亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水環(huán)境中四環(huán)素類抗生素降解及去除研究進展

        2016-03-17 07:48:13張杏艷陳中華鄧海明楊楷龔勝盧文學藍海恩
        生態(tài)毒理學報 2016年6期
        關鍵詞:類抗生素水體抗生素

        張杏艷,陳中華,鄧海明,楊楷,龔勝,盧文學,藍海恩

        廣西壯族自治區(qū)畜牧研究所,南寧 530001

        水環(huán)境中四環(huán)素類抗生素降解及去除研究進展

        張杏艷,陳中華,鄧海明,楊楷,龔勝,盧文學,藍海恩*

        廣西壯族自治區(qū)畜牧研究所,南寧 530001

        四環(huán)素類抗生素是治療與預防人類和動物疾病及細菌感染的一類廣譜抗菌藥。在畜牧養(yǎng)殖中,四環(huán)素類抗生素做為疾病治療藥物和促生長劑應用廣泛,使用量巨大。本文綜述了四環(huán)素類抗生素在水環(huán)境中的污染現(xiàn)狀及其在水中的降解和去除研究進展。

        四環(huán)素;抗生素;生態(tài)毒理;污染現(xiàn)狀;降解;去除

        四環(huán)素類抗生素(tetracycline antibiotics, TCs)是一類具有并四苯結構的廣譜抗生素(圖1),主要包括金霉素(chlotetracycline, CTC)、土霉素(oxytetracycline, OTC)、四環(huán)素(tetracycline, TET)及強力霉素(doxycycline, DOC)等。TCs可抑制腸道細菌繁殖,促進牲畜生長,60年代后被作為飼料添加劑在我國廣泛應用[1]。我國缺乏完善的獸藥抗生素使用監(jiān)控系統(tǒng),TCs濫用情況普遍。2010年我國僅CTC的使用量就高達71 900 t,比美國整個TCs總的年使用量要高22倍[2]。2013年我國TCs的使用量為12 000 t,是英國整個抗生素總使用量的11倍[3]??股財z入體內后很難被消化系統(tǒng)吸收,大多數(shù)抗生素以原藥形式隨糞便和尿液排出體外[4],如TCs排泄率達69%~86%[5]。而將動物糞便還田在中國是非常普遍的做法。經(jīng)測算,2011年中國排放到環(huán)境中的畜禽糞便達21.21億t,預計到2020年和2030年中國畜禽糞便的排放量將分別達到28.75億t和37.43億t[6]。這些畜禽糞便多有TCs殘留,如豬糞中,OTC、TET、CTC平均含量分別為9.09、5.22、3.57 mg·kg-1[7]。TCs水溶性較好,易隨畜禽糞便還田進入土壤并最終進入地表水體。在一些養(yǎng)殖場的周圍水體中,TCs含量可達到異常高的水平[8-9]。目前,我國尚無抗生素環(huán)境標準,而抗生素可能導致生物毒性和致病菌產生抗藥性基因等環(huán)境風險[10],抗生素環(huán)境污染已引起人們的高度關注。本文綜述了TCs在水體中的污染現(xiàn)狀,降解及去除的研究進展。

        圖1 四環(huán)素類抗生素(TCs)的分子結構Fig. 1 The molecular structure of the tetracycline antibiotics (TCs)

        表1 水體中TCs的濃度Table 1 The concentrations of TCs in water environment

        注:OTC、TET、DOC、CTC表示土霉素、四環(huán)素、強力霉素和金霉素。

        Note: OTC, TET, DOC and CTC mean oxytetracycline, tetracycline, doxycycline, and chlotetracycline.

        1 水體中TCs的污染(The pollution status of TCs in water environment)

        TCs為酸堿兩性物質,且其鹽酸鹽性質較穩(wěn)定[11]。TCs鹽酸鹽在水溶液中溶解度較大[12],因此,隨糞便施用進入到環(huán)境的中TCs很容易隨雨水進入到水體,水體也最先受到TCs的污染。

        TCs在不同水體中的濃度與其特性和來源有關,豬場等養(yǎng)殖廢水中TCs殘留量最高,可達mg·L-1級別,畜禽養(yǎng)殖排污口及周邊水體次之,在幾到幾十μg·L-1級別,而地表水多在10 μg·L-1以下(表1)。而地下水和飲用水源也已檢測到OTC和TET的存在,濃度分別為0.0086 μg·L-1和0.0036 μg·L-1[13]。

        TCs除濃度不斷增長之外,影響范圍也在不斷擴大。2010年江蘇27個規(guī)模化養(yǎng)殖場排水口和周圍環(huán)境53個水體樣品中,OTC、CTC、TET和DOC的檢出率分別為60.4%、60.4%、34.0%和17.0%[14]。2014年北京溫榆河2 478 km2流域面積62個采樣點中,CTC、OTC、TET、DOC的檢出率已達到91%、91%、93%、64%[15]。2015年TCs在全國58個流域的預測平均濃度在幾到幾十ng·L-1之間,全國超一半的水域受抗生素的污染,東部流域抗生素污染比西部流域嚴重,北方流域和南方流域抗生素污染最嚴重的是海河和珠江,其抗生素環(huán)境預測濃度比雅魯藏布江等西部流域高出幾十倍[3]。

        2 TCs在環(huán)境中的降解(The degradation of TCs in environment)

        TCs在不同環(huán)境介質和條件下降解的半衰期差別很大(表2),短則幾小時,長可超過160 d。TCs在環(huán)境中主要發(fā)生非生物降解和生物降解,其中,非生物降解包括光降解、氧化降解、水解,生物降解包括微生物降解和植物降解。

        2.1 光降解

        表2 TCs在不同環(huán)境介質及條件下降解的半衰期Table 2 Half-life of TCs in different environmental media and condition

        2.2 氧化降解

        TCs在電、強氧化劑的作用下會發(fā)生氧化降解。電化學氧化降解對CTC的去除效率為40%~50%,其降解機理在于在酸性體系中,CTC分子結構中的苯環(huán)受到羥基自由基的進攻而活化并逐步降解,而在中性和堿性體系中,CTC則在羥基自由基和超氧自由基的共同作用下降解;若在pH=3的電解體系中引入亞鐵離子,在光照產生的超氧自由基作用下CTC與亞鐵絡合脫除2個氫生成產物(532=479+56-2),亞鐵離子的引入使得CTC的氧化降解達到60%~94%[40]。而強氧化劑臭氧的氧化能力極強,可對雙鍵、芳香族化合物、雜環(huán)化合物、胺等化合物直接氧化或分解生成羥基自由基[41]。臭氧對TCs的氧化機理為先對C11a-C12和C2-C3兩個雙鍵、芳香環(huán)和氨基進行氧化,產生質核比為461、477、509和416的化合物,再進一步氧化至產生質核比為432、480、448、525和496的化合物,臭氧的強氧化作用對TCs的降解效率非常高,只需臭氧處理4~6 min,TET就可以完全去除[42],如,20 mg·L-1的TET經(jīng)過5 min臭氧處理就可以完全降解[43]。水中TET的氧化降解受pH、臭氧濃度、臭氧流速的影響顯著,且TET的降解隨pH、臭氧濃度、臭氧流速的升高而增強[44]。臭氧在增大OTC生物可降解性的同時,還能減少其對活性污泥細菌的毒性[45]。高鐵酸鉀(Fe(VI))對TET的氧化降解受pH和Fe(VI)濃度的影響較大,其降解效率取決于pH和初始Fe(VI)濃度[46]。氧化降解法處理的效率高,反應速度快,使用范圍廣泛,但處理費用比較高,反應器復雜,反應條件嚴格還有會副產物產生。

        2.3 水解

        水解是TCs在水環(huán)境中降解的主要途徑[47]。TCs分子中含有酚羥基、烯醇和二甲氨基等多個功能團,在酸性條件下C-6羥基和C-5上的氫正好處于反式構型,易發(fā)生消除反應,生成無活性橙黃色脫水物,而C-4二甲氨基易發(fā)生可逆的差向異構化反應,在堿性條件下TCs可生成具有內酯結構的異構體。此外,OTC由于存在C-5羥基與C-4二甲氨基之間形成的氫鍵,4位的差向異構化比TET難,而CTC由于C-7氯原子的空間排斥作用,使4位異構化反應比TET更容易發(fā)生。TCs在水體中降解途徑主要為差向異構化,不過差向化還不是TCs在水體中的降解終點,如CTC水解產物就有de-CTC、iso-CTC以及它們的差向異構體。TCs的水解受pH和溫度的影響較大,在TCs降解速率隨pH和溫度的升高而升高,而離子強度對TCs的水解則無明顯影響[35,48]。水解的過程比較長且效果有限,在實際應用中多作為輔助手段使用。

        2.4 微生物降解

        微生物可以改變抗生素的結構和理化性質,將抗生素從大分子化合物降解成小分子化合物,直至轉變成H2O和CO2。在抗生素的生物降解中,耐藥細菌的作用最大,耐藥菌可直接破壞和修飾抗生素而使其失活,光合菌、發(fā)酵絲狀菌、芽孢桿菌、枯草桿菌、乳酸菌、放線菌、酵母菌、硝化細菌、酵母均具有抗生素降解功能[49]。耐藥菌對TCs的降解機制大概有3種:①水解,TCs含有酰胺鍵等易水解的敏感化學鍵,耐藥菌通過酶消除這些化學鍵而使TCs失去活性;②乙酰轉移,耐藥菌通過對TCs羥基或酰胺基等活潑基團的共價修飾導致其失去靶點結合能力而使其失活,乙酰轉移是細菌使抗生素失活的常用機制;③氧化還原機制,TET可被耐藥性酶TetX氧化。研究表明,在豬糞中添加外源微生物可以提高豬糞中TCs的降解,且外源微生物對TCs的降解率為:CTC > OTC > TET[50]。在堆肥中添加外源復合菌系之后,CTC的降解率可提高20%[51]。白腐菌產生的天然木質素過氧化物酶和錳過氧化物酶在體外對TET和OTC有很強的降解能力[52-53],谷胱甘肽硫轉移酶可將60%~70%的抗生素轉變?yōu)閷ξ⑸餂]有毒性的成分[54]。微生物降解法高效無污染,其難點在于微生物菌株的篩選及復合菌種組合條件的控制,微生物降解法在堆肥及廢水處理過程中應用廣泛。

        2.5 植物降解

        植物可通過直接吸收或根系分泌物以及根系微生物轉化對抗生素進行降解。研究表明,CTC可被植物直接吸收[49]。植物修復可能是實際修復抗生素污染的水體的最可行的方法。植物修復最常見的做法就是人工濕地修復系統(tǒng)和水生植物浮床。水燭和蘆葦是常見的水生植物,對TCs具有很好的去除效果,在以水燭、蘆葦構建的人工濕地對DOC的去除效率分別為65%~75%和62%[55]。大漂和鳳眼蓮對水中TCs也具有清除作用,鳳眼蓮在抗生素濃度< 2.5 mg·L-1的污水中對TCs的去除效率可達80%,且鳳眼蓮去除水中鹽酸金霉素與鹽酸土霉素的效果優(yōu)于大漂[56]。水生蔬菜也可去除水環(huán)境中的TCs,且受季節(jié)變化影響比較大,在夏季,水芹過濾床系統(tǒng)對TCs的去除效率明顯高于空心菜濾床系統(tǒng),其對TCs的去除效率分別為71.83%和33.28%,但在冬季,2組水生植物濾床系統(tǒng)對TCs的去除效率差異不顯著[57]。植物降解法無需添加化學試劑,也不會造成二次污染,且成本低,處理效果好,不足之處在于植物降解法占用的土地面積比較大,人工濕地多為地表潛流,在處理過程中偶爾會產生臭味。植物降解法更適用于處理城鎮(zhèn)周邊及規(guī)?;B(yǎng)殖場氧化塘廢水中的抗生素。

        3 水環(huán)境中TCs的去除(The elimination of TCs in environment)

        綜上所述,TCs在環(huán)境中可通過多種降解反應去除,污水處理廠處理工藝綜合了多種降解反應,是目前去除環(huán)境中TCs的最主要的方式。

        污水處理廠對TCs總的去除效率為18%~100%,其中對CTC的去除效率為18%~47%,對TET和OTC的去除效率為100%,污水處理廠對TCs的去除主要發(fā)生在初級階段(格柵、曝氣、初級沉淀),初級階段對OTC的去除率超過60%[58]。不同的污水處理工藝對TCs的去除效率差別很大,見表3?;钚晕勰喙に囀菑U水中TCs去除的主要途徑[59]?;钚晕勰鄬Cs的去除機制以吸附作用為主,除對CTC產生少量的生物降解外,對OTC和TET則幾乎不產生生物降解,活性污泥對TCs去除率的大小順序為:OTC > TET > CTC;并隨著pH值的增大,活性污泥對3種抗生素的吸附量均逐漸減小,且在同一pH值條件下的去除率大小始終為:OTC > TET > CTC[60]。A2/O工藝主要通過生物降解和吸附作用去除TCs,其吸附作用對TET、OTC、CTC的去除貢獻分別為29%、38%、39%,生物降解為21%、22%、47%[61],A2/O工藝對TCs的去除能力高于活性污泥工藝。反滲透、活性炭、臭氧等這些污水處理技術對抗生素有明顯的降低和消除作用[62],然而這些技術在污水處理廠卻很少配備。污水處理工藝對TCs的去除效率受污泥停留時間、水力停留時間、溫度、pH值、鈣鎂離子濃度、微生物總量和細菌耐受性的影響。

        表3 不同污水處理工藝對TCs的去除效率Table 3 Removal efficiency of TCs by different wastewater treatment process

        活性污泥法處理能力高,出水水質好,但運行成本高,能量消耗大,管理復雜且有污泥膨脹問題;膜生物反應器運行穩(wěn)定,可封閉運轉,無臭,能耗低,但成本高,生物膜片容易脫落,影響出水水質;氧化法反應速度快,適用范圍廣,效率高,但處理費用較高,反應條件復雜。

        4 展望(Prospect)

        綜上所述,我國TCs的使用量巨大,TCs的污染有越演愈烈的趨勢。雖然人們對TCs的污染和降解途徑做了大量的研究,但仍然有許多問題尚待解決,如:

        (1)TCs在局部和較短時間內的環(huán)境濃度比較容易測定,但其在環(huán)境中的遷移轉化過程復雜,目前缺乏精準的可大范圍長時間預測TCs環(huán)境濃度的模型,TCs剩余的環(huán)境容量需進一步確定,我國也還沒有TCs的環(huán)境質量標準和排放標準。

        (2)TCs的降解途徑多樣,但在實際應用中對TCs的去除有限或成本較高,微生物去除法受限于微生物對TCs的耐受性。高效、簡便、安全、經(jīng)濟的多組合方式去除TCs有待進一步研究。

        (3)TCs畜牧養(yǎng)殖來源量最大,然而我國普遍缺乏處理TCs的基礎設施,各種小型的,適用于規(guī)?;B(yǎng)殖廠和小養(yǎng)殖戶的TCs去除方法和設備亟待開發(fā)和研究。

        致謝:感謝海南大學環(huán)境科學系副教授葛成軍在文章修改中給予的幫助。

        [1] 池振興. 四環(huán)素類污染物毒性的微觀機制研究[D]. 濟南: 山東大學, 2012: 1-4

        Chi Z X. Investigation on the micromechanism of the toxicity of tetracyclines[D]. Jinan: Shandong University, 2012: 1-4 (in Chinese)

        [2] 郭欣妍, 王娜, 許靜, 等. 獸藥抗生素的環(huán)境暴露水平及其環(huán)境歸趨研究進展[J]. 環(huán)境科學與技術, 2014, 37(9): 76-86

        Guo X Y, Wang N, Xu J, et al. Research progress on environmental exposure levels and environmental fate of veterinary antibiotics [J]. Environmental Science & Technology, 2014, 37(9): 76-86 (in Chinese)

        [3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782

        [4] Kay P, Blackwell P A, Boxall A, et al. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land [J]. Chemosphere, 2005, 59(7): 951-959

        [5] Toxicology Data Network [EB/OL]. (2013-05-01) [2016-02-24]. http://www.toxnet.nlm.nih.gov.

        [6] 朱寧, 馬驥. 中國畜禽糞便產生量的變動特征及未來發(fā)展展望[J]. 農業(yè)展望, 2014(1): 46-48

        Zhu N, Ma J.Changes and outlook about production amount of livestock and poultry manure in China [J]. Agricultural Outlook, 2014(1): 46-48 (in Chinese)

        [7] 張樹清, 張夫道, 劉秀梅, 等. 規(guī)模化養(yǎng)殖畜禽糞主要有害成分測定分析研究[J]. 植物營養(yǎng)與肥料學報, 2005, 11(6): 822-829

        Zhang S Q, Zhang F D, Liu X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 822-829 (in Chinese)

        [8] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012, 42: 1-9

        [9] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

        [10] 周啟星, 羅義, 王美娥. 抗生素的環(huán)境殘留、生態(tài)毒性及抗性基因污染[J]. 生態(tài)毒理學報, 2007, 2(3): 243-251

        Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution: A review [J]. Asian Journal of Ecotoxicology, 2007, 2(3): 243-251 (in Chinese)

        [11] Brain R A, Wilson C J, Johnson D J, et al. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms [J]. Environmental Pollution (Barking, Essex: 1987), 2005, 138(3): 425-442

        [12] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—A review [J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167

        [13] Tong L, Li P, Wang Y, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74: 1090-1097

        [14] 魏瑞成, 葛峰, 陳明, 等. 江蘇省畜禽養(yǎng)殖場水環(huán)境中四環(huán)類抗生素污染研究[J]. 農業(yè)環(huán)境科學學報, 2010, 29(6): 1205-1210

        Wei R C, Ge F, Chen M, et al. Pollution of tetracyclines from livestock and poultry farms in aquatic environment in Jiangsu Province, China [J]. Journal of Agro-Environment Science, 2010, 29(6): 1205-1210 (in Chinese)

        [15] Zhang Q Q, Jia A, Wan Y, et al. Occurrences of three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli [J]. Environmental Science & Technology, 2014, 48: 14317-14325

        [16] 劉虹, 張國平, 劉叢強. 固相萃取-色譜測定水, 沉積物及土壤中氯霉素和3種四環(huán)素類抗生素[J]. 分析化學, 2007, 35(3): 315-319

        Liu H, Zhang G P, Liu C Q. Determination of chloramphenicol and three tetracyclines by solid phase extraction and high performance liquid chromatography-ultraviolet detection[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3): 315-319 (in Chinese)

        [17] Lindsey M E, Meyer T M, Thurman E M, et al. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/ mass spectrometry [J]. Analytical Chemistry, 2001, 73(19): 4640-4646

        [18] Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg [J]. The Science of The Total Environment, 2009, 407(16): 4736-4743

        [19] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011, 45(5): 1827-1833

        [20] Kim S, Carlson K.Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices [J]. Environmental Science & Technology, 2007, 41(1): 50-57

        [21] Ruan Y F, Chen J M, Guo C S, et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China [J]. Journal of Agro-Environment Science, 2011, 30(12): 2586-2593

        [22] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface water to antibiotic contamination from varying wastewater treatment plant discharges [J]. Environmental Pollution, 2006, 142(2): 295-302

        [23] Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, South China [J]. Environmental Science & Pollution Research, 2013, 20(12): 9075-9083

        [24] 李偉明, 鮑艷宇, 周啟星. 四環(huán)素類抗生素降解途徑及其主要降解產物研究進展[J]. 應用生態(tài)學報, 2012, 23(8): 2300-2308

        Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics: Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308 (in Chinese)

        [25] Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382

        [26] 黃麗萍. 水中典型抗生素的光化學降解研究[D]. 上海: 東華大學, 2011: 27-49

        Huang L P. Studies on photochemical degradation of typical antibiotics [D]. Shanghai: Huangdong University, 2011: 27-49 (in Chinese)

        [27] Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94

        [28] Reyes C, Fernandez J, Freer J, et al. Degradation and inactivation of tetracycline by TiO2photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184: 141 -146

        [29] Gao J M, Zheng Z G, Wang Y. Photodegradation of tetracycline by TiO2/ZnO [J]. Chongqing Environmental Science, 2003, 25(1): 17-19

        [30] 宋晨怡, 尹大強. 四環(huán)素光催化降解特性與選擇性研究[J]. 環(huán)境科學, 2014, 35(2): 619-625

        Song C Y, Yin D Q. Characteristics and selectivity of photocatalytic-degradation of tetracycline hydrochloride[J]. Environmental Science, 2014, 35(2): 619-625 (in Chinese)

        [31] 朱向東, 王玉軍, 孫瑞娟, 等. 溶液酸度對四環(huán)素類物質光降解和光催化降解速率的影響[J]. 生態(tài)與農村環(huán)境學報, 2012, 28(6): 742-745

        Zhu X D, Wang Y J, Sun R J, et al. Effect of solution pH on photodegradation and photocatalytic degradation of tetracyclines[J]. Journal of Ecology and Rural Environment, 2012, 28(6): 742-745 (in Chinese)

        [32] Castillo C, Criado S, Dfaz M, et al. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications [J]. Dyes and Pigments, 2007, 72: 178-184

        [33] 李華. 水體中四環(huán)素類抗生素的光化學行為研究[D]. 武漢: 華中科技大學, 2011: 11-42

        Li H. Photochemical behavior of tetracyclines in aquatic system [D]. Wuhan: Huazhong University, 2011:11-42 (in Chinese)

        [34] Pouliquen H, Delepee R, Larhantec-Verdier M, et al. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater, and seawater under abiotic conditions [J]. Aquaculture, 2007, 262: 23-28

        [35] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J]. Journal of Environmental Quality, 2008, 37(2): 378-386

        [36] 張健, 關連珠, 顏麗. 不同畜禽糞便所含金霉素在土壤中的動態(tài)變化及降解途徑[J]. 生態(tài)學雜志, 2011, 30(6): 1125-1130

        Zhang J, Guan L Z, Yan L. Dynamics and degradation approach of different domestic animal feces chloroteracyline in soil [J]. Chinese Journal of Ecology, 2011, 30(6): 1125-1130 (in Chinese)

        [37] Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures [J]. Waste Management (New York, N.Y.), 2009, 29(4): 1416-1423

        [38] 匡光偉, 孫志良, 陳小軍, 等. 四環(huán)素類抗菌藥物在雞糞中的降解研究[J]. 農業(yè)環(huán)境科學學報, 2007, 26(5): 1784-1788

        Kuang G W, Sun Z L, Chen X J, et al. Degradation of tetracyclines in chicken feces [J]. Journal of Agro-Environment Science, 2007, 26(5): 1784-1788 (in Chinese)

        [39] Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting [J]. Bioresource Technology, 2011, 102(10): 5924-5931

        [40] 相欣奕. 氧化技術降解典型有機污染物研究[D]. 重慶: 重慶大學, 2013: 23-122

        Xiang X Y. Pathways and application of oxidative degradation of typical organic pollutants[D]. Chongqing: Chongqing University, 2013: 23-122 (in Chinese)

        [41] 孫秋月. 飲用水臭氧催化氧化工藝去除典型抗生素的研究[D]. 濟南: 山東建筑大學, 2014: 25-45

        Sun Q Y. Research on removal of typical antibiotics by ozone catalytic oxidation process in drinking water [D]. Jinan: Shandong Architecture University, 2014: 25-45 (in Chinese)

        [42] Khan M H, Bae H, Jung J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway [J]. Journal of Hazardous Materials, 2010, 181(1-3): 659-665

        [43] Wu J G, Jiang Y X, Zha L Y, et al. Tetracycline degradation by ozonation, and evaluation of biodegradability and toxicity of ozonation byproducts [J]. Canadian Journal of Civil Engineering, 2010, 37(11): 1485-1491

        [44] Wang Y, Zhang H, Zhang J H, et al. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor [J]. Journal of Hazardous Materials, 2011, 192(1): 35-43

        [45] Uslu M O, Balcioglu I A. Ozonation of animal wastes containing oxytetracycline [J]. Ozone Science and Engineering, 2008, 30(4): 290-299

        [46] Yang S F, Doong R A. Preparation of potassium ferrate for the degradation of tetracycline [J]. ACS Symposium Series, 2008, 985(25): 404-419

        [47] 阿丹. 人工濕地對14種常用抗生素的去除效果及影響因素研究[D]. 廣州: 暨南大學, 2012: 1-18

        A D. The removal efficiency and impact factors of 14 antibiotics in constructed wetlands [D]. Guangzhou: Jinan University, 2012:1-18 (in Chinese)

        [48] 鄭麗英. 金霉素的水解動力學研究[J]. 廣州化工, 2010, 38(12): 182-183, 191

        Zheng L Y. Hydrolysis kinetics of the chlortetracycline [J]. Guangzhou Chemical Industry, 2010, 38(12): 182-183, 191 (in Chinese)

        [49] 劉偉, 王慧, 陳小軍, 等. 抗生素在環(huán)境中降解的研究進展[J]. 動物醫(yī)學進展, 2009, 30(3): 89-94

        Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94 (in Chinese)

        [50] 張健, 關連珠. 豬糞中3種四環(huán)素類抗生素在土壤中的動態(tài)變化及降解途徑[J]. 植物營養(yǎng)與肥料學報, 2013, 19(3): 727-732

        Zhang J, Gan L Z. Dynamics and mechanism of degradation of three tetracycline antibiotics from pig manures in soil [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 727-732 (in Chinese)

        [51] 秦莉, 高茹英, 李國學, 等. 外源復合菌系對堆肥纖維素和金霉素降解效果的研究[J]. 農業(yè)環(huán)境科學學報, 2009, 28(4): 820-823

        Qin L, Gao R Y, Li G X, et al. Decomposition effect of additive of composite microbial system on cellulose and chlortetracycline in compositing [J]. Journal of Agro-Environment Science, 2009, 28(4): 820-823 (in Chinese)

        [52] Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus [J]. Chemosphere, 2009, 75(8): 1003-1007

        [53] Wen X H, Jia Y N, Li J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium [J]. Journal of Hazardous Materials, 2010, 177(1-3): 924-928

        [54] Park H, Choung Y K. Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase [J]. Human and Ecological Risk Assessment, 2007, 13(5): 1147-1155

        [55] María H V, Guido F, Michael P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization [J]. Chemosphere, 2011, 83(5): 713-719

        [56] 陳小潔, 李鳳玉, 郝雅賓. 兩種水生植物對抗生素污染水體的修復作用[J]. 亞熱帶植物科學, 2012, 41(4): 1-7

        Chen X J, Li F Y, Hao Y B. The preliminary exploration of remediation the antibiotics polluted water by two hydrophytes [J]. Subtropical Plant Science, 2012, 41(4): 1-7 (in Chinese)

        [57] 廖杰, 徐熙安, 劉玉洪, 等. 水生植物濾床深度處理養(yǎng)殖廢水過程中抗生素與抗性基因的響應研究[J]. 環(huán)境科學學報, 2015, 35(8): 2464-2470

        Liao J, Xu X A, Liu Y H, et al. Removal and response of antibiotics and antibiotic resistance genes during advanced treatment of livestock wastewater by aquatic plant filter bed [J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2464-2470 (in Chinese)

        [58] Chang X S, Michael T M, Liu X Y, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450

        [59] Zhou L J, Ying G G, Liu S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China [J]. Science of The Total Environment, 2013, 452-453: 356-376

        [60] 李慧. 四環(huán)素類抗生素(TCs)在活性污泥處理系統(tǒng)中的去除行為研究[D]. 泰安: 山東農業(yè)大學, 2013: 33-61

        Li H. The study of removal of tetracycline antibiotics (TCs) on activated sludge [D]. Tai'an: Shandong Agriculture University, 2013: 33-61 (in Chinese)

        [61] Huang M A, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74

        [62] Huang C H, Sedlak D L. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry [J]. Environmental Toxicology and Chemistry, 2001, 20: 133-139

        [63] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Research, 2008, 42(1-2): 395-403

        [64] Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole [J]. Journal of Hazardous Materials, 2005, 122(3): 259-265

        [65] Zhou P, Asce M, Su C, et al.Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes [J]. Journal of Environmental Engineering, 2006, 132(1): 129-136

        [66] Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations [J]. Chemosphere, 2007, 68(3): 428-435

        [67] Huang M H, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74

        [68] Matos M, Pereira M A, Parpot P, et al. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms [J]. Chemosphere, 2014, 117(1): 295-302

        [69] 劉秀艷, 高永, 張魁. 四環(huán)素生產廢水處理技術探索及工程實踐[J]. 河北建筑工程學院學報, 2005, 23(1): 25-27

        Liu X Y, Gao Y, Zhang K. Research and engineering practice on treating the wastewater from acheomycin producing process [J]. Journal of Hebei Institute of Architecture Engineering, 2005, 23(1): 25-27 (in Chinese)

        A Review on Degradation and Elimination of Tetracycline Antibiotics in Water Environment

        Zhang Xingyan, Chen Zhonghua, Deng Haiming, Yang Kai, Gong Sheng, Lu Wenxue, Lan Haien*

        Guangxi Institute of Animal Husbandry, Nanning 530001, China

        Received 24 February 2016 accepted 13 May 2016

        Tetracycline antibiotics (TCs) are the broad-spectrum antibacterial drugs which prevent human and livestock bacterial infection and treat their disease. TCs are widely used in livestock and poultry culture industry as disease treatment drugs and growth promoter, and the amount of TCs consumed is enormous. The pollution status of TCs in water environment, and their degradation and elimination methods are summarized in this article.

        tetracycline; antibiotics; pollution status; degradation and elimination; ecotoxicology

        廣西壯族自治區(qū)畜牧總站項目(A0287 201605813)

        張杏艷(1986-),女,碩士,研究方向為畜牧養(yǎng)殖環(huán)境質量及生態(tài)毒理學,E-mail: zhangxingyan.06@163.com;

        *通訊作者(Corresponding author), E-mail: Ihe.0504@163.com

        10.7524/AJE.1673-5897.20160224001

        2016-02-24 錄用日期:2016-05-13

        1673-5897(2016)6-044-09

        X171.5

        A

        藍海恩(1969-),男,高級畜牧師,主要從事養(yǎng)豬及養(yǎng)殖技術研究工作,共發(fā)表論文20余篇。

        張杏艷, 陳中華, 鄧海明, 等. 水環(huán)境中四環(huán)素類抗生素降解及去除研究進展[J]. 生態(tài)毒理學報,2016, 11(6): 44-52

        Zhang X Y, Chen Z H, Deng H M, et al. A review on degradation and elimination of tetracycline antibiotics in water environment [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 44-52 (in Chinese)

        猜你喜歡
        類抗生素水體抗生素
        農村黑臭水體治理和污水處理淺探
        水產品中三種糖肽類抗生素檢測方法的優(yōu)化
        皮膚受傷后不一定要用抗生素
        中老年保健(2021年6期)2021-08-24 06:53:34
        生態(tài)修復理念在河道水體治理中的應用
        抗生素的故事
        學生天地(2020年14期)2020-08-25 09:20:56
        廣元:治理黑臭水體 再還水清岸美
        注射用頭孢菌素類抗生素與常用注射液的配伍穩(wěn)定性
        貓抓病一例及抗生素治療
        頭孢菌素類抗生素的不良反應分析
        童年重負:“被攝入”的抗生素
        99久久国产精品免费热| 精品乱码卡1卡2卡3免费开放| 婷婷色综合成人成人网小说| 久久精品熟女亚洲av艳妇| 亚洲国产一区二区,毛片| 森中文字幕一区二区三区免费| 欧美又粗又长又爽做受| 洗澡被公强奷30分钟视频| 加勒比日本东京热1区| 大岛优香中文av在线字幕| 中国黄色一区二区三区四区| 成人一区二区免费中文字幕视频| 少妇高潮尖叫黑人激情在线| 在线无码国产精品亚洲а∨| 久久精品亚洲国产成人av| 亚洲中文字幕日韩综合| 99无码熟妇丰满人妻啪啪| 亚洲中文字幕无码久久| 久久亚洲国产欧洲精品一| 中文字幕丰满人妻被公强| 青青草大香蕉视频在线观看| 一进一出一爽又粗又大| 国产精品爽爽va在线观看无码| 亚洲一区二区成人在线视频| 国产一区二区av在线免费观看| 永久天堂网av手机版| 在教室伦流澡到高潮hgl视频| 欧美亚洲另类自拍偷在线拍| 亚洲桃色蜜桃av影院| 亚洲av午夜精品无码专区| 精品深夜av无码一区二区老年| 98精品国产综合久久| 91九色精品日韩内射无| 麻豆精品国产av在线网址| av无码人妻中文字幕| 国产成人精品亚洲午夜| 中文字幕你懂的一区二区| 亚洲人成在久久综合网站| 欧美黑人xxxx又粗又长| 中文字幕乱偷乱码亚洲| 老司机在线免费视频亚洲|