Process in biological effects of bioactive metabolite(monomethylarsonous acid)produced by arsenic trioxide
鄒建華1,付 娟1,陳 喆2(1.浙江中醫(yī)藥大學(xué),浙江杭州310053;2.浙江省中醫(yī)院,浙江杭州310006)
?
中藥砷劑活性代謝產(chǎn)物單甲基亞砷酸的生物學(xué)效應(yīng)研究進(jìn)展
Process in biological effects of bioactive metabolite(monomethylarsonous acid)produced by arsenic trioxide
鄒建華1,付娟1,陳喆2
(1.浙江中醫(yī)藥大學(xué),浙江杭州310053;2.浙江省中醫(yī)院,浙江杭州310006)
關(guān)鍵詞三氧化二砷;單甲基亞砷酸;生物學(xué)效應(yīng);研究進(jìn)展
三氧化二砷(arsenic trioxide,As2O3)俗稱砒霜,始載于宋《開寶本草》,其味苦酸,有毒,歸脾、肺、肝經(jīng),具有蝕瘡、去腐、殺蟲、劫痰定喘、劫瘧之功。砷是一種廣泛存在于人類生活環(huán)境中的致癌物質(zhì)[1],與包括皮膚癌、肺癌和膀胱癌在內(nèi)的多種惡性腫瘤相關(guān)。近年來(lái),As2O3被成功應(yīng)用于治療急性早幼粒細(xì)胞性白血?。╝cute promyelocytic leukemia,APL)[2]。此外,砷可以誘導(dǎo)多種惡性腫瘤細(xì)胞凋亡。單甲基亞砷酸(MMAIII)是As2O3甲基化的活性代謝產(chǎn)物,大量研究表明MMAIII具有比As2O3更強(qiáng)的生物學(xué)活性[3-4]。低劑量短期作用表現(xiàn)明顯的抗腫瘤作用,長(zhǎng)期慢性暴露在MMAIII下導(dǎo)致細(xì)胞惡性轉(zhuǎn)化?,F(xiàn)通過(guò)檢索國(guó)內(nèi)外相關(guān)文獻(xiàn),綜述As2O3代謝產(chǎn)物MMAIII的急性和慢性生物學(xué)效應(yīng)。
砷是一種廣泛存在于人類生活環(huán)境中的致癌物質(zhì)。近年研究發(fā)現(xiàn)As2O3在體內(nèi)代謝有兩個(gè)關(guān)鍵過(guò)程:①五價(jià)砷被還原。五價(jià)砷被還原為三價(jià)狀態(tài),主要通過(guò)砷酸鹽還原酶催化的酶促反應(yīng)和谷胱甘肽催化的非酶促反應(yīng)兩種途徑完成。②三價(jià)砷的甲基化。被還原為三價(jià)狀態(tài)的砷在肝臟甲基轉(zhuǎn)移酶的催化下生成單甲基砷酸(MMAV),在MMAV還原酶的作用下MMAV被還原為單甲基亞砷酸(MMAIII),MMAIII可以進(jìn)一步被甲基化為二甲基亞砷酸(DMAIII)。在上述過(guò)程中,谷胱甘肽(GSH)和S-腺苷甲硫氨酸(SAM)發(fā)揮了重要的作用[5-6]。
2.1 MMAIII誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的腫瘤細(xì)胞凋亡
內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)在細(xì)胞凋亡、生存、增殖和分化中發(fā)揮了重要的調(diào)控作用[7]。PERK是內(nèi)質(zhì)網(wǎng)上的一種跨膜蛋白,當(dāng)ERS發(fā)生時(shí)PERK自身磷酸化為PPERK而被激活,進(jìn)而通過(guò)級(jí)聯(lián)反應(yīng)激活轉(zhuǎn)錄因子4 (activating transcription factor-4,ATF4)及下游重要的凋亡啟動(dòng)蛋白CHOP的表達(dá),誘導(dǎo)細(xì)胞凋亡[8-9]。有研究發(fā)現(xiàn)15 μM隱丹參酮(CPT)分別聯(lián)合1 μM MMAIII和1 μM As2O3協(xié)同作用乳腺癌MCF-7細(xì)胞,24 h后MTT法檢測(cè)發(fā)現(xiàn)MMAIII聯(lián)合CPT協(xié)同抗乳腺癌MCF-7細(xì)胞效果明顯優(yōu)于As2O3聯(lián)合CPT。Western blot檢測(cè)MMAIII聯(lián)合CPT協(xié)同作用1 h后P-PERK蛋白表達(dá)顯著增高,并且呈時(shí)間依賴性促進(jìn)下游蛋白ATF4及CHOP的表達(dá),進(jìn)而誘導(dǎo)促凋亡蛋白Bax、Bak的活化和細(xì)胞色素C的釋放,引起MCF-7細(xì)胞凋亡[10]。
2.2 MMAIII通過(guò)泛素化蛋白酶系統(tǒng)誘導(dǎo)P53蛋白降解引起細(xì)胞凋亡
P53是一種重要的抑癌基因,其編碼產(chǎn)物參與細(xì)胞周期調(diào)控[11-12]。大量研究表明,被泛素化的P53蛋白最終在細(xì)胞質(zhì)內(nèi)通過(guò)Mdm2泛素化蛋白酶系統(tǒng)降解,進(jìn)而發(fā)揮對(duì)細(xì)胞周期的調(diào)控作用[12-16]。槲皮素聯(lián)合MMAIII作用正常角質(zhì)HaCaT細(xì)胞后通過(guò)誘導(dǎo)P53蛋白泛素化促進(jìn)HaCaT細(xì)胞凋亡發(fā)生[17]。
2.3 MMAIII通過(guò)抑制線粒體功能誘導(dǎo)細(xì)胞凋亡
大量文獻(xiàn)報(bào)道線粒體在凋亡的早期即出現(xiàn)結(jié)構(gòu)與功能的變化,包括通透性轉(zhuǎn)運(yùn)孔(permeability transition pore,PTP)的開放和跨膜電位(mitochondrial transmembrane potential,MTP)的耗散。另有研究表明MMAIII影響線粒體通透性轉(zhuǎn)換孔的功能促進(jìn)線粒體內(nèi)膜的Ca2+內(nèi)流,引起線粒體腫脹、細(xì)胞色素C釋放,誘導(dǎo)細(xì)胞凋亡發(fā)生[18]。已有研究報(bào)道,MMAIII抑制大鼠肝臟RLC16細(xì)胞線粒體呼吸鏈復(fù)合物II和IV的活性,誘導(dǎo)活性氧(ROS)的產(chǎn)生,促進(jìn)細(xì)胞凋亡[19]。
2.4 MMAIII增強(qiáng)血管收縮引起血壓升高
高血壓與中風(fēng)、缺血性心臟病、動(dòng)脈粥樣硬化等疾病的發(fā)生發(fā)展密切相關(guān),大量流行病學(xué)證據(jù)表明,砷暴露與高血壓在內(nèi)的多種心血管系統(tǒng)疾病密切相關(guān)。Lim K M等[20]將新鮮分離的大鼠主動(dòng)脈環(huán)暴露于MMAIII(<0.5 μM)發(fā)現(xiàn)可以增強(qiáng)激動(dòng)劑誘導(dǎo)的血管收縮和升壓反應(yīng),Western blot檢測(cè)發(fā)現(xiàn)MMAIII呈時(shí)間和濃度依賴性促進(jìn)苯腎上腺素(phenylephrine,PE)對(duì)RhoA的活化,進(jìn)而說(shuō)明MMAIII增強(qiáng)血管收縮引起高血壓與RhoA的激活密切相關(guān)。
2.5 MMAIII誘導(dǎo)血小板凋亡,促進(jìn)血栓形成
磷脂酰絲氨酸(phosphatidylserine,PS)暴露在細(xì)胞外膜是激活凝血的重要過(guò)程,也被認(rèn)為是細(xì)胞凋亡的標(biāo)記之一[21]。Bae O N等[22]利用50 μM MMAIII作用人血小板1 h后發(fā)現(xiàn)PS外翻增加,線粒體膜電位改變,凋亡蛋白表達(dá)增多。上述過(guò)程中PS外翻與蛋白質(zhì)的巰基和細(xì)胞內(nèi)ATP水平下降有關(guān),加入NAC和L-半胱氨酸等巰基化合物后可以明顯逆轉(zhuǎn)上述反應(yīng)。這意味著蛋白質(zhì)的巰基和ATP的耗竭可能有助于MMAIII誘導(dǎo)PS外翻,誘導(dǎo)血小板凋亡,促進(jìn)血栓形成。
2.6 MMAIII抑制T細(xì)胞的增殖影響免疫系統(tǒng)的功能
體內(nèi)外實(shí)驗(yàn)研究證明,環(huán)境中的亞砷酸鹽會(huì)影響免疫功能,砷通過(guò)飲用水暴露在人群中,對(duì)人體T細(xì)胞免疫功能產(chǎn)生影響,而免疫抑制與感染、癌癥和其他疾病的發(fā)生發(fā)展密切相關(guān)。Burchiel S W等[23]將30個(gè)正常捐贈(zèng)者血液中的T細(xì)胞暴露于1 nM~100 nM的MMAIII和NaAsO254 h后發(fā)現(xiàn)100 nM的NaAsO2對(duì)大多數(shù)捐贈(zèng)者的T細(xì)胞沒有明顯的增殖抑制作用,但是100 nM MMAIII能明顯抑制所有捐贈(zèng)者T細(xì)胞的增殖,進(jìn)而影響捐贈(zèng)者的免疫功能。
2.7 MMAIII急性暴露后抑制膽固醇的合成
膽固醇是人類細(xì)胞膜的重要組成部分,膽固醇合成不足可以影響細(xì)胞膜的穩(wěn)定性。Guo L等[24]利用定量蛋白質(zhì)組學(xué)檢測(cè)MMAIII作用人類皮膚成纖維細(xì)胞GM00637后蛋白組學(xué)的變化情況,發(fā)現(xiàn)MMAIII可以下調(diào)膽固醇合成酶,使內(nèi)源性膽固醇的合成減少。
3.1 MMAIII長(zhǎng)期暴露活化COX-2,促進(jìn)膀胱細(xì)胞惡性轉(zhuǎn)變
COX-2是負(fù)責(zé)類花生酸合成的誘導(dǎo)酶,在促進(jìn)細(xì)胞增殖、抑制細(xì)胞死亡、誘導(dǎo)血管生成和促進(jìn)轉(zhuǎn)移侵襲中發(fā)揮調(diào)控[25-26]。Src、PI3K、COX-1、COX-2信號(hào)通路與MMAIII誘導(dǎo)的UROtsa細(xì)胞非貼壁性生長(zhǎng)密切相關(guān)。提示COX-2或COX-2介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路在MMAIII誘導(dǎo)膀胱上皮細(xì)胞惡性轉(zhuǎn)化中發(fā)揮重要作用。
3.2 MMAIII長(zhǎng)期暴露促進(jìn)炎癥相關(guān)因子釋放,引起炎癥反應(yīng)
炎癥反應(yīng)常被認(rèn)為是一種對(duì)機(jī)體有害的生物學(xué)現(xiàn)象[27],Virchow最初觀察到被特定化學(xué)刺激物引發(fā)的組織炎癥與細(xì)胞增生程度增強(qiáng)有關(guān),提出慢性炎癥與癌變之間存在關(guān)聯(lián)[28]。細(xì)胞壞死時(shí)細(xì)胞膜破裂,細(xì)胞質(zhì)釋放到鄰近細(xì)胞引起炎癥反應(yīng)。大量文獻(xiàn)表明,MMAIII可以促進(jìn)多種炎癥因子的釋放,進(jìn)而激活細(xì)胞內(nèi)多種信號(hào)通路,促進(jìn)腫瘤的發(fā)生發(fā)展。有研究報(bào)道50 nM MMAIII作用于UROtsa細(xì)胞3個(gè)月后可以刺激TNFα、IL-6、IL-8等炎癥因子的釋放,引起炎癥反應(yīng)[29]。UROtsa細(xì)胞長(zhǎng)期暴露在MMAIII中發(fā)現(xiàn)炎癥相關(guān)因子(IL-1β,IL-6 and IL-8)分泌增多,其中IL-8尤為明顯。IL-8可以進(jìn)一步激活NFKβ、AP1/cjun、ERK2、STAT3等炎癥相關(guān)基因表達(dá)上調(diào),基因沉默IL-8后可以逆轉(zhuǎn)該現(xiàn)象[30]。上述結(jié)果表明IL-8介導(dǎo)了MMAIII促進(jìn)UROtsa細(xì)胞惡性轉(zhuǎn)化。
3.3 MMAIII長(zhǎng)期暴露后影響DNA修復(fù)功能
細(xì)胞的惡性變與DNA的損傷有著密切的關(guān)系,DNA損傷修復(fù)有多種酶參與,PARP-1是參與DNA堿基切除修復(fù)啟動(dòng)的關(guān)鍵酶。Wnek S M等[31]發(fā)現(xiàn)MMAIII連續(xù)處理UROtsa細(xì)胞8 w、12 w后可顯著增加DNA單鏈的斷裂,斷裂的DNA可以迅速激活PARP-1,PARP-1的修復(fù)作用主要依賴于其N末端與DNA結(jié)合區(qū)域的兩個(gè)鋅指結(jié)構(gòu)。MMAIII可以競(jìng)爭(zhēng)性與兩個(gè)鋅指結(jié)構(gòu)結(jié)合,從而抑制PARP-1蛋白功能,引起DNA損傷,促進(jìn)UROtsa細(xì)胞惡性轉(zhuǎn)化。
目前,小分子藥物靶點(diǎn)的發(fā)現(xiàn)對(duì)于生物和醫(yī)學(xué)具有重大意義,研究小分子化合物與蛋白質(zhì)分子間的相互作用已成為熱點(diǎn)。MMAIII作為As2O3的小分子甲基化代謝產(chǎn)物,具有比As2O3更強(qiáng)的生物學(xué)效應(yīng),但其分子學(xué)作用機(jī)制仍不明確。大量體外實(shí)驗(yàn)表明MMAIII抗腫瘤效果明顯優(yōu)于As2O3,且其毒副反應(yīng)更小。盡管As2O3成功用于臨床治療APL等多種惡性腫瘤,但MMAIII的臨床應(yīng)用文獻(xiàn)報(bào)道甚少。闡明MMAIII分子作用機(jī)制為中藥砷劑的深入研究,指導(dǎo)臨床治療用藥是我們目前亟待解決的問題。隨著對(duì)中藥砷劑研究的不斷深入,人們對(duì)其活性代謝產(chǎn)物MMAIII的認(rèn)識(shí)不斷加深,這為其臨床應(yīng)用和新藥開發(fā)提供了理論依據(jù),MMAIII具有廣闊的臨床應(yīng)用前景。
參考文獻(xiàn)
[1]Jo W J,Loguinov A Wintz H,Chang M,et al. Comparative functionalgenomic analysis identifies distinct and overlapping sets ofgenes required for resistance to monomethylarsonous acid(MMAⅢ)and arsenite(AsⅢ)in yeast[J]. Toxicological Sciences,2009,111(2):424-436.
[2]Zhu J,Koken M H,Quignon F,et al. Arsenic-induced PML targeting onto nuclear bodies:implications for the treatment of acute promyelocytic leukemia[J]. Proc Natl Acad Sci USA,1997,94(8):3 978-3 983.
[3]Petrick J S,Ayala-Fierro F,Cullen W R,et al. Monomethylarsonous acid[MMA(Ⅲ)]is more toxic than arsenite in Chang human hepatocytes[J]. Toxicol Appl Pharmacol,2000,163(2):203-207.
[4]Wanibuchi H,Hori T,Meenakshi V,et al. Promotion of rat hepatocarcinogenesis by dimethylarsinic acid:association with elevated ornithine decarboxylase activity and formation of 8-hydroxydeoxyguanosine in the liver[J]. Japanese Journal of Cancer Research,1997,88(12):1 149-1 154.
[5]李冰,皮靜波,孫貴范.甲基亞砷酸—一種毒性更強(qiáng)的無(wú)機(jī)砷代謝中間產(chǎn)物[J].中國(guó)地方病學(xué)雜志,2001(3):27.
[6]王利紅,尹西翔,段桂蘭,等.生物體砷代謝解毒機(jī)制的研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2009(17):62.
[7]Huang H M,Zhang H,Ou H C,et al. alpha-keto-beta-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplasmic reticulum Ca2+stores[J]. Free Radical Biology & Medicine,2004,37(11):1 779-1 789.
[8]Fels D R,Koumenis C. The PERK/eIF2 alpha/ATF4 module of the UPR in hypoxia resistance and tumorgrowth[J]. Cancer Biology & Therapy,2006,5 (7):723-728.
[9]Malhotra J D,Kaufman R J. The endoplasmic reticulum and the unfolded protein response[J]. Seminars in Cell & Developmental Biology,2007,18 (6):716-731.
[10]Zhang Y F,Zhang M,Huang X L,et al. The combination of arsenic and cryptotanshinone induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in breast cancer cells[J]. Metallomics,2015,7(1):165-173.
[11]Moll U M,Petrenko O. The MDM2-p53 interaction[J]. Molecular Cancer Research,2003,1(14):1 001-1 008.
[12]Yang Y,Li C C,Weissman A M. Regulating the p53 system through ubiquitination[J]. Oncogene,2004,23(11):2 096-2 106.
[13]Vogelstein B,Lane D,Levine A J. Surfing the p53 network[J]. Nature,2000,408(6 810):307-310.
[14]Pickart C M,Eddins M J. Ubiquitin:structures,functions,mechanisms[J]. Biochim Biophysica Acta,2004,1 695(1-3):55-72.
[15]Smalle J,Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology,2004(55):555-590.
[16]Roos-Mattjus P,Sistonen L. The ubiquitin-proteasome pathway[J]. Annals of Medicine,2004,36(4):285-295.
[17]Shen S C,Lee W R,Yang L Y,et al. Quercetin enhancement of arsenic-induced apoptosis via stimulating ROS-dependent p53 protein ubiquitination in human HaCaT keratinocytes[J]. Experimental Dermatology,2012,21(5):370-375.
[18]Naranmandura H,Chen X,Tanaka M,et al. Release of apoptotic cytochrome C from mitochondria by dimethylarsinous acid occurs through interaction with voltage-dependent anion channel in vitro[J]. Toxicological Sciences,2012,128(1):137-146.
[19]Naranmandura H,Xu S,Sawata T,et al. Mitochondria are the main target organelle for trivalent monomethylarsonous acid[MMA(Ⅲ)]-induced cytotoxicity[J]. Chemical Research in Toxicology,2011,24(7):1 094-1 103.
[20]Lim K M,Shin Y S,Kang S,et al. Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid[MMA(Ⅲ)][J]. Toxicology Letters,2011,205(3):250-256.
[21]Lentz B R. Exposure of platelet membrane phosphatidylserine regulates blood coagulation[J]. Progress in Lipid Research,2003,42(5):423-438.
[22]Bae O N,Lim K M,Noh J Y,et al. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation[J]. Toxicology and Applied Pharmacology,2009,239(2):144-153.
[23]Burchiel S W,Lauer F T,Beswick E J,et al. Differential susceptibility of human peripheral blood T cells to suppression by environmental levels of sodium arsenite and monomethylarsonous acid[J]. Plos One,2014,9(10):e109 192.
[24]Guo L,Xiao Y,Wang Y. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts[J]. Toxicology and Applied Pharmacology,2014,277(1):21-29.
[25]Eblin K E,Bredfeldt Tg,Buffington S,et al. Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells:role in arsenic-induced carcinogenesis[J]. Toxicological Sciences,2007,95(2):321-330.
[26]Eblin K E,Jensen T J,Wnek S M,et al. Reactive oxygen species regulate properties of transformation in UROtsa cells exposed to monomethylarsonous acid by modulating MAPK signaling[J]. Toxicology,2009,255(1-2):107-114.
[27]Marting R,Wallace J L.gastrointestinal inflammation:a central component of mucosal defense and repair[J]. Experimental Biology and Medicine,2006,231(2):130-137.
[28]Coussens L M,Werb Z. Inflammation and cancer[J]. Nature,2002,420(6 917):860-867.
[29]Calatayud M,Gimeno-Alcaniz J V,Velez D,et al. Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells[J]. Toxicology Letters,2014,224(1):40-46.
[30]Escudero-Lourdes C,Wu T,Camarillo J M,et al. Interleukin-8(IL-8)over-production and autocrine cell activation are key factors in monomethylarsonous acid[MMA(Ⅲ)]-induced malignant transformation of urothelial cells[J]. Toxicology and Applied Pharmacology,2012,258 (1):10-18.
[31]Wnek S M,Kuhlman C L,Camarillo J M,et al. Interdependentgenotoxic mechanisms of monomethylarsonous acid:role of ROS-induced DNA damage and poly(ADP-ribose)polymerase-1 inhibition in the malignant transformation of urothelial cells[J]. Toxicology and Applied Pharmacology,2011,257(1):1-13.
(編輯:張世霞)
中圖分類號(hào):R282.76
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1671-0258(2016)02-0073-03
[基金項(xiàng)目]國(guó)家自然科學(xué)基金(81473389)
[作者簡(jiǎn)介]鄒建華,在讀碩士,E-mail:2836088573@qq.com
[通訊作者]陳喆,副研究員,研究生導(dǎo)師,E-mail:alexisczh@sohu.com