanilloid type-1,TRPV1)是瞬時受體電位(transient receptor potential,TRP)家族的一員,是一種無選擇的陽離子通道[9]。其作為一個多調(diào)受體,可在多種物理、化學(xué)因素刺激下激活或致敏,從而介導(dǎo)肌肉收縮、神經(jīng)元活動、遞質(zhì)釋放、細胞增殖和凋亡等多種細胞的基本活動[10]。TRPV1是辣椒素的受體[11],辣椒素可以通過激活TRPV1發(fā)揮其降糖降脂的作用,只是作用途徑不同。Zhang Lili[12]和Li Qiang[13]等用TRPV1敲除小鼠和野生型小鼠以及3T3-L1前脂細胞為研究模型,對TRPV1激活后的進一步機理研究。結(jié)果表明,辣椒素通過激活TRPV1導(dǎo)致脂肪細胞內(nèi)Ca2+的迅速升高形成鈣離子流,從而抑制脂肪細胞的分化。脂肪細胞分化中細胞間的Ca2+的轉(zhuǎn)運是通過間隙連接蛋白43(connexin43,Cx43)介導(dǎo)的,Chen Jian等[14]研究表明辣椒素激活TRPV1后,通過提高Cx43的表達,進而導(dǎo)致Ca2+在脂肪細胞之間的轉(zhuǎn)運,形成鈣離子流,起到抑制脂肪細胞分化的作用。Wang Peijian等[15]研究表明辣椒素通過活化TRPV1刺激細胞和組織中胰高血糖素樣肽-1(glucagonlikepeptide-1,GLP-1)的分泌,進而提高胰島素的分泌量,起到提高血糖耐受性和降低血糖濃度的作用,從而維持血糖的穩(wěn)定。TRPV1被辣椒素激活之后還參與辣椒素其他途徑發(fā)揮降糖降脂的作用。
1.2 調(diào)節(jié)褐色脂肪組織(brown adipose tissue,BAT)
BAT是一種高度特化的產(chǎn)熱組織,除了一般脂肪組織所具有的營養(yǎng)成分貯藏,以及寒冷時起保溫作用外,還可以通過高效的代謝產(chǎn)熱抵御寒冷,在調(diào)節(jié)機體能量消耗、全身能量平衡以及身體肥胖等方面都具有至關(guān)重要的作用[16-17]。褐色脂肪組織是通過TRP接受冷刺激信號的,因此除了受冷刺激調(diào)節(jié)外,也受到一些可以引起TRP變化的食物的影響,辣椒素便是其中研究最為廣泛的。辣椒素通過活化TRP家族中的TRPV1,使下丘腦中樞調(diào)控交感神經(jīng)末梢釋放去甲腎上腺素(norepinephrine,NE),NE與BAT細胞膜上的β受體結(jié)合,引起細胞內(nèi)環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)水平升高,活化了蛋白激酶,于是甘油三酯被水解為甘油和脂肪酸。脂肪酸活化線粒體的解偶聯(lián)蛋白1(uncoupling protein 1,UCP1),使線粒體實現(xiàn)由偶聯(lián)呼吸到非偶聯(lián)呼吸狀態(tài)的轉(zhuǎn)變,從而產(chǎn)生大量的熱量[18]。辣椒素通過作用BAT起到降脂減肥的作用不僅在動物實驗上被證實[19-20],在人體實驗中也得到了印證[21-24]。
1.3 調(diào)節(jié)白色脂肪組織(white adipose tissue,WAT)
WAT是人體內(nèi)脂肪組織的一種,和褐色脂肪相對應(yīng),主要功能是將體內(nèi)過剩的能量以中性脂肪的形式貯存起來,以供機體在需要的時候使用,它是體內(nèi)脂肪的主要貯存形式。抑制白色脂肪組織的數(shù)量和相關(guān)功能有助于預(yù)防肥胖和其他代謝疾?。?5]。辣椒素通過影響WAT中與脂肪代謝相關(guān)的基因以及酶的數(shù)量從而起到降脂的作用。Joo等[25]研究表明辣椒素通過上調(diào)WAT中熱休克蛋白27、Steap3蛋白(與產(chǎn)熱相關(guān))、下調(diào)嗅覺受體蛋白1434(與脂肪代謝相關(guān))調(diào)節(jié)脂肪代謝。Ann等[26]研究表明辣椒素通過提高WAT中解偶聯(lián)蛋白2(uncoupling protein 2,UCP2)的表達和抑制3-磷酸甘油脫氫酶(glycerol-3-phosphate dehydrogenase,GPDH)的活性,從而起到降脂的作用。Kim等[27]研究表明辣椒素不但提高UCP2表達、抑制GPDH活性,而且通過降低WAT中脂肪合成基因過氧化物酶體增殖物激活受體γ,固醇調(diào)節(jié)元件結(jié)合蛋白1c以及脂肪酸結(jié)合蛋白的表達量,提高WAT中與產(chǎn)熱和β氧化作用相關(guān)的基因過氧化物酶體增殖物激活受體α、肉毒堿棕櫚酰轉(zhuǎn)移酶(carnitine palmitoyltransferase 1α,CPT-1α)的表達,激活WAT中腺苷酸活化蛋白激酶的活性等抑制脂肪的合成、促進脂肪的氧化分解。Lee等[28]研究表明,辣椒素除了提高UCP2和CPT-1α的表達之外,還上調(diào)激素敏感性脂肪酶的基因表達水平,而且還可以促進甘油三酯的的水解以及促進甘油排除脂肪細胞。Hsu等[29]研究表明辣椒素通過破壞WAT中細胞的線粒體膜蛋白,激活半胱天冬酶3、Bcl2關(guān)聯(lián)X蛋白、Bcl2同源拮抗蛋白等與細胞凋亡相關(guān)的基因,從而裂解過氧化物酶體增殖物激活受體,下調(diào)Bcl-2,最終誘導(dǎo)前脂肪細胞的凋亡,從而降低脂肪細胞的分化和脂肪組織的形成。
1.4 作用脂肪細胞因子
肥胖引起的代謝紊亂可以加劇胰島素耐受和糖尿病。脂肪組織衍生活性物質(zhì),又稱為脂肪細胞因子,與胰島素耐受和糖尿病的發(fā)生發(fā)展都密切相關(guān)[30]。脂肪細胞因子中的單核細胞趨化蛋白-1(monocyte chemotactic protein 1,MCP-1)、白細胞介素6(interleukin-6,IL-6)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)可以引起脂肪組織的炎癥反應(yīng)從而引起胰島素耐受,而脂聯(lián)素卻是一種胰島素增敏激素,可以減輕炎癥反應(yīng)改善胰島素抗性[31]。Kang Jihye[32-33]和Lee[34]等研究表明辣椒素可以通過降低MCP-1、IL-6以及TNF-α的水平從而減輕脂肪組織的炎性反應(yīng)。進一步證明辣椒素是通過提高脂聯(lián)素以及其受體的表達水平從而減輕脂肪組織的炎性反應(yīng),改善胰島素耐受反應(yīng)[30,34],進而調(diào)節(jié)機體脂類代謝。但是辣椒素減輕炎性反應(yīng)的作用也是通過提高過氧化物酶體增殖物激活受體γ、過氧化物酶體增殖物激活受體α以及TRPV-1的表達和活性來實現(xiàn)的[34]。
1.5 作用腸道菌群
腸道菌群與宿主糖脂的吸收、代謝、貯存等都有著緊密的關(guān)系,腸道菌群的變化可能會影響宿主糖脂的代謝[35-40]。腸道菌群結(jié)構(gòu)受到抗生素、膳食纖維和其他飲食分子的影響[41]。辣椒素具有抗菌的活性,在辣椒素的作用下腸道菌群的結(jié)構(gòu)可能會發(fā)生變化。因此推測辣椒素改變腸道菌群的結(jié)構(gòu)和多樣性是其降糖降脂的途徑之一。Ritesh[19]等對辣椒素影響腸道菌群的研究發(fā)現(xiàn),辣椒素作用后,小鼠腸道的厚壁門細菌的數(shù)量減少,擬桿菌門的細菌數(shù)量明顯上升。而對糖尿病和肥胖小鼠的腸道菌群的研究發(fā)現(xiàn)其腸道中厚壁門的細菌數(shù)量比正常小鼠的高,擬桿菌門細菌數(shù)量比正常小鼠的低[42-44]。在人體實驗中也得到同樣的結(jié)果[36,45]。因此辣椒素對于這兩個門的細菌的數(shù)量的作用可能是其改善糖尿病和肥胖的機理之一。Ritesh等[19]還發(fā)現(xiàn)腸桿菌科細菌的數(shù)量在辣椒素作用之后明顯降低,而該屬細菌在肥胖和糖尿病小鼠的腸道中數(shù)量比正常小鼠高[37]。另有學(xué)者發(fā)現(xiàn)在高脂飼料誘導(dǎo)的代謝紊亂小鼠體內(nèi)Akkermansia muciniphila的數(shù)量會減少[46],Akkermansia muciniphila是一類具有降糖降脂功能的細菌。Ritesh等[19]也得到了同樣的結(jié)論,但是他們發(fā)現(xiàn)辣椒素作用后在小鼠盲腸中該類細菌的數(shù)量增加,推測可能是辣椒素促進腸道黏液的分泌進而影響數(shù)量,或者是辣椒素直接刺激Akkermansia muciniphila的生長。關(guān)于辣椒素作用腸道菌群的研究報道較少,現(xiàn)有的報道只是停留在腸道菌群種類和數(shù)量的變化中,對于這種變化和辣椒素對機體的糖脂代謝影響的關(guān)系還未見報道,其中的機理也不清楚。
1.6 調(diào)節(jié)食欲
機體內(nèi)體代謝的平衡取決于機體攝入的能量和消耗的能量,當攝入的量大于消耗的量的時候,過量攝入的脂類、糖類、蛋白質(zhì)都會轉(zhuǎn)化為脂肪蓄積在體內(nèi)。因此如果能減少食物的攝入可以有效的控制脂肪在體內(nèi)的蓄積。Westerterp-Plantenga[47]和Smeets[48]等研究表明飲食中添加辣椒素可以增強飲食后的滿足感和飽脹感,從而減少食物的攝入。還有學(xué)者研究發(fā)現(xiàn)辣椒素是通過抑制進食的欲望[49]和饑餓感[47]減少食物的攝入,但是這些研究對于具體的機理都沒有闡述。Smeets等[50]進一步研究表明辣椒素是通過升高厭食激素(胰高血糖素樣肽-1)的濃度和降低促進飲食激素(胃饑餓素)的濃度來減少食物的攝入。下丘腦和弧形核是大腦的主要組成部分,是大腦調(diào)節(jié)飲食的部位,Baboota等[19]研究表明辣椒素激活下丘腦中的TRPV1,進而促進下丘腦中的厭食神經(jīng)肽基因的表達,包括尿皮質(zhì)素、腦源性神經(jīng)營養(yǎng)因子、胃泌素釋放肽、可卡因苯丙胺調(diào)節(jié)轉(zhuǎn)錄蛋白以及血漿膽囊收縮素等,揭示了辣椒素減少食物攝入的機理。
1.7 作用肌肉組織
機體的肌肉組織是能量代謝的靶器官之一,肌肉組織的功能紊亂和有氧運動能力的損傷會和一些代謝性疾病有關(guān),例如肥胖和糖尿病。增加肌肉組織的有氧纖維和運動耐受能力可以提高胰島的活性和防止體質(zhì)量的增加[51]。Luo Zhidan等[52]研究發(fā)現(xiàn)辣椒素激活TRPV1后上調(diào)肌肉組織中的過氧化物酶體增殖活化受體γ共激活因子-1α的水平,從而促進肌肉組織的能量代謝和運動耐受能力,改善代謝性疾病。解偶聯(lián)蛋白3(uncoupling protein 3,UCP3)可以促進脂肪酸的氧化[53],還可以促進葡萄糖轉(zhuǎn)運蛋白4(glucose transporter type4,GLUT4)補充到細胞表面[54],而GLUT4與葡萄糖的代謝也密切相關(guān)。Mun等[55]研究表明辣椒素可以通過促進肌肉組織中的UCP3、GLUT4和胰島素受體等基因的表達,從而達到穩(wěn)定血糖,促進產(chǎn)熱,促進脂肪酸氧化的作用。Kazuya等[56]也發(fā)現(xiàn)辣椒素通過上調(diào)肌肉組織中的UCP3基因表達水平增加運動時肌肉組織中的氧化的腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)的數(shù)量,從而提高肌肉收縮的代謝效率,有利于肥胖病人和代謝紊亂病人的健康改善。
辣椒素具有降糖降脂的作用,該生物活性在動物模型和人體實驗中都得到了證實。最近幾年,對于辣椒素降糖降脂的機理研究越來越多,機理得到了不斷的補充和完善。本文從七方面內(nèi)容闡述辣椒素的降糖降脂機理,可以看出辣椒素是通過多途徑、多功能靶器官作用調(diào)節(jié)機體的糖脂代謝。但是有一些新的途徑的機理還不是很清楚,例如辣椒素對腸道菌群的影響。近些年的研究表明腸道菌群的代謝和機體的代謝形成一種共代謝關(guān)系,與肥胖和2型糖尿病的發(fā)生發(fā)展直接相關(guān)[57]。而對于辣椒素對腸道菌群的影響,研究僅僅局限于腸道菌群的數(shù)量和結(jié)構(gòu)的變化方面,對于菌群變化后對腸道菌群自身的代謝影響、對機體的代謝影響以及兩者之間的相互作用關(guān)系等進一步的機理的研究還沒有開展。隨著代謝組學(xué)技術(shù)的出現(xiàn)和發(fā)展,為該方面的研究提供了有利的研究手段,因此可能在該途徑的研究方面有新的發(fā)現(xiàn)和突破。
隨著辣椒素降糖降脂機理不斷的闡明,為辣椒素的應(yīng)用提供理論依據(jù),有利于人們更好地將辣椒素應(yīng)用于食品、藥品等領(lǐng)域,造福于人類。
[1] SRINIVASAN K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review[J]. Critical Reviews in Food Science and Nutrition, 2015. DOI:10.1080/1040839 8.2013.772090.
[2] SHARMA S K, VIJ A S, SHARMA M. Mechanisms and clinical uses of capsaicin[J]. European Journal of Pharmacology, 2013, 720(1/3):55-62. DOI:10.1016/j.ejphar.2013.10.053.
[3] DERRY S, SVEN-RICE A, COLE P, et al. Topical capsaicin(high concentration) for chronic neuropathic pain in adults[J]. Cochrane Database Systematic Reviews, 2013, 2: CD007393. DOI:10.1002/14651858.CD007393.pub3.
[4] LEUNG F W. Capsaicin as an anti-obesity drug[J]. Progress in Drug Research, 2014, 68: 171-179. DOI:10.1007/978-3-0348-082 8-6_7.
[5] LAU J K, BROWN K C, DOM A M, et al. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway[J]. Apoptosis, 2014, 19(8): 1190-1201. DOI:10.1007/s10495-014-1007-y.
[6] YANG Dachun, LUO Zhidan, MA Shuangtao, et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension[J]. Cell Metabolism, 2010,12(2): 130-141. DOI:10.1016/j.cmet.2010.05.015.
[7] RADU B M, IANCU A D, RADU D L, et al. Capsaicin decreases blood glucose, insulin and TRPV1 expression in sensory peripheral neurons in double transgenic diabetes mice[J]. Diabetes, Obesity & Metabolism, 2010, 12: 42-43.
[8] XU Xingsen, WANG Peijian, ZHAO Zhigang, et al. Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats[J]. Stroke, 2011, 42(11): 3245-3251. DOI:10.1161/STROKEAHA.11 1.618306.
[9] SONYA M H, SIMON N, KENTON J S, et al. Capsaicin interaction with TRPV1 channels in a lipid bilayer: molecular dynamics simulation[J]. Biophysical Journal, 2015, 108(6): 1425-1434. DOI:10.1016/j.bpj.2015.02.013.
[10] BERND N, GRZEGORZ O, THOMAS V. Transient receptor potential cation channels in disease[J]. Physiological Reviews, 2007, 87(1):165-217. DOI:10.1152/physrev.00021.2006.
[11] CATERINA M J, SCHUMACHER M A, TOMINAGA M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389: 816-824. DOI:10.1038/39807.
[12] ZHANG Lili, LIU Daoyan, MA Liqun, et al.Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity[J].Circulation Research, 2007, 100(7): 1063-1070. DOI:10.1161/01.RES.0000262653.84850.8b.
[13] LI Qiang, LI Li, WANG Fei, et al. Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor delta activation[J]. European Journal of Physiology, 2013, 465(9): 1303-1316. DOI:10.1007/s00424-013-1274-4.
[14] CHEN Jian, LI Li, LI Yingsha, et al. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+influx[J].Cardiovascular Diabetology,2015, 14 (1): 22. DOI:10.1186/s12933-015-0183-6.
[15] WANG Peijian, YAN Zhencheng, ZHONG Jian, et al. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis[J]. Diabetes,2012, 61(8): 2155-2156. DOI:10.2337/db11-1503.
[16] MASAYUKI S. Brown adipose tissue as a therapeutic target for obesity: from mice to humans[J]. The Korean Journal of Obesity,2015, 24(1): 1-8. DOI:10.7570/kjo.2015.24.1.1.
[17] MASAYUKI S. Human brown adipose tissue: regulation and antiobesity potential[J]. Endocrine Journal, 2014, 61(5): 409-416. DOI:10.1507/endocrj.EJ13-0527.
[18] SHINGO K, MASAYUKI S. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis[J]. The Annual Review of Physiology, 2014, 76: 225-249. DOI:10.1146/annurev-physiol-021113-170252.
[19] BABOOTA R K, MURTAZA N, JAGTAP S, et al. Capsaicininduced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice[J]. Journal of Nutritional Biochemistry, 2014, 25(9): 893-902. DOI:10.1016/ j.jnutbio.2014.04.004.
[20] MASAYUKI S, TAKESHI Y. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans[J]. Current Opinion Lipidology, 2013, 24(1): 71-77. DOI:10.1097/MOL.0b013e32835a4f40.
[21] SNITKER S, FUJISHIMA Y, SHEN H, et al. Effects of novel capsinoid treatment on fatness and energy me? tabolism in humans:possible pharmacogenetic implications[J]. The American Journal of Clinical Nutrition, 2009, 89(1): 45-50. DOI:10.3945/ajcn.2008.26561.
[22] YONESHIRO T, AITA S, KAWAI Y, et al. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans[J]. The American Journal of Clinical Nutrition, 2012, 95: 845-850. DOI:10.3945/ ajcn.111.018606.
[23] LUDY M J, MOORE G E, MATTES R D. The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans[J]. Chemical Senses, 2012, 37(2): 103-121. DOI:10.1093/chemse/bjr100.
[24] YONESHIRO T, AITA S, MATSUSHITA M, et al. Recruited brown adipose tissueas an antiobesity agent in humans[J]. The Journal of Clinical Investigation, 2013, 123(8): 3404-3408. DOI:10.1172/ JCI67803.
[25] JOO J I, KIM D H, CHOI J W, et al. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet[J]. Journal of Proteome Research, 2010, 9(6): 2977-2987. DOI:10.1021/pr901175w.
[26] ANN J Y, LEE M S, JOO H, et al. Reduction of body weight by capsaicin is associated with inhibition of glycerol-3-phosphate dehydrogenase activity and stimulation of uncoupling protein 2 mRNA expressions in diet-induced obese rats[J]. The Journal of Food Science Nutrition, 2011, 16(3): 210-216. DOI:10.3746/jfn.2011.16.3.210.
[27] KIM J Y, LEE M S, JUNG S, et al. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet[J]. International Journal of Nanomedicine, 2014, 9: 301-310. DOI:10.2147/IJN.S52414.
[28] LEE M S, KIM C T, KIM I H, et al. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytesptr[J]. Phytotherapy Research, 2011,25(6): 935-939. DOI:10.1002/ptr.3339.
[29] HSU C L, YEN G C. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesisin 3T3-L1 cells[J]. Journal of Agriculture and Food Chemistry, 2007, 55(5): 1730-1736. DOI:10.1021/jf062912b.
[30] KANG J H, TSUYOSHI G, NGOC H L, et al. Dietary capsaicin attenuates metabolic dysregulation in fgenetically obese diabetic mice[J]. Journal of Medicine, 2011, 14(3): 310-315. DOI:10.1089/ jmf.2010.1367.
[31] LIN H V, KIM J Y, POCAI A, et al. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic knockout mice[J]. Diabetes, 2007, 56(8): 1969-1976. DOI:10.2337/db07-0127.
[32] KANG J H, TSUYOSHI G, HAN I S, et al. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet[J]. Obesity, 2010, 18(4): 780-787. DOI:10.1038/ oby.2009.301.
[33] KANG J H, KIM C S, HAN I S, et al. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes,and suppresses the inflammatory responses of adipose tissue macrophages[J]. FEBS Letters, 2007, 581(23): 4389-4396. DOI:10.1016/j.febslet.2007.07.082.
[34] LEE G R, SHIN M K, YOON D J, et al. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice[J]. Obesity, 2013, 21(1): 115-122. DOI:10.1002/oby.20246.
[35] BRAHE L K, ASTRUP A, LARSEN L H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases[J]. Obesity Reviews, 2013, 14(12): 950-959. DOI:10.1111/obr.12068.
[36] LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology:human gut microbes associated with obesity[J]. Nature, 2006, 444:1022-1023. DOI:10.1038/4441022a.
[37] KIM K A, GU W, LEE I A, et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway[J]. PLoS ONE, 2012, 7(10): e47713. DOI:10.1371/journal. pone.0047713.
[38] EVERARD A, PHARM M S, CANI P D. Diabetes, obesity and gut microbiota[J]. Best Practice & Research Clinical Gastroenterology,2013, 27(1): 73-83. DOI:10.1136/postgradmedj-2015-133285.
[39] MICHAEL B. Gut microbiota and energy balance: role in obesity[J]. Proceedings of the Nutrition Society, 2014, 18: 1-8. DOI:10.1017/ S0029665114001700.
[40] TSUKUMO D M, CARVALHO B M, CARVALHO-FILHO M A, et al. Translational research into gut microbiota: new horizons in obesity treatment[J]. Arquivos Brasileiros de Endocrinologia Metabologia,2009, 53(2): 139-144. DOI:10.1590/S0004-27302009000200004.
[41] BROWN K, DECOFFE D, MOLCAN E, et al. Diet induced dysbiosis of the intestinal microbiota and the effects on immunity and disease[J]. Nutrients, 2012, 4(8): 1095-1119. DOI:10.3390/nu4081095.
[42] HILDEBRANDT M A, HOFFMANN C, SHERRILL-MIX S A, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J]. Gastroenterology, 2009,137(5): 1716-1724. DOI:10.1053/j.gastro.2009.08.042.
[43] MURPHY E F, COTTER P D, HEALY S, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet,obesity and time in mouse models[J]. Gut, 2010, 59(10): 1635-1642. DOI:10.1136/gut.2010.215665.
[44] EVERARD A, LAZAREVIC V, DERRIEN M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice[J]. Diabetes, 2011,60(11): 2776-2786. DOI:10.2337/db11-0227.
[45] TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457: 480-484. DOI:10.1038/nature07540.
[46] EVERARD A, BELZER C, GEURTS L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity[J]. Proceedings of National Academy of Sciences of the United States of American, 2013, 110(22): 9066-9071. DOI:10.1073/pnas.1219451110.
[47] WESTERTERP-PLANTENGA M S, SMEETS A, LEJEUNE M P. Sensory and gastrointestinal satiety effects of capsaicin on food intake[J]. International Journal of Obesity, 2005, 29(6): 682-688. DOI:10.1038/sj.ijo.0802862.
[48] SMEETS A J, JANSSENS P L, WESTERTERP-PLANTENGA M S. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure[J]. The Journal of Nutrition, 2013, 143(4): 442-447. DOI:10.3945/jn.112.170613.
[49] LUDY M J, MATTES R D. The effects of hedonically acceptable red pepper doses on thermogenesis and appetite[J]. Physiology and Behavior, 2011, 102(3/4): 251-258. DOI:10.1016/ j.physbeh.2010.11.018.
[50] SMEETS A J, WESTERTERP-PLANTENGA M S. The acute effects of a lunch containing capsaicin on energy and substrate utilisation,hormones, and satiety[J]. European Journal of Nutrition, 2009, 48(4):229-234. DOI:10.1007/s00394-009-0006-1.
[51] WANG Yongxu, ZHANG Chunli, YU R T, et al. Regulation of muscle fiber type and running endurance by PPARdelta[J]. PLoS Biology,2004, 2(10): e294. DOI:10.1371/journal.pbio.0020294
[52] LUO Zhidan, MA Liqun, ZHAO Zhigang, et al. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice[J]. Cell Research, 2012, 22(3): 551-564. DOI:10.1038/cr.2011.205.
[53] MACLELLAN J D, GERRITS M F, GOWING A, et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells[J]. Diabetes, 2005, 54(8): 2343-2350. DOI:10.2337/diabetes.54.8.2343.
[54] HUPPERTZ C, FISCHER B M, KIM Y B, et al. Uncoupling protein 3(UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism[J]. The Journal of Biological Chemistry, 2001, 276(16): 12520-12529. DOI:10.1074/jbc. M011708200.
[55] MUN J M, OK H M, KWON O. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipidrelated genes in diet-induced obese rats[J]. Nutrition Research, 2014,34(5): 458-465. DOI:10.1016/j.nutres.2014.04.009.
[56] KAZUYA Y, TONSONA, PECCHI E, et al. A single intake of capsiate improves mechanical performance and bioenergetics efficiency in contracting mouse skeletal muscle[J]. American Journal of Physiology-Endocrinology and Metabolism, 2014, 306(10): 1110-1119. DOI:10.1152/ajpendo.00520.2013.
[57] DELZENNE N M, NEYRINCK A M, CANI P D. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome[J]. Microbial Cell Factories, 2011, 10(Suppl 1): 10. DOI:10.1186/1475-2859-10-S1-S10.
Advances in Hypoglycemic and Hypolipidemic Mechanisms of Capsaicin
WANG Yuanwei1,2, LIU Xiong1,*
(1. College of Food Science, Southwest University, Chongqing 400715, China;2. College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China)
Capsaicin is a vanilla amides alkaloid which is an active ingredient in chili peppers. Much recent research has demonstrated the hypoglycemic and hypolipidemic activity of capsaicin. This paper reviews recent progress in the research on the hypoglycemic and hypolipidemic mechanisms of capsaicin involving binding to the capsaicin receptor, adjusting the brown adipose tissue and white adipose tissue, releasing adipose cytokines,altering the gut microbial composition,modulating food intake and muscle performance, aiming at providing
for further development and applications of capsaicin as an ingredient of drugs or health products.
capsaicin; hypoglycemic and hypolipidemic; mechanism
10.7506/spkx1002-6630-201609042
TS201.4
A
1002-6630(2016)09-0227-05
王遠微, 劉雄. 辣椒素降糖降脂的機理研究進展[J]. 食品科學(xué), 2016, 37(9): 227-231. DOI:10.7506/spkx1002-6630-201609042. http://www.spkx.net.cn
WANG Yuanwei, LIU Xiong. Advances in hypoglycemic and hypolipidemic mechanisms of capsaicin[J]. Food Science, 2016,37(9): 227-231. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201609042. http://www.spkx.net.cn
2015-06-25
國家自然科學(xué)基金面上項目(31471581)
王遠微(1982—),男,博士研究生,研究方向為食品化學(xué)與營養(yǎng)學(xué)。E-mail:18782269822@139.com
*通信作者:劉雄(1970—),男,教授,博士,研究方向為食品化學(xué)與營養(yǎng)學(xué)。E-mail:liuxiong848@hotmail.com