許瑩
遼寧省沈陽市中國醫(yī)科大學盛京醫(yī)院第一神經(jīng)內(nèi)科病房,沈陽110000
腫瘤微環(huán)境中的樹突狀細胞
許瑩
遼寧省沈陽市中國醫(yī)科大學盛京醫(yī)院第一神經(jīng)內(nèi)科病房,沈陽110000
樹突狀細胞(dendritic cell,DC)是目前所知的機體內(nèi)功能最強大的抗原呈遞細胞(antigen presenting cell,APC),具有強大的抗原攝取和處理能力,很多學者認為,基于樹突狀細胞的腫瘤疫苗可能是人類徹底戰(zhàn)勝腫瘤的希望。但是在病理條件下,DC的功能受到嚴重的抑制。腫瘤微環(huán)境中存在很多抑制性細胞因子可以作用于樹突狀細胞,導致其功能異常,從而使腫瘤細胞逃脫機體免疫系統(tǒng)的監(jiān)視。
樹突狀細胞;腫瘤微環(huán)境;細胞因子
樹突狀細胞是機體內(nèi)功能最強大的抗原呈遞細胞[1],具有強大的抗原攝取和處理能力,能夠向初始呈遞腫瘤抗原,刺激抗原特異的細胞毒性T淋巴細胞增殖(CTL),利用固有免疫細胞(如NK細胞)的細胞毒活性,引發(fā)針對腫瘤細胞的特異性免疫應(yīng)答[2]。研究者將DC負載腫瘤抗原,制成腫瘤疫苗,并過繼回輸至荷瘤宿主體內(nèi),這些DC能夠誘導針對腫瘤的特異性免疫應(yīng)答[3-5]。但是,從目前的臨床試驗結(jié)果來看,該療法的治療效率還不盡人意,還有諸多問題需要解決[5-6],尤其是腫瘤患者體內(nèi)微環(huán)境的改善。研究表明,腫瘤微環(huán)境中存在很多與DC功能相關(guān)的細胞因子,它們表達的改變會影響DC的功能。本文就目前腫瘤微環(huán)境下DC的功能變化進行綜述。
DC是目前所知的機體內(nèi)功能最強大的APC[1],它是由多種形態(tài)、表型和功能不完全相同的細胞組成的一個細胞體系。DC起源于骨髓CD34+造血干細胞。CD34+造血干細胞首先分化為不同的DC前體(precursor antigen presenting cell,pDC),然后離開骨髓,通過血液或淋巴液進入淋巴組織或非淋巴組織,并繼續(xù)分化為未成熟DC(immature antigen presenting cell,imDC)。imDC不斷識別、捕捉外界抗原,并被激活為成熟DC(mature antigen presenting cell,mDC),同時遷移到淋巴結(jié)。在淋巴結(jié)內(nèi),mDC可有效地誘導T細胞產(chǎn)生特異性免疫應(yīng)答[7]。有研究表明:免疫耐受可由成熟的,處于靜息狀態(tài)的DC引起,而完全被激活的DC能引起免疫反應(yīng)[2]。
基于DC的腫瘤疫苗被人們應(yīng)用于白血?。?]、前列腺癌[9]、膠質(zhì)瘤[10]、腸癌[11]、肺癌[12]、胰腺癌[13]、卵巢癌[14]和肝癌[15]等腫瘤的臨床試驗治療。很多學者認為,基于樹突狀細胞的腫瘤疫苗可能是人類徹底戰(zhàn)勝腫瘤的希望。但是在病理條件下,DC的功能受到嚴重的抑制[16]。腫瘤細胞中含有許多能夠被宿主免疫系統(tǒng)所識別的抗原,但是在許多腫瘤組織中腫瘤細胞并不被免疫系統(tǒng)識別,不能有效產(chǎn)生免疫應(yīng)答,對于腫瘤治療來說,DC是誘導和維持抗腫瘤免疫應(yīng)答的關(guān)鍵因素。
2.1異常樹突狀細胞的分化和活化
由于腫瘤對免疫識別的逃逸導致荷瘤宿主中的DC不能充分刺激免疫系統(tǒng)。腫瘤DC缺陷的根源可能是髓系細胞的異常分化,而這種異常分化可以導致功能正常的成熟DC數(shù)量減少,imDC的數(shù)量增加。
2.1.1腫瘤宿主中的成熟DC有研究者發(fā)現(xiàn)早期乳腺癌患者的DC數(shù)量顯著減少[17]。而乳腺癌患者只有髓系DC的數(shù)量顯著減少,其祖細胞pDC的數(shù)量未受影響。腫瘤微環(huán)境對DC的功能具有顯著的影響[18]。腫瘤患者體內(nèi)功能正常的DC數(shù)量減少的結(jié)果說明:APC數(shù)量的減少導致免疫刺激的效率低下,引起腫瘤微環(huán)境下免疫應(yīng)答功能受損。
2.1.2腫瘤宿主中的未成熟DC在腫瘤患者體內(nèi)的DC具有未成熟DC的表型,研究發(fā)現(xiàn),在腎細胞癌或前列腺癌組織中提取的DC極少被活化,異體刺激能力也下降[19],這些DC不表達或低表達共刺激分子CD86和CD80,來源于大腸癌組織的DC不僅很少刺激T細胞增殖,反而誘導T細胞免疫耐受[20]。
2.2腫瘤微環(huán)境中重要的細胞因子
血管內(nèi)皮細胞生長因子(vascular endothelial growth factor,VEGF)在體外抑制DC的分化和功能,這與mDC的數(shù)量減少和imDC數(shù)量增加有相關(guān)性[21]。VEGF是被首個發(fā)現(xiàn)對DC分化有抑制作用的腫瘤來源的影響因素。VEGF由許多腫瘤細胞分泌,對于腫瘤的血管形成起著至關(guān)重要的作用,并且VEGF是血管內(nèi)皮生長因子超家族的一個成員[22],研究者發(fā)現(xiàn)腫瘤患者血清VEGF的表達水平與腫瘤進展呈正相關(guān)[23]。VEGF在癌癥患者血漿中的濃度增加與其較差的預后密切相關(guān),有研究發(fā)現(xiàn),VEGF的表達水平與卵巢癌患者腫瘤組織和外周血中的DCs的數(shù)量呈負相關(guān),并且卵巢癌患者血漿中VEGF的表達越高,其預后也越差[24]。
IL-10在體外抑制DC活化,在體內(nèi)減少mDC的數(shù)量[25]。許多腫瘤細胞可以分泌和釋放IL-10。經(jīng)過其處理的DC可以誘導CD4+和CD8+T細胞通過細胞間的接觸來抑制其他T細胞進行抗原特異性增殖;也能通過減少共刺激分子的表達將imDC轉(zhuǎn)變成耐受原APC[26];IL-10也能阻斷單核細胞向DC分化,使其分化為成熟的巨噬細胞[27]。另外,IL-10還能抑制來源于CD14+或CD34+祖細胞的DC[28]功能。
巨噬細胞集落刺激因子M-CSF和IL-6抑制DC分化成熟。M-CSF和IL-6涉及腫瘤細胞介導的DC分化調(diào)控,M-CSF和IL-6的特異抗體能夠消除腎細胞癌條件培養(yǎng)基對DC分化的負面影響,使CD34+祖細胞分化為DC。骨髓瘤患者血清抑制DC的產(chǎn)生,IL-6特異抗體可中和這種抑制效果,IL-6在體內(nèi)抑制DC的成熟[29]。
TGFβ1是TGFβ超家族的一個重要成員,具有復雜的生物學功能,是能夠調(diào)控IL-12表達和機體免疫耐受的細胞因子。在腫瘤微環(huán)境中,它既能加速腫瘤生長,也能抑制腫瘤生長[30],當細胞暴露于TGFβ1時,可觸發(fā)細胞產(chǎn)生許多不同的應(yīng)答,包括抑制細胞生長、遷移、分化和凋亡[30]。腫瘤細胞表達的TGFβ1對DC具有復雜的影響,它可將浸潤于腫瘤的DC束縛于腫瘤組織內(nèi),阻止其從腫瘤組織向引流淋巴結(jié)遷移[31],可見TGFβ1是腫瘤逃脫免疫攻擊的一個關(guān)鍵性因素。TGFβ1能抑制正常角化細胞的生長和分化,同時,它又能刺激腫瘤細胞增殖,使腫瘤細胞比其他非轉(zhuǎn)化細胞更具生長優(yōu)勢[32]。
具有酪氨酸激酶活性和以信號轉(zhuǎn)導和轉(zhuǎn)錄活化因子(signal transducer and activation transcription,STAT)為底物的非受體型蛋白酪氨酸激酶(janus kinase,JAK)家族,JAK家族是不同信號轉(zhuǎn)導路徑的關(guān)鍵環(huán)節(jié),這些路徑活躍于細胞存活、增殖、分化和凋亡等功能活動中。在大多數(shù)腫瘤中發(fā)現(xiàn)了STAT3的連續(xù)活化,腫瘤細胞STAT3的連續(xù)活化抑制腫瘤產(chǎn)生,如腫瘤壞死因子(tumour necrosis factor,TNF)、干擾素β(interferon-β,IFN-β)和CC趨化因子配體5(CC chemokines ligand 5,CCL5)等炎性介導因子,從而引起免疫抑制[33]。在體外,存在STAT3連續(xù)活化的腫瘤細胞條件培養(yǎng)基,可抑制DC的功能成熟。
核轉(zhuǎn)錄因子κB(nuclear factor-κB,NF-κB)的活化可以由來自于細胞表面多種不同的刺激所誘導,NF-κB對DC分化是必需的[34]。青藤堿、己酮可可堿均可通過NF-κB途徑抑制單核細胞來源的DC分化[35]。STAT3和NF-κB間有可能存在一種直接聯(lián)系,STAT3可以結(jié)合NF-κB的p65亞單位,并抑制NF-κB的活性[34]。
絲裂原活化蛋白激酶通路(mitogen activated protein kinase,MAPK)也是DC生存和成熟的重要參與者,它參與許多細胞因子的釋放和免疫細胞功能[36]。與其他MAPK蛋白通路相比,p38MAPK對上游刺激起著重要作用,阻斷p38MAPK通路會抑制DC成熟[37]。
綜上所述,若腫瘤特異的免疫應(yīng)答受到了抑制,最終將導致腫瘤逃脫免疫系統(tǒng)的控制。這些機制提示,改善腫瘤患者體內(nèi)微環(huán)境因素的各種免疫抑制因素可能會改善腫瘤的治療,也可能會有助于基于DC的腫瘤疫苗的臨床應(yīng)用。
[1]Steinman RM.Decisions about dendritic cells:past,present,and future[J].Annu Rev Immunol,2012,30(4):1-22.
[2]Tel J,Aarntzen EH,Baba T,et al.Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients[J].Cancer Res,2013,73(3):1063-1065.
[3]Steinman RM,Banchereau J.Taking dendritic cells into medicine[J].Nature,2007,449(9):419-426.
[4]Schreiber,RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.
[5]Palucka K,Banchereau J.Cancer immunotherapy via dendritic cells[J].Nat Rev Cancer,2012,12(4):265-277.
[6]Radford KJ,Tullett KM,Lahoud MH.Dendritic cells and cancer immunotherapy[J].Curr Opin Immunol,2014,7(27):26-32.
[7]Zanoni I,Granucci F,F(xiàn)oti M,et al.Self-tolerance,dendritic cell(DC)-mediated activation and tissue distribution of natural killer(NK)cells[J].Immunol Lett,2007,110(1):6-17.
[8]Lim JH,Park CJ,Kim MJ,et al.Generation of lymphocytes potentiated against leukemic lymphoblasts by stimulation using leukemic cell lysate-pulsed dendritic cells in patients with acute lymphoblastic leukemia and measurement of in vitro anti-leukemic cytotoxicity[J].Hematology,2012,17(1):15-22.
[9]Draube A,Klein-González N,Mattheus S,et al.Dendritic cell based tumour vaccination in prostate and renal cell cancer:a systematic review and meta-analysis[J].PLoS One 6,2011,6(4):e18801.
[10]Chang CN,Huang YC,Yang DM,et al.A phaseⅠ/Ⅱclinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumour vac-cine in patients with malignant glioma[J].J Clin Neurosci,2011,18(8):1048-1054.
[11]Sakakibara M,Kanto T,Hayakawa M,et al.Comprehensive immunological analyses of colorectal cancer patients in the phaseⅠ/Ⅱstudy of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide[J]. Cancer Immubol.Immunother,2011,60(11):1565-1575.
[12]Perroud MW Jr,Honma HN,Barbeiro AS,et al.Mature autologus dendritic cell vaccines in advanced non-small cell lung cancer:a phaseⅠpilot study[J].J Exp Clin Cancer Res,2011,30(1):65-72.
[13]Suso EM,Dueland S,Rasmussen AM,et al.hTERTmRNA dendritic cell vaccination:complete response ina pancreatic cancer patient associated with response against several hTERTepitopes[J].CancerImmunol.Immunother,2011,60(6):809-818.
[14]Chiriva-Internati M,Cobos E,Cannon MJ.Prospects and challenges for immunotherapy of ovarian cancer-what can we learn from the tumor microenviroment?[J].Int Rev Immunol,2011,30(2-3):67-70.
[15]Wirth TC.Spontaneous and therapeutic immune responses in hepatocellular carcinoma:implications for current and future immunotherapies[J].Expert Rev Gastroenterol Hepatol,2014,8(1):101-110.
[16]Rabinovich GA,Gabrilovich D,Sotomayor EM.Immunosupressive strategies that are mediated by tumor cells[J]. Annu Rev Immunol,2007,25(2):267-296.
[17]Ghirelli C,Reyal F,Jeanmougin M,et al.Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid pre-dendritic cells in aggressive disease subtypes[J].Cancer Res,2015,75(14):1-13.
[18]Katz T,Avivi I,Benyamini N.Dendritic cell cancer vaccines:from the bench to the bedside[J].Rambam Maimonides Med J,2014,5(4):e0024.
[19]Xi HB,Wang GX,F(xiàn)u B,et al.Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer[J].Biol Pharm Bull,2015,38(6):827-835.
[20]CiavarraRP,HoltermanDA,BrownRR,etal.Prostatetumor microenvironment alters immune cells and prevents longterm survival orlhotopic mouse model following FLT3-ligand/CD40-ligandimmunotherapy[J].JImmunpther,2004,27(1):13-26.
[21]Lin A,Schildknecht A,Nguyen LT,et al.Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth[J].Immunol Lett,2010,127(2):77-84.
[22]Gabrilovich DI,Chen HL,Girgis KR,et al.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J].Nat Med,1996,2(10):1096-1103.
[23]Minura K,Kono K,Takahashi A,et al.Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J].Cancer Immunol Immunother,2007,56(6):761-770.
[24]Masoumi MS,Amini A,Morris DL,et al.Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer[J].Cancer Metastasis Rev,2012,31(1-2):143-162.
[25]Yang AS,Lattime EC.Tumor induced interleukin 10 suppressed the ability of splenic dendritic cells to stimulate CD4 and CD8 T cell responses[J].Cancer Res,2003,63(9):2150-2157.
[26]Steinbrink K,Graulich E,Kubsch S,et al.CD4+and CD8+anergic T cells induced by interfeukin-10 treated human dendritic cells display antigen specific suppressor activity[J].Blood,2002,99(7):2468-2476.
[27]Gardner JK,Mamotte CD,Patel P,et al.Mesothelioma tumor cells modulate dendritic cell lipid content,phenotype and function[J].PLoS One,2015,10(4):e0123563.
[28]Quan S,Kim HJ,Dukala D,et al.Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy[J]. J Immunol,2015,194(9):4175-4184.
[29]Campia I,Buondonno I,Castella B,et al.An autocrine cytokine/JAK/STAT-signaling induces kynurenine synthesis in multidrug resistant human cancercells[J].PLoS One,2015,10(5):e0126159.
[30]Sánchez-Capelo A.Dual role for TGF-β1 in apoptosis[J]. Cytokine&Growth Factors Reviews,2005,16(1):15-34.
[31]Weber F,Byrne SN,Le S,et al.Transforming growth factor-β1 immobilises dendritic cells within skin tumors and facilitate tumour escape from the immune system[J].Cancer Immunol Immunother,2005,54(9):898-906.
[32]Draghiciu O,Lubbers J,Nijman HW,et al.Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J].Oncoimmunology,2015,4(1):e954829.
[33]Francois G,Lionel A,F(xiàn)rank H,et al.Links between innate and cognate tumor immunityv[J].Current Opinion in Immunology,2007,19(2):224-231.
[34]Nishio H,Yaguchi T,Sugiyama J,et al.Immunosuppression through constitutively activated NF-κB signalling in human ovarian cancer and its reversal by an NF-κB inhibitor[J].Br J Cancer,2014,110(12):2965-2974.
[35]Zhao Y,Li J,Yu K,et al.Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B[J].Int Immunopharmacol,2007,7(5):637-645.
[36]Boisleve F,Kerdine-Romer S,Pallardy M.Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha[J].Toxicology,2005,206(2):233-44.
[37]Swafford D,Manicassamy S.Wnt signaling in dendritic cells:its role in regulation of immunity and tolerance[J]. Discov Med,2015,19(105):303-310.
R730.3
A
10.11877/j.issn.1672-1535.2016.14.02.07
2015-04-12)