劉壯,謝銳,巨曉潔,2,汪偉,褚良銀,2
(1四川大學(xué)化學(xué)工程學(xué)院,四川 成都 610065;2高分子材料工程國家重點實驗室,四川 成都 610065)
?
具有快速響應(yīng)特性的環(huán)境響應(yīng)型智能水凝膠的研究進(jìn)展
劉壯1,謝銳1,巨曉潔1,2,汪偉1,褚良銀1,2
(1四川大學(xué)化學(xué)工程學(xué)院,四川 成都 610065;2高分子材料工程國家重點實驗室,四川 成都 610065)
摘要:環(huán)境響應(yīng)智能水凝膠應(yīng)用于化學(xué)傳感器、化學(xué)微閥、人造肌肉、藥物控釋載體、物質(zhì)分離等領(lǐng)域時常常需要快速響應(yīng)特性,提高智能水凝膠的響應(yīng)速率成為了智能水凝膠研究領(lǐng)域的重要課題之一。本文主要綜述了具有快速響應(yīng)特性的環(huán)境響應(yīng)智能水凝膠的構(gòu)建策略與方法,重點介紹了3類具有不同結(jié)構(gòu)的快速響應(yīng)型智能水凝膠,即具有多孔結(jié)構(gòu)的快速響應(yīng)智能水凝膠、具有梳狀結(jié)構(gòu)的快速響應(yīng)智能水凝膠以及具有微球復(fù)合結(jié)構(gòu)的快速響應(yīng)智能水凝膠。
關(guān)鍵詞:智能水凝膠;聚合物;環(huán)境刺激響應(yīng);快速響應(yīng)特性
2015-06-29收到初稿,2015-07-25收到修改稿。
聯(lián)系人:褚良銀。第一作者:劉壯(1987—),男,博士,講師。
Received date: 2015-06-29.
水凝膠(hydrogel)是指一類由物理或化學(xué)交聯(lián)而形成的高分子聚合物,是可以吸收大量水并能保持其三維結(jié)構(gòu)的軟物質(zhì)[1-4]。根據(jù)響應(yīng)環(huán)境刺激的情況,可以將水凝膠分為無環(huán)境響應(yīng)性的傳統(tǒng)水凝膠和有環(huán)境響應(yīng)性的智能水凝膠兩大類。傳統(tǒng)水凝膠對環(huán)境的變化不敏感;而智能水凝膠能響應(yīng)環(huán)境信息(如溫度[5-7]、pH[8-11]、離子[12-13]、分子[14]、葡萄糖濃度[15-16]、光[17-18]、電[19]等)的微小變化,產(chǎn)生相應(yīng)的體積變化或者其他物理化學(xué)性質(zhì)的變化。因此,環(huán)境響應(yīng)型智能水凝膠在化學(xué)傳感器[20-22]、人工肌肉[23-24]、軟體機器人[25-26]、化學(xué)反應(yīng)開關(guān)[27-28]、組織工程[29-30]、藥物控釋[29-31]、物質(zhì)分離[30,32]等領(lǐng)域有重要的應(yīng)用價值。
智能水凝膠的響應(yīng)速率是影響其應(yīng)用性能的重要參數(shù)之一。在環(huán)境響應(yīng)型智能水凝膠的許多應(yīng)用中,如化學(xué)傳感器、藥物控釋、物質(zhì)分離等,往往需要智能水凝膠具有快速的響應(yīng)特性。例如:當(dāng)智能水凝膠用作化學(xué)傳感器時,其快速響應(yīng)特性可以減小其執(zhí)行動作的滯后而實現(xiàn)更精確的控制;當(dāng)智能水凝膠作為藥物控釋載體時,其快速響應(yīng)特性可以使藥物及時按需地釋放;當(dāng)智能水凝膠用于物質(zhì)分離時,其快速響應(yīng)特性可以大大縮短吸附-解吸過程的時間,從而使得分離過程更有效率。然而,通過傳統(tǒng)方法構(gòu)建的智能水凝膠網(wǎng)絡(luò)大多有響應(yīng)速度慢的缺點,響應(yīng)時間通常是幾個小時甚至幾天。如:傳統(tǒng)均聚方法合成的典型溫敏型智能水凝膠聚(N-異丙基丙烯酰胺)[poly(N-isopropylacrylamide), PNIPAM],會在響應(yīng)溫度升高后在其表面形成一層致密的“皮層”,導(dǎo)致水凝膠收縮得非常緩慢,甚至需要一個月才能達(dá)到收縮平衡[33]。這種緩慢響應(yīng)特性嚴(yán)重阻礙了智能水凝膠的應(yīng)用進(jìn)程。因此,構(gòu)建具有快速響應(yīng)特性的環(huán)境響應(yīng)型智能水凝膠具有重要的意義。
Tanaka和Fillmore在1979年提出了關(guān)于水凝膠體積的溶脹/收縮速率的Tanaka-Fillmore理論[34]。他們認(rèn)為水凝膠的體積變化速率是溶液中水凝膠聚合物網(wǎng)絡(luò)作為整體、水分子在聚合物網(wǎng)絡(luò)中綜合擴散快慢的函數(shù),并得出了水凝膠體積變化的特征時間(τ)與綜合擴散系數(shù)(D)以及水凝膠特征尺寸(R)的關(guān)系
因此,要想縮短水凝膠體積變化的特征時間τ,有兩種主要途徑:一是改變水凝膠網(wǎng)絡(luò)結(jié)構(gòu),提供水分子容易進(jìn)出凝膠網(wǎng)絡(luò)的通道,降低其擴散阻力,提高水分子在凝膠網(wǎng)絡(luò)中的綜合擴散系數(shù)D;二是通過降低水凝膠特征尺寸R以提高響應(yīng)速率。
本文綜述了近年來具有快速響應(yīng)特性的環(huán)境響應(yīng)型智能水凝膠的研究進(jìn)展,主要介紹了具有多孔結(jié)構(gòu)的快速響應(yīng)智能水凝膠、具有梳狀結(jié)構(gòu)的快速響應(yīng)智能水凝膠以及具有微球復(fù)合結(jié)構(gòu)的快速響應(yīng)智能水凝膠。本文為新型快速響應(yīng)智能水凝膠的設(shè)計制備與應(yīng)用提供了重要的指導(dǎo)意義。
智能水凝膠的溶脹和收縮過程主要是高分子聚合網(wǎng)絡(luò)吸納和釋放水分子的過程。對于多孔結(jié)構(gòu)的水凝膠來說,貫通的孔結(jié)構(gòu)有利于水分子在凝膠網(wǎng)絡(luò)中更容易地擴散。水凝膠的多孔結(jié)構(gòu)一般通過加入致孔劑來實現(xiàn)。按照致孔劑添加或形成的順序,可以將智能水凝膠多孔結(jié)構(gòu)的構(gòu)建方法分為兩大類:合成中添加致孔劑法和合成后形成致孔劑法。合成中添加致孔劑法是在智能水凝膠合成過程中,將致孔劑添加到凝膠預(yù)聚液中,待水凝膠聚合成型后再將致孔劑除去以形成多孔結(jié)構(gòu);合成后形成致孔劑法是將水凝膠合成并充分溶脹之后,進(jìn)行急速冷凍形成冰晶并將其作為致孔劑,使原凝膠網(wǎng)絡(luò)重新排列,而冰晶溶解之后形成多孔結(jié)構(gòu)。
Serizawa等[35-36]將二氧化硅顆粒添加到預(yù)聚液中,聚合完成后利用氫氟酸在室溫下將二氧化硅顆粒除去得到多孔的PNIPAM水凝膠。傳統(tǒng)的PNIPAM水凝膠需要近50 h才能達(dá)到收縮平衡,而該具有多孔結(jié)構(gòu)的PNIPAM水凝膠的溫敏響應(yīng)速率明顯提高,比傳統(tǒng)水凝膠的響應(yīng)速率提高了80倍[35]。二氧化硅微球的用量和粒徑對PNIPAM水凝膠的溫敏響應(yīng)速率有顯著的影響,微球濃度越高、粒徑越小,則溫敏響應(yīng)速率越快[36]。
Chu等[37]采用微流控技術(shù)[圖1(a)],以含有聚苯乙烯微球的預(yù)聚液為水相,制備了單分散的油包水乳液,并以此為模板制備了包埋聚苯乙烯微球的PNIPAM微凝膠,再用二甲苯將聚苯乙烯微球溶去,得到具有多孔結(jié)構(gòu)的PNIPAM微凝膠。結(jié)果表明,當(dāng)環(huán)境溫度從23℃升高到47℃時,因為Tanaka-Fillmore理論[34]的尺寸效應(yīng),無孔結(jié)構(gòu)的普通PNIPAM微凝膠的收縮速率明顯比大凝膠快,僅需要66 s即可達(dá)到收縮平衡(圖1 b1)。具有空心結(jié)構(gòu)的PNIPAM微凝膠要比無孔結(jié)構(gòu)的普通PNIPAM微凝膠的收縮得快(圖1 b2);而具有多孔結(jié)構(gòu)的PNIPAM微凝膠的收縮速率又比具有空心結(jié)構(gòu)的PNIPAM微凝膠的收縮速率快(如圖1 b3)。在降溫過程中,具有多孔結(jié)構(gòu)的PNIPAM微凝膠的溶脹速率也是最快的[圖1(c)],而且孔隙率越大,微凝膠的響應(yīng)速率越快。
圖1 制備多孔結(jié)構(gòu)的PNIPAM微凝膠的裝置(a)以及不同結(jié)構(gòu)的PNIPAM微球在23℃到47℃升溫中的體積收縮變化過程(b)和47℃到23℃降溫中的體積溶脹變化過程(c). (b1, c1)無孔結(jié)構(gòu)的普通PNIPAM微凝膠;(b2, c2)具有空心結(jié)構(gòu)的PNIPAM微凝膠;(b3, c3)具有多孔結(jié)構(gòu)的PNIPAM微凝膠,標(biāo)尺為100 μmFig. 1 Microfluidic device for preparing PNIPAM microgels with porous structure (a), and effects of internal structures on dynamic shrinking and swelling behaviors of microgels upon heating from 23 to 47℃ (b) and cooling from 47 to 23℃ (c). (b1, c1) Voidless microgel, (b2, c2) microgel with hollow shell structure, and (b3, c3) microgel with multiple voids. Scale bar = 100 μm. (Modified from Reference [37])
圖2 交聯(lián)度為4%的PNIPAM微球的SEM顯微照片(a~c)及其收縮-溶脹速率(d,e)。其中,(a1, a2)為普通PNIPAM微凝膠(標(biāo)記為N-4);(b1, b2)為異丙醇誘導(dǎo)PNIPAM體積收縮擠出超細(xì)油滴形成通孔結(jié)構(gòu)的微凝膠(標(biāo)記為OPI-4);(c1, c2)為溫度誘導(dǎo)PNIPAM體積收縮擠出超細(xì)油滴形成通孔結(jié)構(gòu)的微凝膠;(d) 3種微凝膠在25℃到50℃升溫過程中的收縮速率;(e) 3種微凝膠在50℃到25℃降溫過程中的溶脹速率Fig. 2 SEM images of PNIPAM microgels with different structures containing crosslinking degree of 4% (a—c), and shrinking and swelling rates of the proposed PNIPAM microgels (e, f). (a1, a2) Normal microgels (marked as N-4); (b1, b2) microgels with open-celled porous structure (marked as OPI-4), whose pore is formed by adding isopropanol; (c1, c2) microgels with open-celled porous structure (marked as OPH-4), whose pore is formed by increasing temperature; (d) shrinking rates of PNIPAM microgels with different structures during the process of increasing temperature from 25℃ to 50℃; (e) swelling rates of PNIPAM microgels with different structures during process of decreasing temperature from 50℃ to 25℃. (Modified from Reference [38-39])
Mou等[38-39]同樣采用微流控技術(shù)制備具有多孔結(jié)構(gòu)的PNIPAM微凝膠,不過該工作使用微油滴作為致孔劑,通過微凝膠的體積相變從而收縮擠出微油滴,在水凝膠內(nèi)部形成貫通的孔結(jié)構(gòu)。首先用高速均質(zhì)乳化法制備水包油超細(xì)乳液(其中水相含有NIPAM單體、交聯(lián)劑和引發(fā)劑);然后通過微流控裝置制備油包(水包油)乳液,利用紫外光引發(fā)聚合生成包含超細(xì)油滴的PNIPAM微凝膠;再通過化學(xué)溶劑(如異丙醇)或者升溫使PNIPAM微凝膠產(chǎn)生體積收縮而擠出凝膠中的超細(xì)油滴。普通的PNIPAM水凝膠具有致密的“皮層”(圖2 a1,a2),而該方法制備得到的PNIPAM微凝膠具有貫通的孔結(jié)構(gòu)(圖2 b1,b2, c1,c2)。在升溫過程中,PNIPAM微凝膠的通孔結(jié)構(gòu)提供了具有小阻力的排水通道,使得PNIPAM微凝膠的收縮速率明顯提高(圖2d);同樣地,通孔結(jié)構(gòu)使PNIPAM微球在降溫時具有更快的溶脹速率(圖2e)。
還有很多其他材料作為智能水凝膠致孔劑,如CaCO3顆粒[40]、不同分子量的聚乙二醇PEG[41-42]、羥丙基纖維素[43]、NaHCO3[44]、Na2CO3[45]以及殼聚糖[46]等,構(gòu)筑多孔的凝膠結(jié)構(gòu),提高智能水凝膠的響應(yīng)特性。
相比于通過合成中在預(yù)聚體中添加致孔劑來構(gòu)造凝膠多孔結(jié)構(gòu)方法的多樣化,水凝膠合成后再形成多孔結(jié)構(gòu)的方法則比較單一。最常用的方法是在水凝膠溶脹后,迅速急凍在原位產(chǎn)生冰晶作為致孔劑。在冷凍過程中產(chǎn)生的冰晶使原水凝膠網(wǎng)絡(luò)高分子鏈重新排列,而冰晶部分將成為小阻力的水通道。Xue等[46-47]通過改變冷凍前的水凝膠含水量,控制調(diào)節(jié)冷凍處理后水凝膠內(nèi)孔的大小,當(dāng)平衡時水含量在10倍聚合物量以上時,冷凍處理后的水凝膠在收縮過程中,當(dāng)體積收縮一半的時間僅需要30~40 s,比普通常規(guī)水凝膠要快100多倍。
梳狀結(jié)構(gòu)的水凝膠是指凝膠網(wǎng)絡(luò)中有一端是具有自由端高分子側(cè)鏈的一類具有快速響應(yīng)特性的水凝膠。當(dāng)受到外界刺激時,側(cè)鏈自由端可自由運動,從而更容易收縮或溶脹,導(dǎo)致梳狀結(jié)構(gòu)的水凝膠具有較快的響應(yīng)速率。
梳狀結(jié)構(gòu)的水凝膠最早由Yoshida等[33]報道。他們在PNIPAM水凝膠網(wǎng)絡(luò)中引入懸掛的PNIPAM高分子側(cè)鏈,可以得到比較均勻的且溶脹/收縮速度較快的溫敏水凝膠。其快速響應(yīng)機理是在水凝膠網(wǎng)絡(luò)中的側(cè)鏈自由端當(dāng)溫度升高時能很快地收縮,其收縮后附著在水凝膠骨架網(wǎng)絡(luò)鏈上,從而在骨架網(wǎng)絡(luò)鏈之間形成阻力較小的水通道。
圖3 傳統(tǒng)poly(NIPAM-co-AAc)水凝膠(標(biāo)記為NNA30)和梳狀結(jié)構(gòu)的poly(NIPAM-co-AAc)水凝膠的示意圖(標(biāo)記為GNA30) (a),以及其在響應(yīng)溫度和pH刺激后動態(tài)收縮過程(b). 溫度從25℃升溫至60℃而pH從7.4降到2.0,GNA30-2 比GNA30-1具有更多數(shù)量的側(cè)鏈[48]Fig. 3 Schematic illustration of structures of normal-type and comb-type grafted poly(NIPAM-co-AAc) hydrogels marked as NNA30 and GNA30 respectively (a), and deswelling process of NNA30, GNA30-1 and GNA30-2 hydrogels undergoing shrinking at pH 2.0 and 60℃ after being removed from an equilibrium condition of pH 7.4 at 25℃ (b)[48]
Zhang等[48-49]將PNIPAM大分子單體、NIPAM小分子單體、丙烯酸(AAc)以及交聯(lián)劑通過自由基聚合反應(yīng),制備了溫度和pH雙重敏感刺激響應(yīng)的聚(N-異丙基丙烯酰胺-共聚-丙烯酸)[poly(NIPAM-co-AAc)]大凝膠和微凝膠。相比于普通的水凝膠,這種凝膠的主體凝膠網(wǎng)絡(luò)上存在有可自由擺動的梳狀接枝鏈[如圖3(a)],結(jié)合了對溫度響應(yīng)的單體和pH響應(yīng)的單體合成的梳型接枝共聚凝膠,不僅具有多重環(huán)境響應(yīng)特性,并且具有快速響應(yīng)速率[如圖3(b)]。該工作研究了同時改變兩種環(huán)境因素對智能水凝膠響應(yīng)速率的影響,發(fā)現(xiàn)溫度和pH雙重因素可以協(xié)同作用使水凝膠更快地響應(yīng)。水凝膠的溶脹比和收縮響應(yīng)速率都受到梳狀接枝鏈數(shù)量的影響:梳狀接枝鏈越多,水凝膠對溫度和pH的響應(yīng)能力越大。在此工作基礎(chǔ)上,他們又報道了一種陽離子型溫度和pH雙重刺激響應(yīng)型聚(N-異丙基丙烯酰胺-共聚-N,N'-甲基丙烯酸二甲氨基乙酯)[poly(NIPAM-co-DMAEMA)]水凝膠[50]。當(dāng)溫度從18℃升高到44℃、同時環(huán)境pH從7.4升高到11時,具有梳狀結(jié)構(gòu)的poly(NIPAM-co-DMAEMA)水凝膠的收縮速率明顯快于傳統(tǒng)型水凝膠。
Zhang等[16]設(shè)計了具有梳狀結(jié)構(gòu)的葡萄糖濃度響應(yīng)的智能水凝膠。該智能水凝膠在生理溫度下(約37℃),能快速響應(yīng)生理葡萄糖濃度的變化,表現(xiàn)出很大程度的體積相變。這種具有梳狀結(jié)構(gòu)的葡萄糖濃度響應(yīng)的智能水凝膠在葡萄糖響應(yīng)型傳感器、藥物送達(dá)系統(tǒng)等方面具有廣闊的應(yīng)用前景。
根據(jù)Tanaka-Fillmore理論[34],智能水凝膠的尺寸越小,其響應(yīng)速度越快。如,直徑100 nm左右的PNIPAM微球完成收縮的時間不到2 μs[51]。因此,基于智能微凝膠的快速響應(yīng)能力,研究者們設(shè)計了具有微球復(fù)合結(jié)構(gòu)的快速響應(yīng)水凝膠。根據(jù)微球在凝膠網(wǎng)絡(luò)的存在形式,一般將具有微球復(fù)合結(jié)構(gòu)的智能水凝膠分為兩大類:物理包埋微球型以及化學(xué)交聯(lián)微球型。物理包埋微球型復(fù)合結(jié)構(gòu)水凝膠是一類將智能納米微球通過簡單的物理包埋方式固嵌在凝膠網(wǎng)絡(luò)中形成的快速響應(yīng)水凝膠;化學(xué)交聯(lián)微球型復(fù)合結(jié)構(gòu)水凝膠是一類將智能微球通過化學(xué)鍵將微球交聯(lián)到凝膠網(wǎng)絡(luò)中形成的快速響應(yīng)水凝膠。
Zhang等[52]將PNIPAM微球分散到NIPAM單體預(yù)聚液中,然后聚合成物理包埋微球型復(fù)合結(jié)構(gòu)PNIPAM水凝膠,該凝膠具有快速響應(yīng)特性。Yue 等[53]認(rèn)為物理包埋微球型復(fù)合結(jié)構(gòu)PNIPAM水凝膠具有快速響應(yīng)特性的原因是PNIPAM納米微凝膠的快速收縮,從而產(chǎn)生一定的空隙或通道,有利于凝膠網(wǎng)絡(luò)中的水分排出,從而可以加快整個水凝膠的收縮速率(圖4)。
Cho等[54-55]將NIPAM和烯丙胺的共聚微球交聯(lián)起來形成了化學(xué)交聯(lián)微球型復(fù)合結(jié)構(gòu)快速響應(yīng)溫敏水凝膠。該工作利用微球上的烯丙胺和外加的聚丙烯酸間形成靜電吸引而將微球膠凝,適度加熱后再加入戊二醛將微球上的氨基化學(xué)交聯(lián),從而得到水凝膠。采用這種方法制備溫敏水凝膠退溶脹速度非???,從20℃到40℃升溫過程中,僅需150 s即基本達(dá)平衡且溶脹時也無滯后現(xiàn)象。
圖4 物理包埋PNIPAM納米凝膠復(fù)合結(jié)構(gòu)的PNIPAM水凝膠的響應(yīng)原理示意圖[53]Fig. 4 Schematic illustration of rapid response process of PNIPAM hydrogel with composite structure of physically embedded PNIPAM nanogels[53]
圖5 化學(xué)交聯(lián)PNIPAM微球復(fù)合結(jié)構(gòu)PNIPAM水凝膠的制備原理示意圖(a)以及不同成分結(jié)構(gòu)的PNIPAM水凝膠在25℃至50℃升溫過程中的收縮行為(b, c)[56]Fig. 5 Schematic illustration of preparation of nanogel-composited PNIPAM hydrogel (a), and dynamic volume-deswelling behaviours of PNIPAM hydrogels after environmental temperature jumping abruptly from 25℃ to 55 ℃, in which Vtand V0are volumes of hydrogels at time t and at beginning (t=0, equilibrated in water at 25℃) respectively[56]
Xia等[56]制備了含有可聚合懸掛雙鍵的PNIPAM活性微凝膠,然后與NIPAM單體化學(xué)交聯(lián)共聚得到化學(xué)交聯(lián)微球型復(fù)合結(jié)構(gòu)的水凝膠(NSG)。其制備過程如圖5(a)所示,首先將單體NIPAM與交聯(lián)劑N,N′-亞甲基雙丙烯酰胺(BIS)在乳化劑十二烷基硫酸鈉(SDS)和引發(fā)劑過硫酸鉀(KPS)存在條件下,在60℃水中聚合,反應(yīng)一段時間后,急速中止聚合反應(yīng),得到帶有可聚合不飽和雙鍵的PNIPAM微凝膠分散液;再向PNIPAM 微凝膠分散液中加入NIPAM單體,并在冰水浴中以N,N,N′,N′-四甲基乙二胺(TMEDA)催化,利用PNIPAM微凝膠分散液中殘余的引發(fā)劑引發(fā)聚合得到復(fù)合結(jié)構(gòu)溫敏水凝膠。與BIS交聯(lián)的傳統(tǒng)PNIPAM水凝膠(NG)相比,該NSG水凝膠的收縮響應(yīng)速率明顯提升。工作系統(tǒng)地考察了該化學(xué)交聯(lián)微球型復(fù)合結(jié)構(gòu)PNIPAM水凝膠的收縮動力學(xué)[圖5(b),(c)],發(fā)現(xiàn)制備活性微凝膠的聚合時間延長可提高復(fù)合結(jié)構(gòu)的PNIPAM水凝膠的收縮速率[圖5(b)]。增加初始NIPAM濃度,從而提高PNIPAM微凝膠含量,可使NSG水凝膠的響應(yīng)速率加快[圖5(c)]。值得一提的是該微球復(fù)合結(jié)構(gòu)水凝膠還具有優(yōu)越的機械性能。
環(huán)境響應(yīng)智能水凝膠的物理或者化學(xué)性質(zhì)可以根據(jù)外界環(huán)境改變而改變。這種凝膠的響應(yīng)行為使其在化學(xué)傳感器、化學(xué)微閥、人造肌肉、藥物控釋載體、物質(zhì)分離等領(lǐng)域都有廣闊的應(yīng)用前景。從應(yīng)用的角度考慮,常常要求智能水凝膠具有快速響應(yīng)特性,因此,提高智能水凝膠的響應(yīng)速率成了智能水凝膠研究領(lǐng)域的重要課題之一。
然而,到目前為止,具有快速響應(yīng)特性的環(huán)境響應(yīng)智能水凝膠也面臨著諸多挑戰(zhàn)。第一,在構(gòu)筑特殊凝膠網(wǎng)絡(luò)結(jié)構(gòu)來提高水凝膠響應(yīng)特性的同時,往往會影響智能水凝膠的另外一個重要的參數(shù)——機械性能,而同時具有快速響應(yīng)特性和高機械強度的智能水凝膠一直是研究者們孜孜以求的目標(biāo)。第二,迄今報道的具有快速響應(yīng)特性的智能水凝膠響應(yīng)的刺激種類尚比較單一,而面對工業(yè)上或臨床應(yīng)用,還需要進(jìn)一步開發(fā)出其他多種刺激的和多重刺激的快速響應(yīng)智能水凝膠。第三,將具有快速響應(yīng)特性的環(huán)境響應(yīng)智能水凝膠開發(fā)應(yīng)用于化工、生物、醫(yī)藥等領(lǐng)域,創(chuàng)造顯著的社會效益和經(jīng)濟價值。相信通過多學(xué)科領(lǐng)域的科技工作者的進(jìn)一步努力,具有快速響應(yīng)特性的環(huán)境響應(yīng)智能水凝膠的發(fā)展必將日新月異。也可預(yù)見,快速響應(yīng)智能水凝膠會有更廣闊的應(yīng)用前景。
References
[1] WICHERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185: 117-118.
[2] LEE K Y, MOONEY D J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869-1879.
[3] LIU M J, ISHIDA Y, EBINA Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets [J]. Nature, 2015, 517: 68-72
[4] CHU L Y, XIE R, JU X J, et al. Smart Hydrogel Functional Materials[M]. Berlin, Heidelberg: Springer-Verlag, 2013.
[5] HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered environmentally responsive surface patterns [J]. Nature, 1998, 393: 149-152.
[6] JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408, 178-181.
[7] XIAO X C, CHU L Y, CHEN W M, et al. Positively thermo-sensitive monodisperse core-shell microspheres [J]. Adv. Funct. Mater., 2003, 13: 847-852.
[8] KIM S J, SPINKS G M, PROSSER S, et al. Surprising shrinkage of expanding gels under an external load [J]. Nat. Mater., 2006, 5: 48-51.
[9] LEE B P, KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv. Mater., 2014, 26: 3415-3419.
[10] LEE K, ASHER S A. Photonic crystal chemical sensors: pH and ionic strength [J]. J. Am. Chem. Soc., 2000, 122, 9534-9537.
[11] SHIM T S, KIM S H, HEO C J, et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers [J]. Angew. Chem. Int. Ed., 2012, 51: 1420-1423.
[12] MI P, JU X J, XIE R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release [J]. Polymer, 2010, 51:1648-1653.
[13] JIANG M Y, JU X J, FANG L, et al. A novel smart microsphere with K+-induced shrinking and aggregating property based on responsive host-guest system [J]. ACS Appl. Mater. Inter., 2014, 6: 19405-19415.
[14] TU T, FANG W W, SUN Z M. Visual-size molecular recognition based on gels [J]. Adv. Mater., 2013, 25: 5304-5313.
[15] SAMOEI G K, WANG W H, ESCOBEDO J O, et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity [J]. Angew. Chem. Int. Edit., 2006, 45: 5319-5322.
[16] ZHANG S B, CHU L Y, XU D, et al. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature [J]. Polym. Adv. Technol., 2008, 19: 937-743.
[17] JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408: 178-181.
[18] TATSUMA T, TAKADA K, MIYAZAKI T. UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel [J]. Adv. Mater., 2007, 19: 1249-1521.
[19] KWON I C, BAE Y H, KIM S W. Electrically erodible polymer gel for controlled release of drugs [J]. Nature, 1991, 354: 291-293.
[20] BEEBE D J, MOORE J S, BAUER J M, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels [J]. Nature, 2000, 404: 588-590.
[21] DONG L, AGARWAL A K, BEEBE D J, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J]. Nature, 2006, 442: 551-554.
[22] CHEN C, ZHU Y H, BAO H, et al. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor [J]. Chem. Commun., 2011, 47: 5530-5532.
[23] SIDORENKO A, KRUPENKIN T, TAYLOR A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns [J]. Science, 2007, 315: 487-490.
[24] TAKASHIMA Y, HATANAKA S, OTSUBO M, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions [J]. Nat. Commun., 2012, 3: 1270.
[25] CALVERT P. Hydrogels for soft machines [J]. Adv. Mater., 2009, 21: 743-756.
[26] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators [J]. Adv. Funct. Mater., 2015 25: 2980-2991
[27] HE X M, AIZENBERG M, KUKSENOK O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation [J]. Nature, 2012, 487: 214-218.
[28] KUMACHEVA E. Hydrogels: the catalytic curtsey [J]. Nat. Mater., 2012, 11: 665-666.
[29] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications [J]. Science, 2012, 336: 1124-1128.
[30] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nat. Mater., 2010, 9: 101-113.
[31] LIU Z, LIU L, JU X J, et al. K+-recognition capsules with squirting release mechanisms [J]. Chem. Commun., 2011, 47: 12283-12285.
[32] NAGASE K, KOBAYASHI J, OKANO T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering [J]. J. R Soc. Interface, 2009, 6: S293-S309.
[33] YOSHIDA R, UCHIDA U, KANEKO Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature, 1995, 374: 240-242.
[34] TANAKA T, FILLMORE D J. Kinetics of swelling of gels [J]. J. Chem. Phys., 1979, 70: 1214-1218.
[35] SERIZAWA T, WAKITA K, KANEKO T, et al. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment [J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235.
[36] SERIZAWA T, WAKITA K, AKASHI M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles [J]. Macromolecules, 2002, 35: 10-12.
[37] CHU L Y, KIM J W, SHAH R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17: 3499-3504
[38] MOU C L, JU X J, ZHANG L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464.
[39] MOU C L. Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Chengdu: Sichuan University, 2014: 49-75.
[40] LEE W F, YEH Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels [J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160
[41] ZHANG X Z, YANG Y Y, CHUNG T S, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels [J]. Langmuir, 2001, 17: 6094-6099
[42] ZHUO R X, LI W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins [J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159.
[43] WU X S, HOFFMAN A S, PAUL Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels [J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129.
[44] CHEN J, PARK H, PARK K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties [J]. J. Biomed. Mater. Res., 1999, 44: 53-62.
[45] ZHANG Y, TAN T W. Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents [J]. J. Biomed. Eng., 2007, 24:884-889.
[46] XUE W, HAMLEY I W, HUGLIN M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization [J]. Polymer, 2002, 43: 5181-5186
[47] XUE W, CHAMP S, HUGLIN M B, et al. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-coacrylic) [J]. Eur. Polym. J., 2004, 40: 467-476.
[48] ZHANG J, CHU L Y, LI Y K, et al. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors [J]. Polymer, 2007, 48: 1718-1728.
[49] ZHANG J, CHU L Y, CHENG C J, et al. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties [J]. Polymer, 2008, 49: 2595-2603.
[50] ZHANG J, XIE R, ZHANG S B, et al. Rapid pH/temperatureresponsive cationic hydrogels with dual stimuli-sensitive grafted side chains [J]. Polymer, 2009, 50: 2516-2525.
[51] WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc., 2001, 123: 11284-11289.
[52] ZHANG J T, HUANG S W, XUE Y N, et al. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics [J]. Macromol. Rapid Comm., 2005, 26: 1346-1350.
[53] YUE L L, XIE R, WEI J, et al. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism [J]. J. Colloid Interf. Sci., 2012, 377: 137-144.
[54] CHO E C, KIM J W, FERNANDEZ-NIEVES A, et al. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles [J]. Nano Letters, 2008, 8: 168-172
[55] CHO E C, KIM J W, HYUN D C, et al. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids [J]. Langmuir, 2010, 26: 3854-3859.
[56] XIA L W, XIE R, JU X J, et al. Nano-structured smart hydrogels with rapid response and high elasticity [J]. Nature Commun., 2013, 4: 2226.
Foundation item: supported by the National Natural Science Foundation of China (20825622, 21136006).
Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics
LIU Zhuang1, XIE Rui1, JU Xiaojie1,2, WANG Wei1, CHU Liangyin1,2
(1School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China;2State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China)
Abstract:Stimuli-responsive smart hydrogels have been considered to be highly potential in versatile applications in numerous fields, such as chemical sensors and/or actuators, chemical values, artificial muscle, controlled drug delivery systems and substance separations, for which rapid responsive characteristics are highly desired. Therefore, rapid response to environmental stimuli is critical for the versatility of such smart hydrogels. This review briefly introduces the design and fabrication of stimuli-responsive smart hydrogels with rapid responsive characteristics, including three main types of smart hydrogels designed with different structures, which are open-cell porous structure, comb-type structure, and microsphere-composited structure. This review provides valuable information and guidance for rational design of novel stimuli-responsive smart hydrogels with rapid responsive characteristics.
Key words:smart hydrogels; polymers; environmental stimuli-response; rapid responsive property
Corresponding author:Prof. CHU Liangyin, chuly@scu.edu.cn
基金項目:國家自然科學(xué)基金項目(20825622, 21136006)。
中圖分類號:TB 381
文獻(xiàn)標(biāo)志碼:A
文章編號:0438—1157(2016)01—0202—07
DOI:10.11949/j.issn.0438-1157.20151015