亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        嚙齒類(lèi)動(dòng)物群居起源研究假說(shuō)

        2016-03-26 16:41:20衛(wèi)萬(wàn)榮麻安衛(wèi)何凱張衛(wèi)國(guó)
        草業(yè)學(xué)報(bào) 2016年4期
        關(guān)鍵詞:群居生境種群

        衛(wèi)萬(wàn)榮,麻安衛(wèi),何凱,張衛(wèi)國(guó)*

        (1.草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020; 2.秦安縣農(nóng)村能源開(kāi)發(fā)站,甘肅 秦安 741600)

        ?

        嚙齒類(lèi)動(dòng)物群居起源研究假說(shuō)

        衛(wèi)萬(wàn)榮1,麻安衛(wèi)1,何凱2,張衛(wèi)國(guó)1*

        (1.草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020; 2.秦安縣農(nóng)村能源開(kāi)發(fā)站,甘肅 秦安 741600)

        摘要:文章闡述了有關(guān)嚙齒類(lèi)動(dòng)物群居起源相關(guān)的7個(gè)假說(shuō)。資源防衛(wèi)假說(shuō)認(rèn)為當(dāng)資源(食物、水、庇護(hù)所)在時(shí)空上呈斑塊狀聚集分布時(shí),群居有利于獲取和保護(hù)資源。捕食風(fēng)險(xiǎn)假說(shuō)認(rèn)為群居能降低嚙齒類(lèi)被捕食的風(fēng)險(xiǎn),因此在高風(fēng)險(xiǎn)棲境中群居較為普遍。社群溫度調(diào)節(jié)假說(shuō)認(rèn)為在寒帶和氣候寒冷的地區(qū)群居有利于嚙齒類(lèi)減少能量消耗。旱區(qū)食物分布假說(shuō)認(rèn)為處于干旱生境中的嚙齒類(lèi)為減少挖掘洞道所需的能耗和弱化無(wú)收益覓食風(fēng)險(xiǎn)不得不形成群居。生活史約束假說(shuō)認(rèn)為體型小、脂肪貯存能力低、生長(zhǎng)速率慢的嚙齒類(lèi)為能成功撫育后代而不得不形成群居。由于構(gòu)建洞穴耗能巨大,因此窩巢共享假說(shuō)認(rèn)為嚙齒類(lèi)為減少能耗被迫共享洞系進(jìn)而形成群居。親代投資假說(shuō)認(rèn)為由于親本對(duì)后代的持續(xù)性投資,因而群居的形成是由子代推遲擴(kuò)散導(dǎo)致的。最后,本文對(duì)嚙齒類(lèi)群居未來(lái)研究的熱點(diǎn)進(jìn)行了探討。

        關(guān)鍵詞:群居;資源防衛(wèi)假說(shuō);捕食風(fēng)險(xiǎn)假說(shuō);社群溫度調(diào)節(jié)假說(shuō);旱區(qū)食物分布假說(shuō);生活史約束假說(shuō);窩巢共享假說(shuō);親代投資假說(shuō)

        群居(社會(huì)性)動(dòng)物是指以群體為生活方式,無(wú)論覓食、休憩、遷移等行為都以集體為單位,彼此間相互關(guān)照,相互協(xié)助的動(dòng)物[1]。影響動(dòng)物群居的因素一直是動(dòng)物社會(huì)生物學(xué)和行為生態(tài)學(xué)的研究熱點(diǎn)。動(dòng)物群居可能由某種自然因素或同一外部刺激對(duì)個(gè)體吸引而致,也可能是動(dòng)物個(gè)體間相互吸引造成的[2],亦可能是動(dòng)物本身的擴(kuò)散受到外部環(huán)境限制導(dǎo)致的[3]。棲息適合度是判定是否有利于動(dòng)物群居的綜合指標(biāo),包括捕食風(fēng)險(xiǎn)、覓食效率、寄生蟲(chóng)和疾病傳播、攻擊性、資源競(jìng)爭(zhēng)、殺嬰和通奸行為等諸多因素[4-8]。只有降低這些弊端和約束產(chǎn)生的影響,棲息適合度適宜,動(dòng)物才會(huì)形成群居生活[9]。

        嚙齒類(lèi)是哺乳動(dòng)物中種類(lèi)最多的一個(gè)類(lèi)群,也是分布范圍最廣的哺乳動(dòng)物,全世界約有2000多種。其生活方式獨(dú)居、臨時(shí)聚群和群居均有[3,10]。群居嚙齒類(lèi)是指?jìng)€(gè)體間聯(lián)系頻繁,有共同的攝食區(qū)域、領(lǐng)地,共享一個(gè)窩巢和洞系[11-13]。有關(guān)嚙齒類(lèi)群居理論論述研究我國(guó)學(xué)者還未曾有過(guò)評(píng)述,國(guó)外亦不多見(jiàn)[14-15]。因此本文在國(guó)內(nèi)外現(xiàn)有文獻(xiàn)的基礎(chǔ)上,介紹影響嚙齒類(lèi)群居起源的主要觀(guān)點(diǎn)及相關(guān)研究,如資源防衛(wèi)假說(shuō)(the resource-defense hypothesis)、捕食風(fēng)險(xiǎn)假說(shuō)(the predatory risk hypothesis)、溫度調(diào)節(jié)假說(shuō)(the social thermoregulation hypothesis)、旱區(qū)食物分布假說(shuō)(the aridity food-distribution hypothesis)、生活史限制假說(shuō)(the life-history constraint hypothesis)、親代投資假說(shuō)(the parental investment hypothesis)、窩巢共享假說(shuō)(the burrow-sharing hypothesis),對(duì)相關(guān)研究進(jìn)行總結(jié)評(píng)價(jià),并對(duì)未來(lái)的研究熱點(diǎn)進(jìn)行探討,為我國(guó)學(xué)者提供參考。

        1資源防衛(wèi)假說(shuō)

        資源防衛(wèi)假說(shuō)又稱(chēng)資源分散假說(shuō)(the resource dispersion hypothesis):當(dāng)資源(食物、水、庇護(hù)所、配偶)在時(shí)空上呈斑塊狀分布,群居有利于嚙齒類(lèi)獲取和保護(hù)資源[15]。簡(jiǎn)明而言,個(gè)體所能獲取的資源隨種群數(shù)量增加而增加,嚙齒類(lèi)種群密度隨資源聚集程度的增加而增加;反之,資源稀疏且均勻分布時(shí),保護(hù)資源所需代價(jià)巨大,棲息適合度降低,群居就顯得不切實(shí)際[16]。

        許多實(shí)驗(yàn)性研究結(jié)果與該假說(shuō)相符。例如,人為控制甘尼森土撥鼠(Cynomysgunnisoni)食物后其種群與社群結(jié)構(gòu)發(fā)生改變[16]。當(dāng)食物聚集度增加后土撥鼠攝食區(qū)域減小,種群密度增加;反之食物減少且分布均勻時(shí)其攝食區(qū)域擴(kuò)大,種群密度降低。野外觀(guān)測(cè)實(shí)驗(yàn)也得到了相同結(jié)果[17-19]。在食物集中分布的區(qū)域,土撥鼠種群密度較大;但在食物聚集度低并均勻分布的區(qū)域,種群密度較??;增加雌性棕背鼠平[17](Clethrionomysrufocanus)和雌性加利福尼亞小田鼠[18](Microtuscalifornicus)食物資源后二者活動(dòng)范圍的重疊度顯著增加;實(shí)驗(yàn)性增加雌性棕背鼠平數(shù)量后聚群現(xiàn)象明顯增加[19]。除此而外,攝食領(lǐng)域亦隨種群大小而變,如長(zhǎng)爪沙鼠[20](Merionesunguiculatus)和水豚[21](Hydrochaerishydrochaeris)個(gè)體所能獲取的資源隨領(lǐng)地增大而增加。由于食物對(duì)鼠類(lèi)能否生存和成功繁殖至關(guān)重要,增加尾林鼠[22](Neotomacinerea)和巖豚鼠[23](Kerodonrupestis)的食物后,其種群內(nèi)有更多的個(gè)體參與到儲(chǔ)存和保護(hù)食物資源的過(guò)程中,亦從側(cè)面驗(yàn)證了該假說(shuō)。

        盡管許多研究支持該假說(shuō),但亦有研究與該假說(shuō)相矛盾,如阿根廷長(zhǎng)耳豚鼠(Dolichotispatagonum),其群居的形成僅僅是由于旱季食物資源短暫性聚集分布導(dǎo)致的,其他季節(jié)食物資源零星分布時(shí)并不形成群居[24];人為增加雌性或雄性黑田鼠[25](Microtusagrestis)后其社群結(jié)構(gòu)并不改變;旱獺[26](Marmotacaudata)的種群大小與可利用食物資源無(wú)相關(guān)性。

        2捕食風(fēng)險(xiǎn)假說(shuō)

        捕食風(fēng)險(xiǎn)指動(dòng)物為躲避捕食者而改變其行為方式和生理狀態(tài)付出的代價(jià)[27]。行為改變包括:活動(dòng)模式和時(shí)間分配格局的改變[28-29];具體表現(xiàn)為選擇相對(duì)安全但食物質(zhì)量低的棲境[30-31]、減少取食頻率和時(shí)間而相應(yīng)地增加警覺(jué)時(shí)間[32-36]、增加對(duì)環(huán)境條件的敏感性[37]、增加間斷性移動(dòng)模式、食物選擇及食譜改變[38]。嚙齒類(lèi)降低捕食風(fēng)險(xiǎn)主要通過(guò)以下幾種機(jī)制:1、多眼效應(yīng)(the‘many eyes effect’);2、自私的獸群效應(yīng)(the‘selfish herd effect’);3、增加種群防御;4、稀釋效應(yīng)(the dilution effect)。多眼效應(yīng)認(rèn)為密度大的種群更易發(fā)現(xiàn)捕食者;自私的獸群效應(yīng)認(rèn)為捕食風(fēng)險(xiǎn)與其所處種群的位置相關(guān)(通常棲境外圍的個(gè)體被捕食的風(fēng)險(xiǎn)較高);稀釋效應(yīng)最為簡(jiǎn)單,捕食風(fēng)險(xiǎn)隨種群密度增加而降低(因種群數(shù)量增加每個(gè)個(gè)體被捕食的概率下降);種群防御機(jī)制(尤其對(duì)于攻擊性強(qiáng)的嚙齒類(lèi)而言)認(rèn)為能否成功擊退捕食者與參與到防御中的個(gè)體數(shù)量相關(guān)。因此,捕食風(fēng)險(xiǎn)假說(shuō)認(rèn)為在高風(fēng)險(xiǎn)棲境中嚙齒類(lèi)群居普遍,同時(shí)捕食風(fēng)險(xiǎn)與棲境中植被高度、蓋度密切相關(guān)[39]。

        多眼效應(yīng)認(rèn)為捕食風(fēng)險(xiǎn)隨種群大小而變。許多嚙齒類(lèi)行為學(xué)相關(guān)研究驗(yàn)證了這一點(diǎn),如隨著灌叢八齒鼠(Octodondegus)種群密度的增加,其發(fā)現(xiàn)人類(lèi)捕食者的時(shí)間越早[40];高原鼠兔覓食時(shí)間隨種群數(shù)量增加而上升,相反,其警戒和洞內(nèi)時(shí)間卻隨種群密度增加而減少[35];除此而外,群居的田鼠(Microtusepiroticus)、棕背鼠平(Clethrionomysglareolus)和黃姬鼠(Apodemusflavicollis)被鼬襲擊和獵殺的概率要低于獨(dú)居個(gè)體[41];種群密度大的黑尾草原犬鼠(Cynomysludovicianus)和白尾草原犬鼠(Cynomysleucurus)相比小種群而言能夠較早發(fā)現(xiàn)天敵從而進(jìn)行有效躲避[42]。但亦有研究結(jié)果并不支持捕食風(fēng)險(xiǎn)假說(shuō),如Hayes等[43]發(fā)現(xiàn)灌叢八齒鼠種群大小與其存活率并無(wú)明顯相關(guān)性。

        黑尾草原犬鼠[44]、旱獺[45]和水豚[46]的行為研究驗(yàn)證了自私的獸群效應(yīng),相比核心區(qū)域的個(gè)體而言,領(lǐng)域外圍的個(gè)體通常所需的警戒時(shí)間較長(zhǎng)、警戒頻率更高;另外,降低草原犬鼠密度后發(fā)現(xiàn)中央?yún)^(qū)域位置附近覓食的個(gè)體數(shù)明顯增加,外圍個(gè)體數(shù)減少[47]。

        捕食風(fēng)險(xiǎn)與種群內(nèi)的個(gè)體數(shù)量緊密相關(guān),種群密度大時(shí)個(gè)體活動(dòng)區(qū)域擴(kuò)大[48]。草原犬鼠覓食區(qū)域與洞口距離的遠(yuǎn)近和種群密度密切相關(guān),從一定程度上驗(yàn)證了稀釋效應(yīng)。這是因?yàn)椴妒筹L(fēng)險(xiǎn)隨種群密度增加而降低,相應(yīng)的其活動(dòng)范圍就會(huì)擴(kuò)大。

        種群防御機(jī)制在野外觀(guān)察中得到了證實(shí)。群居能減少被天敵襲擊的概率,如水豚群居可減少野狗侵襲其幼崽[49];除此而外,還能有效地阻止同類(lèi)入侵者,如雌性小家鼠[50](Musmusculus)和貝爾丁地松鼠[51](Spermophilusbeldingi)群居可降低同類(lèi)入侵引起的殺嬰行為。

        嚙齒類(lèi)行為學(xué)和生態(tài)學(xué)相關(guān)研究表明植被蓋度與捕食風(fēng)險(xiǎn)顯著相關(guān)。自然生境中,有些嚙齒類(lèi)如長(zhǎng)爪沙鼠[20](Merionesunguiculatus)、高原鼠兔[52](Ochotonacurzoniae)和豚鼠[53](Caviaaperea)在植被稀疏低矮的生境密度大,而另一些如布氏田鼠[54](Microtusbrandti)、白尾草原犬鼠[42]多棲息于植被蓋度大的生境,造成這種生境的差異是嚙齒類(lèi)長(zhǎng)期與自然環(huán)境相適應(yīng)的結(jié)果。白足鼠(Peromyscusleucopus)、灰松鼠(Sciuruscarolinensis)和花栗鼠(Tamiasstriatus)在開(kāi)闊生境中覓食時(shí)間減少,警戒時(shí)間顯著增加[15]。捕食風(fēng)險(xiǎn)與植被蓋度的關(guān)系在人為控制實(shí)驗(yàn)中也得到了驗(yàn)證。相比植被蓋度低的生境而言,加氏鹿鼠[55](Clethrionomysgapperi)和小沙鼠[56](Gerbilluspyramidum)在植被蓋度大的生境中受到襲擊的概率較低;降低草原犬鼠密度后其會(huì)盡量避免棲息于開(kāi)闊生境[57]。

        雖然植被蓋度與捕食風(fēng)險(xiǎn)的關(guān)系得到了驗(yàn)證,但仍受到許多不可控制因素的影響。首先,植被能在視覺(jué)上阻礙天敵發(fā)現(xiàn)獵物的幾率[58];其次,與植被蓋度相關(guān)的安全性與天敵類(lèi)型有關(guān)[59]。如增加植被蓋度會(huì)減少被飛禽類(lèi)天敵發(fā)現(xiàn)的幾率,但被爬行類(lèi)捕食者發(fā)現(xiàn)的幾率增加[60];再者,許多嚙齒動(dòng)物用鳴聲和視覺(jué)(豎起尾巴)信號(hào)向同類(lèi)傳遞風(fēng)險(xiǎn)信號(hào),植被是否有利于聲音和視覺(jué)信號(hào)傳遞取決于植被高度和聲音的頻率[42]。關(guān)于捕食風(fēng)險(xiǎn)對(duì)嚙齒類(lèi)種群的研究表明,捕食風(fēng)險(xiǎn)效應(yīng)不但是影響獵物種群動(dòng)態(tài)的一個(gè)重要因素,其對(duì)獵物種群動(dòng)態(tài)的調(diào)控作用可能要大于直接捕殺[27]。

        3社群溫度調(diào)節(jié)假說(shuō)

        社群溫度調(diào)節(jié)假說(shuō)又稱(chēng)為能耗調(diào)節(jié)假說(shuō):在寒帶和氣候寒冷的地區(qū),嚙齒類(lèi)為減少能耗、增加生存幾率就會(huì)形成群居[61-62],個(gè)體的能量耗損與群居的數(shù)量呈負(fù)相關(guān)性[62]。有3種機(jī)制能解釋小型動(dòng)物蜷縮擠在一起降低能耗:1)減少暴露在空氣中的體表面積有利于減少新陳代謝速率進(jìn)而利于保存能量[63];2)洞穴中濕度和溫度的增加會(huì)減少動(dòng)物熱量和水分損耗[40],因此環(huán)境濕度和溫度的增加[64]利于體溫調(diào)節(jié);3)某些生理過(guò)程能調(diào)節(jié)體溫[62]。

        在室內(nèi)條件下證實(shí)了動(dòng)物緊緊擁簇可降低能耗、增加生存概率這一點(diǎn),如裸鼢鼠[65](Heterocephalusglaber)、長(zhǎng)爪沙鼠[66]、麝鼠[67](Ondatrazibethicus)、八齒鼠[64]、達(dá)馬拉蘭鼴鼠[68](Cryptomysdamarensis)、納塔爾摩爾鼠[68](Cryptomyshottentotusnatalensis)和家兔[69](Oryctolaguscuniculus)等。野外觀(guān)察結(jié)果也得出相同結(jié)論,當(dāng)冬季來(lái)臨時(shí),南部飛鼠[70](Glaucomysvolans)、灰松鼠[71]、草原田鼠[72](Microtuspennsylvanicus)和紋鼠[73](Rhabdomyspumilio)單位洞系中的個(gè)體數(shù)明顯增加;除此而外,鼠類(lèi)的冬季存活率隨窩巢內(nèi)個(gè)體數(shù)量增加而增大、體重?fù)p耗量下降[74-75]亦從側(cè)面驗(yàn)證了該點(diǎn)。

        但也有一些室內(nèi)和野外試驗(yàn)并不支持該假說(shuō),如草原犬鼠的能耗與季節(jié)變化無(wú)關(guān),無(wú)顯著差異[76];低溫環(huán)境下獨(dú)居的西伯利亞倉(cāng)鼠(Phodopussungorus)和群居相比,盡管群居個(gè)體脂肪量較高、體況較好,但二者能耗并無(wú)明顯區(qū)別[77];另外,冬眠性的黃腹土撥鼠(M.flaviventris)其群居性的亞成體平均日損耗量要大于獨(dú)居個(gè)體也與該假說(shuō)相矛盾[78]。

        4旱區(qū)食物分布假說(shuō)

        Jarvis和Sherman[79]提出了旱區(qū)食物分布假說(shuō),該假說(shuō)能夠很好地解釋干旱地區(qū)地下鼠形成群居的機(jī)制。由于地下鼠所處生境降水量小,土壤硬度大、食物呈簇狀分布,因而地下鼠易形成群居。干旱生境中地下鼠群居有利于降低覓食成本,覓食成本包括挖掘洞道所耗能量和無(wú)收益覓食風(fēng)險(xiǎn)[80]。無(wú)收益覓食風(fēng)險(xiǎn)指到達(dá)食物分布區(qū)域過(guò)程中可能面臨無(wú)任何食物獲取而必須承擔(dān)的風(fēng)險(xiǎn)[81]。干旱生境中食物資源呈斑塊狀聚集分布,由于地下鼠覓食無(wú)方向性,再加上地下覓食是高耗能活動(dòng)[79-80,82-83],獨(dú)居地下鼠常會(huì)因?yàn)椴荒芗皶r(shí)發(fā)現(xiàn)足夠維持自身生存的食物而導(dǎo)致無(wú)收益覓食風(fēng)險(xiǎn)增加,合作覓食有2個(gè)好處:1)發(fā)現(xiàn)食物的幾率增加,2)減少單位個(gè)體能耗。

        干旱生境會(huì)限制地下鼠的擴(kuò)散,影響種群形成以及覓食的有效性。如干旱生境中隱鼠[84](Cryptomyshottentotushottentotus)種群的遷入率和遷出率要低于濕潤(rùn)地區(qū),種群結(jié)構(gòu)穩(wěn)定;食物資源與洞系分形維數(shù)正相關(guān),非洲鼴鼠[83](Fukomysmechowii)雨季洞系的分形維數(shù)和所能獲取的食物資源要高于旱季,并且同一季節(jié)大種群的分形維數(shù)要大于小種群,說(shuō)明大種群能增加覓食有效性;達(dá)馬拉蘭鼴鼠(Cryptomysdamarensis)的小種群生存下來(lái)的概率要低于大種群[82];除此而外,計(jì)算機(jī)模擬發(fā)現(xiàn)食物的簇狀分布與土壤硬度緊密相關(guān),干旱生境中獨(dú)居物種覓食效率低下,而群居形成的合作覓食可降低無(wú)收益覓食風(fēng)險(xiǎn)[85]。

        另外,還能從生理學(xué)角度解釋該假說(shuō)。群居形成的前提條件是個(gè)體的社會(huì)容忍度(寬容度)高,這對(duì)于那些攻擊性強(qiáng)的物種尤為重要[86],由于攻擊行為極其耗能和耗水[87],因此處于旱區(qū)嚙齒類(lèi)的群居很有可能是其為防止水分和能量損耗而減少攻擊行為的副產(chǎn)物。攻擊性程度與糖皮質(zhì)激素水平正相關(guān),對(duì)鼴鼠和豚鼠生物學(xué)、生態(tài)學(xué)和行為學(xué)方面的研究亦能解釋該點(diǎn)[87-88]。

        亦有研究與該假說(shuō)相矛盾,如棲息于干旱生境中獨(dú)居的霜鼠[89](Heliophobiusargenteocinereus)在食物質(zhì)量低的棲境中亦能生存。

        5生活史約束假說(shuō)

        Burda和Kawalika[90]提出了生活史約束假說(shuō),又有學(xué)者將其稱(chēng)為“共同撫養(yǎng)后代受益”假說(shuō)[43](‘benefits of communal care’hypothesis)。該假說(shuō)認(rèn)為那些體型小、脂肪貯存能力低、生長(zhǎng)速率慢的嚙齒類(lèi)為能成功繁衍后代不得不形成群居。體型小的獨(dú)居嚙齒類(lèi)不能成功撫育后代[90]主要是因?yàn)轶w型小的物種發(fā)育速率緩慢,性成熟周期長(zhǎng),哺乳期雌性沒(méi)有足夠的脂肪撫養(yǎng)后代,因此需要很多成體參與撫育后代。達(dá)馬拉蘭鼴鼠和裸鼴鼠是濱屬科體型最小的物種,它們的發(fā)育時(shí)間很長(zhǎng)就驗(yàn)證了該假說(shuō)[82,91-92]。共同撫育后代有諸多優(yōu)點(diǎn),如增強(qiáng)后代免疫功能[93]、減少寄生蟲(chóng)和病菌的感染幾率[94],增強(qiáng)個(gè)體調(diào)控體溫的能力[72]。

        然而,Bennett等[95]活捕解剖哺乳期獨(dú)居的雌性岬鼠(Georychuscapensis)和4種社會(huì)性的雌性隱鼠,發(fā)現(xiàn)均有脂肪堆積的現(xiàn)象,這與生活史約束假說(shuō)矛盾。

        6窩巢共享假說(shuō)

        群居與動(dòng)物的生命周期、領(lǐng)域擴(kuò)張及棲境的安全緊密相關(guān)[96],大多數(shù)嚙齒類(lèi)將洞系和窩巢作為規(guī)避極端天氣、儲(chǔ)存食物和冬眠的場(chǎng)所[97],因而洞系對(duì)嚙齒類(lèi)而言是一種極為關(guān)鍵重要的資源。由于天然避難所有限,而建造洞系對(duì)個(gè)體而言代價(jià)巨大,因而動(dòng)物被迫共享洞系進(jìn)而形成群居[98-99]。該假說(shuō)認(rèn)為構(gòu)建洞穴的嚙齒類(lèi)更易形成群居。

        自King[100]發(fā)現(xiàn)洞系資源與嚙齒類(lèi)社會(huì)制度緊密相關(guān)后,許多學(xué)者對(duì)此做了大量研究。如匈牙利小家鼠(Musspicilegus)在秋季建造土冢時(shí)(繁殖場(chǎng)所),由于建造土冢耗能巨大,個(gè)體并不能單獨(dú)完成,因此需要很多個(gè)體參與,最后共享洞系形成群居[101];洞系亦是決定八齒鼠群居的關(guān)鍵因素[7,101];相比小種群而言,較大種群的八齒鼠能利用更多洞系資源[90];草原犬鼠獨(dú)居和群居均有,但群居的洞系構(gòu)造要比獨(dú)居的復(fù)雜[76]。

        盡管很多研究結(jié)果支持該假說(shuō),但亦有很多實(shí)驗(yàn)結(jié)論與之相悖。如相比獨(dú)居的灌叢八齒鼠,群居并不會(huì)減少洞系建造的時(shí)間,這與洞系共享假說(shuō)不符[99],但相比獨(dú)居而言,群居個(gè)體平均推至地表的土壤要多,從長(zhǎng)遠(yuǎn)來(lái)看,群居有利于其減少建造洞系所付出的代價(jià);除此而外,亦有研究表明洞系資源并非是限制灌叢八齒鼠群居形成的真正原因[102];構(gòu)筑洞系的豚鼠比不構(gòu)筑洞系的更易形成較大的種群[103];水鼠平(Arvicolaterrestris)嚴(yán)重依賴(lài)洞道作為逃避捕食者的場(chǎng)所,盡管洞系建造成本較高,水鼠平也不會(huì)為分享洞道而形成群居[104];小豚鼠[105](Microcaviaaustralis)群居形成的真正原因并不是為減少能耗;還有許多獨(dú)居地下鼠行為學(xué)研究結(jié)果與該假說(shuō)相矛盾[12-13,106]。

        7親代投資假說(shuō)

        該假說(shuō)認(rèn)為群居是斷奶后親本持續(xù)性投資[107]致使子代推遲擴(kuò)散導(dǎo)致的[108-110]。因而體型大的物種擴(kuò)散延遲的可能性更大,因?yàn)榧词故澄锍渥?,也要很長(zhǎng)時(shí)間才能發(fā)育完全[107,109]。

        群居嚙齒類(lèi)發(fā)育成熟所需的時(shí)間和擴(kuò)散的時(shí)間呈正相關(guān),而與生長(zhǎng)季長(zhǎng)短負(fù)相關(guān)。如溫帶地區(qū)松鼠生長(zhǎng)周期的長(zhǎng)短與積雪消融時(shí)間呈負(fù)相關(guān)。北美松鼠的生物學(xué)研究驗(yàn)證了親代投資假說(shuō)[111];生長(zhǎng)周期長(zhǎng)的土撥鼠發(fā)育成熟的時(shí)間早,擴(kuò)散時(shí)間早[112]。也有實(shí)驗(yàn)結(jié)論與之矛盾,如北美土撥鼠(Marmotamonax)的社會(huì)性并不隨生長(zhǎng)季的長(zhǎng)短發(fā)生變化[75];高山土撥鼠在亞成體階段因食物因素不得不擴(kuò)散[91]。

        8小結(jié)

        許多假說(shuō)均能一定程度上解釋嚙齒類(lèi)群居的原因,同時(shí)它們之間也并不相互排斥。例如,嚙齒類(lèi)群居既能夠減少捕食風(fēng)險(xiǎn),也能通過(guò)體溫調(diào)節(jié)減少能耗。因此,在未來(lái)研究嚙齒類(lèi)群居因素時(shí)須考慮各個(gè)假說(shuō)。例如,有些學(xué)者研究的焦點(diǎn)可能限制于旱區(qū)食物分布假說(shuō)和生活史約束假說(shuō),然而,捕食風(fēng)險(xiǎn)假說(shuō)和資源防衛(wèi)假說(shuō)有時(shí)卻可能更為恰當(dāng)。

        嚙齒類(lèi)群居是綜合考慮環(huán)境和自身因素利弊權(quán)衡后的結(jié)果。首先,群居并非是某個(gè)因素單獨(dú)引起的,可能是很多因素綜合作用導(dǎo)致的;其次,影響動(dòng)物群居的決定性因素是隨動(dòng)物不斷適應(yīng)環(huán)境而變的,并非是一成不變;第三,與種群相關(guān)的其他社會(huì)屬性如數(shù)量、社群關(guān)系的穩(wěn)定性仍不清楚。以上3點(diǎn)需更復(fù)雜、精細(xì)、長(zhǎng)周期的實(shí)驗(yàn)來(lái)驗(yàn)證。

        References:

        [1]Wang C L, Wang X W, Qi X G. Gregarious animals codetermination. Acta Ecologica Sinica, 2013, 33(16): 4857-4863.

        [2]Parrish J K, Hamner W M, Prewitt C T. Introduction-From individuals to aggregations: unifying properties, global framework, and the holy grails of congregation. In: Parrish J K, Hamner W M. Animal Groups in Three Dimensions[C]. Cambridge: Cambridge University Press, 1997: 1-13.

        [3]Krause J, Ruxton G D. Living in Groups[M]. Oxford: Oxford University Press. 2002.

        [4]Davies C R, Ayres J M, Dye C,etal. Malaria infection rate of Amazonian primates increases with body weight and group size. Functional Ecology, 1991, 5: 655-662.

        [5]Mller A P, Birkhead T R. Cuckoldry and sociality: a comparative study of birds. The American Naturalist, 1993, 142: 118-140.

        [6]Van Vuren D. Ectoparasites, fitness, and social behaviour of yellow-bellied marmots. Ethology, 1996, 102: 686-694.

        [7]Ebersperger L A, Blumstein T D. Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology, 2006, 17: 410-418.

        [8]Bordes F, Blumstein D T, Morand S. Rodent sociality and parasite diversity. Biology Letters, 2007, 3(6): 692-694.

        [9]Burger J R, Adrian S, Luis A,etal. Sociality, exotic ectoparasites, and fitness in the plural breeding rodentOctodondegus. Behavioral Ecology and Sociobiology, 2012, 66: 57-66.

        [10]Nowak R M. Walker’s Mammals of the World (Sixth edition)[M]. Baltimore: The John Hopkins University Press, 1999.

        [11]Waterman J M. The social organization of the Cape ground squirrel (Xerusinauris; Rodentia:Sciuridae). Ethology, 1995, 101: 130-147.

        [12]Lacey E A, Braude S H, Wierczorek J R. Burrow sharing by colonial tuco-tucos (Ctenomyssociabilis). Journal of Mammalogy, 1997, 78: 556-562.

        [13]Burda H, Honeycutt R L, Begall S,etal. Are naked and common mole-rats eusocial and if so, why. Behavioral Ecology and Sociobiology, 2000, 47: 293-303.

        [14]Luis A, Ebensperger, Hernan C. On the evolution of group-living in the New world cursorial hystricognath rodents. Behavioral Ecology, 2001, 12(2): 227-236.

        [15]Ebensperger H. A review of the evolutionary causes of rodent group-living. Acta Theriologica, 2001, 46(2): 115-144.

        [16]Slobodchikoff C N. Resources and the evolution of social behavior. In: Price P W, Slobodchikoff C N, Gaud W S. A New Ecology: Novel Approaches to Interactive Systems[C]. New York: John Wiley & Sons, Inc., 1984: 227-251.[17]Ims R A. Responses in spatial organization and behaviour to manipulations of food resource in the vole Clethrionomys rufocanus. Journal of Animal Ecology, 1987, 56: 585-596.

        [18]Ostfeld R S. Territoriality and mating system of California voles. Journal of Animal Ecology, 1986, 55: 691-706.

        [19]Ims R A. Spatial clumping of sexually receptive females induces sharing among male voles. Nature, 1988, 335: 541-543.

        [20]Liu W, Wan X R, Zhong W Q,etal. Characteristics of seasonal reproduction in Mongolian gerbils (Merionesunguiculatus). Acta Theriologica Sinica, 2013, 33(1): 35-46.

        [21]Herrera E A, Macdonald D W. Resource utilization and territoriality in group-living capybaras (Hydrochoerushydrochaeris). Journal of Animal Ecology, 1989, 58: 667-679.

        [22]Moses R A, Millar J S. Behavioural asymmetries and cohesive mother-offspring sociality in bushy-tailed wood rats. Canadian Journal of Zoology, 1992, 70: 597-604.

        [23]Lacher T E.The comparative social behavior ofKerodonrupestrisandGaleaspixiiand the evolution of behavior in the Caviidae. Bulletin of Carnegie Museum of Natural History, 1981, 17: 1-71.

        [24]Taber A B, Macdonald D W. Spatial organization and monogamy in the maraDolichotispatagonum. Journal of Zoology, London, 1992, 227: 417-438.

        [25]Nelson J. Determinants of male spacing behavior in microtines: an experimental manipulation of female spatial distribution and density. Behavioral Ecology and Sociobiology, 1995, 37: 217-223.

        [26]Blumstein D T, Foggin J M. Effects of vegetative variation on weaning success, overwinter survival, and social group density in golden marmots (Marmotacaudataaurea). Journal of Zoology, London, 1997, 243: 57-69.

        [27]Shi J B. The progress of predation risk on population dynamics effect and mechanism. Chinese Journal of Zoology, 2013, 48(1): 150-158.

        [28]Lu J Q, Zhang Z B. Predation risk and its impact on animal foraging behavior. Chinese Journal of Ecology, 2004, 23(2): 66-72.

        [29]Ren X T, Shen G, Wang Z L,etal. Effects of road and grazing on spatiotemporal distribution of Brandt’s vole population in Xilin Gol grassland of Inner Mongolia. Chinese Journal of Ecology, 2011, 30(10): 2245-2249.

        [30]Creel S, Winnie J, Maxwell B. Elk alter habitat selection as an antipredator response to wolves. Ecology, 2005, 86(10): 3387-3397.

        [31]Fortin D, Beyer H L, Boyce M S. Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology, 2005, 86(5): 1320-1330.

        [32]Wei W H, Yang S M, Fan N C. The response of animal’s foraging behaviour to predation risk. Chinese Journal of Zoology, 2004, 39(3): 84-90.

        [33]Zhao L. Behavioral responses of two species passerine to predation risk during breeding period. Zoological Research, 2005, 26(2): 113-117.

        [34]Yang S M, Wei W H, Yin B F,etal. The predation risks of the plateau pika and plateau zokor and their survival strategies in the Alpine Meadow Ecosystem. Acta Ecologica Sinica, 2007, 27(12): 4972-4978.

        [35]Zhang W G, Jiang X L, Ma L X. The responses of behavior pattern of Ochotona curzoniae to population density. Pratacultural Science, 2007, 24(9): 79-82.

        [36]Zhang W G, Liu R, Jiang X L. Influence of risk sound signal on behavior pattern of pika. Acta Agrestla Sinica, 2010, 18(1): 115-120.

        [37]Winnie J J, Christianson D, Creel S. Elk decisionmaking rules are simplified in the presence of wolves. Behavioral Ecology and Sociobiology, 2006, 61(2): 277-289.

        [38]Christianson D, Creel S. A nutritionally mediated risk effect of wolves on elk. Ecology, 2010, 91(4): 1184-1191.

        [39]Dunbar R I M. Social systems as optimal strategy sets: the costs and benefits of sociality. In: Standen V, Foley R A. Comparative Socioecology: the Behavioural Ecology of Humans and Other Mammals[C]. Oxford: Blackwell Scientific Publications, 1989: 131-149.

        [40]Ebensperger L A, Wallem P K. Grouping increases the ability of the social rodent,Octodondegus, to detect predators when using exposed microhabitats. Oikos, 2002, 98(3): 491-497.

        [41]J?drzejewski W, Jêdrzejewska B, McNeish E. Hunting success of the weaselMustelanivalisand escape tactics of forest rodents in Bialowieza National Park. Acta Theriologica, 1992, 37: 319-328.

        [42]Hoogland J L. The Black-tailed Prairie Dog: Social Life of a Burrowing Mammal[M]. Chicago: The University of Chicago Press, 1995: 1-557.

        [43]Hayes L D, Chesh A S, Castro R A,etal. Fitness consequences of group living in the deguOctodondegus, a plural breeder rodent with communal care. Animal Behaviour, 2009, 78(1): 131-139.

        [44]Hoogland J L. The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae:CynomysleucurusandC.ludovicianus). Ecology, 1981, 62: 252-272.

        [45]Svendsen G E. Behavioral and environmental factors in the spatial distribution and population dynamics of a yellow-bellied marmot population. Ecology, 1974, 55: 760-771.

        [46]Yáber M C, Herrera E A. Vigilance, group size and social status in capybaras. Animal Behaviour, 1994, 48: 1301-1307.

        [47]Kildaw S D. The effect of group size manipulations on the foraging behavior of black-tailed prairie dogs. Behavioral Ecology, 1995, 6: 353-358.

        [48]Lagos P A, Meier A, Ortiz Tolhuysen L,etal. Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 2009, 87: 1016-1023.

        [49]Macdonald D W. Dwindling resources and the social behaviour of capybaras (Hydrochoerushydrochaeris). Journal of Zoology, London, 1981, 194: 371-391.

        [50]Sherman P W. The Limits of Ground Squirrel Nepotism[M]. Boulder: Westview Press, 1980: 505-544.

        [51]Manning C J, Dewsbury D A, Wakeland E K,etal. Communal nesting and communal nursing in house mice,Musmusculusdomesticus. Animal Behaviour, 1995, 50: 741-751.

        [52]Wei W R, Zhang L F, Zhang W G,etal. A study on the burrow features and functions of plateau pika. Acta Prataculture Sinica, 2013, 22(6): 198-204.

        [53]Cassini M H, Galante M L. Foraging under predation risk in the wild guinea pig: the effect of vegetation height on habitat utilization. Annales Zoologici Fennici, 1992, 29: 285-290.

        [54]Qin J, Shi D Z. Population density fluctuation feature of brandt’s voles during the growing season of vegetation. Acta Agrestla Sinica, 2008, 16(1): 85-88.

        [55]Wywialowski A P. Habitat structure and predators: choices and consequences for rodent habitat specialists and generalists. Oecologia, 1987, 72: 39-45.

        [56]Longland W S, Price M V. Direct observations of owls and heteromyid rodents: can predation risk explain microhabitat use. Ecology, 1991, 72: 2261-2273.

        [57]Keller L, Perrin N. Quantifying the level of eusociality. Proceedings of the Royal Society London B, 1995, 260: 311-315.

        [58]Sharpe P B, Van H B. Influence of habitat on behavior of Townsend’s ground squirrels (Spermophilustownsendii). Journal of Mammalogy, 1998, 79: 906-918.

        [59]Treisman M. Predation and the evolution of gregariousness. Models for concealment and evasion. Animal Behaviour, 1975, 23: 779-800.

        [60]Pierce B M, Longland W S, Jenkins S H. Rattlesnake predation on desert rodents: microhabitat and species-specific effects on risk. Journal of Mammalogy, 1992, 73: 859-865.

        [61]Gilbert C, McCafferty D, Le Maho Y,etal. One for all for one: the energetic benefits of huddling in endotherms. Biological Reviews, 2010, 85: 545-569.

        [62]Gilbert C, McCafferty D J, Giroud S,etal. Private heat for public warmth: how huddling shapes individual thermogenic responses of rabbit pups. PloS one, 2012, 7(3): 33553-33553.

        [64]Séguy M, Perret M. Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebusmurinus). Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology B, 2005, 175: 107-115.

        [65]Kotze J, Bennet N C, Scantlebury S. The energetic of huddling in two species of mole-rat (Rodentia: Bathergidae). Physiology Behavior, 2008, 93: 215-221.

        [66]Contreras L C. Bioenergetics of huddling: test of a psycho-physiological hypothesis. Journal of Mammalogy, 1984, 65: 256-262.

        [67]Bazin R C, MacArthur R A. Thermal benefits of huddling in muskrat (Ondatrazibethicus). Journal of Mammalogy, 1992, 73: 559-564.

        [68]Juan Kotze, Nigel C, Bennett M S. The energetics of huddling in two species of mole-rat (Rodentia: Bathyergidae). Physiology Behavior, 2008, 93: 215-221.

        [69]Bautista A, García T E, Martínez-Gómez,etal. Do newborn domestic rabbitsOryctolaguscuniculuscompete for thermally advantageous positions in the litter huddle. Behavioral Ecology and Sociobiology, 2008, 62: 331-339.

        [70]Layne J N, Raymond M A V. Communal nesting of southern flying squirrels in Florida. Journal of Mammalogy, 1994, 75: 110-120.

        [71]Koprowski J L. Natal philopatry, communal nesting, and kinship in fox squirrels and gray squirrels. Journal of Mammalogy, 1996, 77: 1006-1016.

        [72]Madison D M, Fitzgerald R W, McShea W J. Dynamics of social nesting in overwintering meadow voles (Microtuspennsylvanicus): possible consequences for population cycling. Behavioral Ecology and Sociobiology, 1984, 15: 9-17.

        [73]Schradin M C, Schubert M, Pillay N. Winter huddling groups in the striped mouse. Canadian Journal of Zoology, 2006, 84: 693-698.

        [74]Arnold W. The evolution of marmot sociality: II. Costs and benefits of joint hibernation. Behavioral Ecology and Sociobiology, 1990, 27: 239-246.

        [75]Meier P T. Social organization of woodchucks (Marmotamarmota). Behavioral Ecology and Sociobiology, 1992, 31: 393-400.

        [76]Getz L L, McGuire B. Communal nesting in prairie voles (Microtusochrogaster): formation, composition and persistence of communal groups. Canadian Journal of Zoology, 1997, 75: 525-534.

        [77]Jefimow M, Marta G, Michal S. Social thermoregulation and torpor in the Siberian hamster. The Journal of Experimental Biology, 2011, 214: 1100-1108.

        [78]Armitage K B, Woods B C. Group hibernation does not reduce energetic costs of young yellow-bellied marmots. Physiological and Biochemical Zoology, 2003, 76(6): 888-898.

        [79]Jarvis J M, Sherman P W. Mammalian eusociality: a family affair. Trends in Ecology and Evolution, 1994, 9: 47-51.

        [80]Lovegrove B G. The evolution of eusociality in molerats (Bathyergidae): a question of risks, numbers, and costs. Behavioral Ecology and Sociobiology, 1991, 28: 37-45.

        [81]Lovegrove B G, Knight E A. Soil and burrow temperatures, and the resource characteristics of the social mole-ratCryptomysdamarensis(Bathyergidae) in the Kalahari desert. Journal of Zoology, London, 1988, 216: 403-416.

        [82]Jarvis J U M, Bennett N C, Spinks A C. Food availability and foraging by wild colonies of Damaraland mole-rats (Cryptomysdamarensis): implications for sociality. Oecologia, 1998, 113: 290-298.

        [83]Sichilima A M, Bennett N C, Faulkes C G,etal. Evolution of African mole-rat sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breedingFukomysmechowii. Journal of Zoology, 2008, 275(3): 276-282.

        [84]Jennifer U M. A comparison of the ecology of two populations of the common mole-rat,Cryptomyshottentotushottentotus: the effect of aridity on food, foraging and body mass. Oecologia, 2000, 125: 341-349.

        [85]Spinks A C, Plagányi E E. Reduced starvation risks and habitat constraints promote cooperation in the common mole-rat,Cryptomyshottentotushottentotus: a computer-simulated foraging model. Oikos, 1999, 85: 435-444.

        [86]Ganem G. Evolution of pacifism may have followed similar paths inSpalaxand in the bathyergid mole-rats: a reply to H. Burda. Behavioral Ecology and Sociobiology, 1998, 42: 365-367.

        [87]Ganem G, Nevo E. Ecophysiological constraints associated with aggression, and evolution toward pacifism inSpalaxehrenbergi. Behavioral Ecology and Sociobiology, 1996, 38: 245-252.

        [88]Taraborelli P. Effect of group size on the vigilance and foraging behaviour of a social desert rodent,Microcaviaaustralis(Rodentia, Caviidae). Ethology Ecology and Evolution, 2008, 3: 245-256.

        [90]Burda H, Kawalika M. Evolution of eusociality in the Bathyergidae: the case of the giant mole rats (Cryptomysmechowi). Naturwissenschaften, 1993, 80: 235-237.

        [91]Walter A. The evolution of marmot sociality: II. Costs and benefits of joint hibernation. Behavioral Ecology and Sociobiology, 1990, 27(4): 239-246.

        [92]Burda H. Constraints of pregnancy and evolution of sociality in mole-rats with special reference to reproductive and social patterns inCryptomyshottentotus(Bathyergidae, Rodentia). Journal of Zoological Systematics and Evolutionary Research, 1990, 28(1): 26-39.

        [93]Becker M I, De Ioannes A E, León C,etal. Females of communally breeding rodent,Octodondegus, transfer antibodies to their offspring during pregnancy and lactation. Reprod Immunol, 2007, 74: 68-77.

        [94]Hart B L. Behavioral adaptations to parasites: an ethological approach. International Journal for Parasitology, 1992, 78: 256-265.

        [95]Bennett N C, Jarvis J U M, Cotterill F P D. The colony structure and reproductive biology of the afrotropical Mashona mole-rat,Cryptomysdarlingi. Journal of Zoology, London, 1994, 234: 477-487.

        [96]Nowak M A, Tarnita C E, Wilson E O. The evolution of eusociality. Nature, 2010, 466: 1057-1062.

        [97]Kinlaw A. A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 1999, 41: 127-145.

        [98]White A M, Cameron E Z. Communal nesting is unrelated to burrow availability in the common warthog. Animal Behaviour, 2009, 77: 87-94.

        [99]Ebensperger L A, Bozinovic F. Energetics and burrowing behaviour in the semifossorial degu,Octodondegus(Rodentia: Octodontidae). Journal of Zoology, London, 2000, 252: 179-186.

        [100]King J A. Historical ventilations on a prairie dog town. The Biology of Ground-dwelling Squirrels[M]. Lincoln, NE: University of Nebraska Press, 1984: 447-456.

        [101]Garza J C, Dallas J, Boursot P,etal. Social structure of the mound-building mouseMusspicilegusrevealed by genetic analysis with microsatellites. Molecular Ecology, 1997, 6: 1009-1017.

        [102]Ebensperger L A, Chesh A S, Castro R A,etal. Burrow limitations and group living in the communally rearing rodent,Octodondegus. Journal of Mammalogy, 2011, 92(1): 21-30.

        [103]Ebensperger L A. Cofré F. On the evolution of group-living in the New World cursorial hystricognath rodents. Behavioral Ecology, 2001, 12: 227-236.

        [104]Jeppsson B. Effects of density and resources on the social system of water voles. Social Systems and Population Cycles in Voles[M]. Birkhauser Basel, 1990: 213-226.

        [105]Taraborelli P. Is communal burrowing or burrow sharing a benefit of group living in the lesser cavyMicrocaviaaustralis. Acta theriologica, 2009, 54(3): 249-258.

        [106]Nevo E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriologica, 1995, 3: 9-31.

        [107]Armitage K B. Resources and social organization of ground-dwelling squirrels. The Ecology of Social Behavior, 1998, 9(1): 8-19.

        [108]Blumstein D T, Armitage K B. Life history consequences of social complexity: a comparative study of ground-dwelling sciurids. Behavioral Ecology, 1998, 9: 8-19.

        [109]Armitage K B. Evolution of sociality in marmots. Journal of Mammalogy, 1999, 80: 1-10.

        [110]Smorkatcheva V, Kumaitova A R. Delayed dispersal in the Zaisan mole vole (Ellobiustancrei): helping or extended parental investment. Journal Ethology, 2014, 32: 53-61.

        [111]Van Vuren D, Armitage K B. Duration of snow cover and its influence on life-history variation in yellow-bellied marmots. Canadian Journal of Zoology, 1991, 69: 1755-1758.

        [112]Rayor L S. Effects of habitat quality on growth, age of first reproduction, and dispersal in Gunnison’s prairie dogs (Cynomysgunnisoni). Canadian Journal of Zoology, 1985, 63: 2835-2840.

        參考文獻(xiàn):

        [1]王程亮, 王曉衛(wèi), 齊曉光. 群居動(dòng)物中的共同決策. 生態(tài)學(xué)報(bào), 2013, 33(16): 4857-4863.

        [20]劉偉, 宛新榮, 鐘文勤, 等.長(zhǎng)爪沙鼠種群繁殖的季節(jié)性特征. 獸類(lèi)學(xué)報(bào), 2013, 33(1): 35-46.

        [27]石建斌. 捕食風(fēng)險(xiǎn)的種群動(dòng)態(tài)效應(yīng)及其作用機(jī)理研究進(jìn)展. 動(dòng)物學(xué)雜志, 2013, 48(1): 150-158.

        [28]路紀(jì)琪, 張知彬. 捕食風(fēng)險(xiǎn)及其對(duì)動(dòng)物覓食行為的影響. 生態(tài)學(xué)雜志, 2004, 23(2): 66-72.

        [29]任修濤, 沈果, 王振龍, 等. 道路和放牧對(duì)錫林郭勒草原布氏田鼠種群時(shí)空分布的影響. 生態(tài)學(xué)雜志, 2011, 30(10): 2245-2249.

        [32]魏萬(wàn)紅, 楊生妹, 樊乃昌. 動(dòng)物覓食行為對(duì)捕食風(fēng)險(xiǎn)的反應(yīng). 動(dòng)物學(xué)雜志, 2004, 39(3): 84-90.

        [33]趙亮.繁殖期兩種百靈科鳥(niǎo)類(lèi)對(duì)捕食風(fēng)險(xiǎn)的行為響應(yīng). 動(dòng)物學(xué)研究, 2005, 26(2): 113-117.

        [34]楊生妹, 魏萬(wàn)紅, 殷寶法, 等. 高寒草甸生態(tài)系統(tǒng)中高原鼠兔和高原鼢鼠的捕食風(fēng)險(xiǎn)及生存對(duì)策. 生態(tài)學(xué)報(bào), 2007, 27(12): 4972-4978.

        [35]張衛(wèi)國(guó), 江小雷, 馬隆喜. 高原鼠兔行為格局對(duì)種群密度的響應(yīng). 草業(yè)科學(xué), 2007, 24(9): 79-82.

        [36]張衛(wèi)國(guó), 劉蓉, 江小雷. 風(fēng)險(xiǎn)性聲訊信號(hào)對(duì)高原鼠兔行為模式的影響. 草地學(xué)報(bào), 2010, 18(1): 115-120.

        [52]衛(wèi)萬(wàn)榮, 張靈菲, 張衛(wèi)國(guó), 等. 高原鼠兔洞系特征及功能研究. 草業(yè)學(xué)報(bào), 2013, 22(6): 198-204.

        [54]秦姣, 施大釗. 植物生長(zhǎng)期布氏田鼠種群密度波動(dòng)特征. 草地學(xué)報(bào), 2008, 16(1): 85-88.

        The evolutionary causes of rodent group-living: Hypotheses

        WEI Wan-Rong1, MA An-Wei1, HE Kai2, ZHANG Wei-Guo1*

        1.StateKeyLaboratoryofGrasslandAgro-ecosystems,CollegeofPastoralAgriculturalScienceandTechnology,LanzhouUniversity,Lanzhou730020,China; 2.RuralEnergyDevelopmentStationofQin’an,Qin’an741600,China

        Abstract:This paper describes 7 hypotheses concerning group-living rodents which are accepted by most researchers. The resource-defense hypothesis believes that group-living individuals may become more efficient in obtaining and protecting resources than solitary-living conspecifics when resources (food, water, shelter) are non-uniformly distributed. The predatory risk hypothesis states that sociality should prevail in riskier habitats because group-living can reduce the risk of predation. The social thermoregulation hypothesis suggests that group-living could reduce the energy consumption in relatively cold habitats. The aridity food-distribution hypothesis believes that rodents living in arid habitats live in groups to share burrows or minimize the cost of burrow construction. The life-history constraint hypothesis thinks that rodents with smaller size, lower fat reserves, and low rate of postnatal growth are forced to live in groups to be able to successfully foster offspring. The burrow-sharing hypothesis states that rodents are forced to live in groups to share burrow use or minimize the cost of burrow construction. The parental investment hypothesis believes that, because of the continuing investment in offspring, group-living resulted from delay dispersion of offspring. Finally the paper discusses the future research focus on rodent group-living.

        Key words:group-living; the resource-defense hypothesis; the predatory risk hypothesis; the social thermoregulation hypothesis; the aridity food-distribution hypothesis; the life-history constraint hypothesis; the burrow-sharing hypothesis; the parental investment hypothesis

        *通信作者

        Corresponding author. E-mail: wgzhang@lzu.edu.cn

        作者簡(jiǎn)介:衛(wèi)萬(wàn)榮(1988-),男,甘肅皋蘭人,在讀博士。E-mail:weiwr07@lzu.edu.cn

        基金項(xiàng)目:公益性行業(yè)項(xiàng)目(201203041)資助。

        *收稿日期:2015-11-17;改回日期:2015-12-28

        DOI:10.11686/cyxb2015520

        http://cyxb.lzu.edu.cn

        衛(wèi)萬(wàn)榮, 麻安衛(wèi), 何凱, 張衛(wèi)國(guó). 嚙齒類(lèi)動(dòng)物群居起源研究假說(shuō). 草業(yè)學(xué)報(bào), 2016, 25(4): 212-221.

        WEI Wan-Rong, MA An-Wei, HE Kai, ZHANG Wei-Guo. The evolutionary causes of rodent group-living: Hypotheses. Acta Prataculturae Sinica, 2016, 25(4): 212-221.

        猜你喜歡
        群居生境種群
        邢氏水蕨成功繁衍并建立種群 等
        山西省發(fā)現(xiàn)刺五加種群分布
        早期恐龍過(guò)著群居生活
        喜歡群居的動(dòng)物
        喜歡群居的副櫛(zhì))龍
        棗樹(shù)適應(yīng)干旱生境研究進(jìn)展
        金秀瑤族長(zhǎng)鼓舞傳承的文化生境
        體育科技(2016年2期)2016-02-28 17:06:07
        不同生境中入侵植物喜旱蓮子草與本地種接骨草的光合特性
        崗更湖鯉魚(yú)的種群特征
        我有我味道
        亚洲欧美日韩精品香蕉| 久久久久无码国产精品一区| 精品蜜桃一区二区三区| 在线国产丝袜自拍观看| 国产a级三级三级三级| 国产免费av片在线观看播放| 国产欧美一区二区精品性色| 国产在线欧美日韩精品一区二区| 亚洲一区二区岛国高清| 麻豆亚洲一区| 亚洲男人的天堂网站| 1精品啪国产在线观看免费牛牛| 日本一区二区高清在线观看| 国产白浆一区二区三区性色| 99精品国产在热久久| 无码国产精品一区二区免费97| 日本成人在线不卡一区二区三区| 91精品国产高清久久福利| 亚洲av不卡无码国产| 少妇被躁爽到高潮无码文| 欧美精品日韩一区二区三区| 白白色视频这里只有精品| 亚洲av永久无码一区二区三区| 好男人视频在线视频| 日韩极品视频在线观看免费| 19款日产奇骏车怎么样| 成l人在线观看线路1| 无码中文日韩Av| 午夜视频在线观看国产| 国产熟妇与子伦hd| 丁香五月缴情综合网| 国产黄色精品高潮播放| 国产一区二区精品亚洲| 免费99精品国产自在在线| 亚洲嫩模高清在线视频| 成人国产高清av一区二区三区 | 国产白丝无码视频在线观看| 青春草在线视频精品| 一区二区高清免费日本| 国产日产欧产精品精品| 亚洲色成人网一二三区|