趙志江,康東偉,李俊清,*
1 福建中咨工程咨詢有限公司,福州 350003
2 青島農(nóng)業(yè)大學(xué)園林與林學(xué)院,青島 266109
3 北京林業(yè)大學(xué)省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室, 北京 100083
川西亞高山不同年齡紫果云杉徑向生長(zhǎng)對(duì)氣候因子的響應(yīng)
趙志江1,2,康東偉3,李俊清3,*
1 福建中咨工程咨詢有限公司,福州350003
2 青島農(nóng)業(yè)大學(xué)園林與林學(xué)院,青島266109
3 北京林業(yè)大學(xué)省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室, 北京100083
摘要:運(yùn)用樹(shù)木年輪氣候?qū)W的基本方法,建立王朗自然保護(hù)區(qū)紫果云杉在集中分布上限區(qū)域的年輪寬度年表,選取差值年表分析不同年齡云杉的徑向生長(zhǎng)同逐月氣候因子的相關(guān)及響應(yīng)關(guān)系,結(jié)果顯示:幼齡組云杉年表的敏感度高于中齡組和老齡組云杉,幼齡組云杉對(duì)生長(zhǎng)季前及生長(zhǎng)季的氣溫狀況顯著正相關(guān);中齡組云杉年表僅與當(dāng)年4月份和7月份的月平均最低氣溫顯著正相關(guān);老齡組云杉的年輪寬度指數(shù)同上年生長(zhǎng)季(上年8月份)的月平均氣溫和月平均最低溫顯著負(fù)相關(guān),上年生長(zhǎng)季高溫的“滯后效應(yīng)”在老齡組云杉體現(xiàn)的更為突出;幼齡組與中齡組云杉對(duì)當(dāng)年6月份降水持續(xù)增加顯示出明顯的負(fù)相關(guān)關(guān)系,上年12月份的降水會(huì)對(duì)幼齡組和老齡組云杉徑向生長(zhǎng)不利。研究表明幼齡組云杉包含的氣候信息要優(yōu)于中齡組和老齡組云杉,在該區(qū)域進(jìn)行相關(guān)研究時(shí)應(yīng)根據(jù)研究需要選取不同年齡跨度的云杉年表。
關(guān)鍵詞:紫果云杉;年齡;徑向生長(zhǎng);氣候因子
樹(shù)木在自然環(huán)境下的生長(zhǎng)主要依賴于生長(zhǎng)期的氣候條件,但是諸如微氣候、上年生長(zhǎng)、樹(shù)齡等附加因子同樣會(huì)對(duì)樹(shù)木的生長(zhǎng)造成一定的影響[1]。通常情況下,依據(jù)樹(shù)木年輪氣候?qū)W的技術(shù)操作流程,通過(guò)移除非氣候“噪音”來(lái)放大樹(shù)輪資料中的氣候信號(hào),這個(gè)過(guò)程稱為“標(biāo)準(zhǔn)化”,其前提假設(shè)為:經(jīng)過(guò)“標(biāo)準(zhǔn)化”處理之后,樹(shù)木生長(zhǎng)與氣候的關(guān)系不會(huì)依賴于樹(shù)木年齡而有所不同,即在給定的時(shí)間序列內(nèi)不同年齡的樹(shù)木對(duì)于氣候的響應(yīng)一致[1- 2]。但是,生理生態(tài)學(xué)的相關(guān)研究表明,與生長(zhǎng)相關(guān)的環(huán)境信號(hào)有可能會(huì)依賴于年齡因素,例如,多數(shù)針葉樹(shù)種的老樹(shù)光合速率較低[3]。因此,年齡對(duì)于樹(shù)木生長(zhǎng)-氣候響應(yīng)的不確定性影響逐漸受到樹(shù)木年輪氣候?qū)W研究的重視[4]。
近些年,相關(guān)研究主要側(cè)重于檢驗(yàn)樹(shù)木生長(zhǎng)對(duì)于氣候的響應(yīng)關(guān)系在不同齡級(jí)或徑級(jí)間是否一致,研究結(jié)果會(huì)因樹(shù)種和地點(diǎn)的不同而有所差異。部分研究表明年齡不會(huì)明顯影響樹(shù)木年表的氣候響應(yīng),例如,加拿大南部山區(qū)的幼齡與老齡落葉松(LarixlyaliiParl.)的年表對(duì)于氣候響應(yīng)基本一致[5- 6],歐洲中部阿爾卑斯山的五針?biāo)?Pinuscembra)不同年齡組年表所含的氣候信號(hào)沒(méi)有明顯變化[7],渾善達(dá)克沙地不同徑級(jí)油松的年表對(duì)氣候因子的響應(yīng)存在明顯的一致性[8]。
然而,多數(shù)研究表明幼齡樹(shù)與老齡樹(shù)的徑向生長(zhǎng)與氣候因子間的關(guān)系存在明顯差異。例如,在中部斯堪的納維亞山脈,老齡的(大于250a)歐洲赤松(PinussylvestrisL.)比中齡的對(duì)氣候響應(yīng)更為敏感[9];祁連山低于200a的祁連圓柏(SabinaprzewalskiiKom.)與其他4組高齡樹(shù)相比,在氣候響應(yīng)方面存在明顯的不一致[10];葡萄牙西北部的海岸松(Pinuspinaster)幼齡樹(shù)的早材對(duì)于氣候響應(yīng)更為敏感,而老齡樹(shù)的晚材更易受到更易受到氣候的影響[11];我國(guó)長(zhǎng)白山北坡低齡油松(Pinuskoraiensis)年表與高齡年表亦存在明顯差異[12]。
川西亞高山位于我國(guó)青藏高原東緣,屬于典型的氣候敏感區(qū)域。紫果云杉(Piceapurpurea)作為該區(qū)域分布的典型優(yōu)勢(shì)樹(shù)種,年齡因素是否會(huì)對(duì)其年表以及氣候響應(yīng)產(chǎn)生影響亟待揭示,其結(jié)果會(huì)直接影響今后利用紫果云杉樹(shù)輪資料進(jìn)行氣候重建的可靠性。為避免出現(xiàn)因取樣年齡不同造成掩蓋部分氣候信息的現(xiàn)象,本文旨在闡明不同齡級(jí)的紫果云杉年表對(duì)于氣候因子的響應(yīng)規(guī)律,以期為在本區(qū)域深入開(kāi)展樹(shù)輪生態(tài)學(xué)的針對(duì)性研究提供合理、科學(xué)的依據(jù)。
1材料與方法
1.1野外取樣
本文研究地點(diǎn)位于四川省王朗國(guó)家級(jí)自然保護(hù)區(qū),保護(hù)區(qū)面積為322.97km2,海拔跨度2300—4980m,屬于丹巴-松潘半濕潤(rùn)季風(fēng)氣候,冬季寒冷干燥、日照強(qiáng)烈、降水較少,夏季溫暖濕潤(rùn)、日照較少、降水集中。年均溫為2.3℃,年降水量約為1100mm[13]。區(qū)內(nèi)紫果云杉主要分布于陽(yáng)坡海拔2600—3000m的范圍內(nèi)。在紫果云杉典型集中分布區(qū)的上限布設(shè)一條20m(坡向方向)×100m(水平方向)的代表性樣帶,樣帶中心海拔為3003m(32°54.2′ N,104°03.2′ E),用生長(zhǎng)錐對(duì)樣帶內(nèi)胸徑大于10cm云杉在胸徑處(離地高度為130cm)進(jìn)行取樣,胸徑小于20cm的取1個(gè)樣芯,胸徑大于20cm的取1—2個(gè)樣芯。由于該區(qū)域大徑級(jí)(胸徑大于40cm)紫果云杉分布較為分散,因此在樣帶外選取一定數(shù)量的大徑級(jí)樹(shù)進(jìn)行補(bǔ)充取樣,各采樣點(diǎn)與樣帶處于同一海拔范圍,以滿足不同年齡樣芯的需求。
1.2年齡分組及年表建立
將樣芯處理完成并進(jìn)行測(cè)量,根據(jù)Duncan[14]與Norton等[15]的方法判斷接近和未到髓心的樣芯的年齡,即樹(shù)木在胸徑處的年齡,然后按照100a為標(biāo)準(zhǔn)[2]將樣芯分為3組:幼齡組(Young Age Classes,YAC,小于100a的樣芯)、中齡組(Middle Age Classes,MAC,年齡介于100—200a的樣芯)、老齡組(Old Age Classes,OAC,大于200a的樣芯)[2]。分組完成后,利用COFECHA程序?qū)Ω髂挲g組的云杉年輪序列進(jìn)行質(zhì)量檢驗(yàn)并完成交叉定年[16],其中不包括心腐、破損、鉆偏嚴(yán)重的樣本,3個(gè)齡級(jí)交叉定年成功的樣芯數(shù)量分別為:幼齡組取自33棵樹(shù)的33個(gè)樣芯,中齡組取自24棵樹(shù)的27個(gè)樣芯,老齡組取自18棵樹(shù)的27個(gè)樣芯。然后利用ARSTAN軟件移除生長(zhǎng)趨勢(shì)來(lái)建立年表[17],所采用的去趨勢(shì)方法為負(fù)指數(shù)函數(shù)擬合或任意斜率的線性回歸擬合[2],所建立的3個(gè)齡級(jí)云杉的標(biāo)準(zhǔn)年表見(jiàn)圖1。
圖1 王朗自然保護(hù)區(qū)不同年齡紫果云杉標(biāo)準(zhǔn)年表與樣本數(shù)量Fig.1 Standard chronologies and sample numbers of P. purpurea for different age classes in the Wanglang Natural Reserve
1.3敏感度與胸徑大小的關(guān)系
姜慶彪等發(fā)現(xiàn)輪寬樣芯的敏感度同胸徑大小之間存在一定的關(guān)系[8],這在一定程度上也會(huì)反映樹(shù)木大小對(duì)于樹(shù)木敏感性的影響。敏感度的計(jì)算公式如下:
(1)
式中,xi是第i個(gè)年輪寬度值或指數(shù);xi+1是第i+1個(gè)年輪寬度值或指數(shù);n是該樣本年輪總數(shù)。
本文利用SimaPlot 10.0軟件提供的線性回歸方程計(jì)算了本研究中各交叉定年成功且到達(dá)髓心的樣芯的敏感度同胸徑處年齡的關(guān)系。
1.4不同年表同氣候因子的關(guān)系分析
分析不同齡級(jí)云杉的差值年表同氣候因子的關(guān)系,包括相關(guān)分析與響應(yīng)函數(shù)分析,分析過(guò)程通過(guò)DendroCLIM 2002軟件完成[18],氣象數(shù)據(jù)通過(guò)山地小氣候模型(MTCLIM)對(duì)采樣點(diǎn)進(jìn)行模擬,其中初始?xì)庀髷?shù)據(jù)選取與采樣點(diǎn)處于同一氣候區(qū)且直線距離最近的松潘氣象站(32°39′ N,103°34′ E,海拔2850m)的數(shù)據(jù),時(shí)間跨度為1951—2009年,選取上年6月至當(dāng)年9月共計(jì)16個(gè)月份的月平均氣溫(Tmean)、月平均最高氣溫(Tmax)、月平均最低氣溫(Tmin)與月降水(P)。
2結(jié)果與分析2.1不同齡級(jí)年表的質(zhì)量與統(tǒng)計(jì)分析
不同齡級(jí)紫果云杉標(biāo)準(zhǔn)年表與差值年表的統(tǒng)計(jì)參數(shù)見(jiàn)表1。公共區(qū)間分析中的各參數(shù)均反映出差值年表的質(zhì)量要優(yōu)于標(biāo)準(zhǔn)年表。標(biāo)準(zhǔn)年表與差值年表的平均敏感度(MS)、標(biāo)準(zhǔn)差(SD)、樣芯間平均相關(guān)系數(shù)(RBAR)、樣本總體代表性(EPS)、信噪比(SNR)、第一特征根解釋量(PC1)均體現(xiàn)如下趨勢(shì):即幼齡組與老齡組年表高于中齡組年表,尤以幼齡組年表最高。樣芯敏感度與對(duì)應(yīng)樣樹(shù)年齡的回歸分析表明(圖2),敏感度與胸徑大小之間不存在線性相關(guān)關(guān)系;從散點(diǎn)分布上看,除部分年齡較小的樣芯敏感度較大外,樣芯的敏感度與年齡之間并不無(wú)明顯規(guī)律。
表1王朗自然保護(hù)區(qū)不同齡級(jí)紫果云杉標(biāo)準(zhǔn)年表與差值年表的特征統(tǒng)計(jì)
Table 1Dendrochronological statistics for standard and residual chronologies of theP.purpureaat different age classes in the the Wanglang Nature Reserve
統(tǒng)計(jì)特征Statisticscharacters幼齡組YACSTDRES中齡組MACSTDRES老齡組OACSTDRES樣芯數(shù)量/樹(shù)No.ofcores/trees33/3327/2427/18時(shí)間序列Recordperiod1911—20091852—20091667—2009平均敏感度MS0.1230.1480.1310.1230.1060.132標(biāo)準(zhǔn)差SD0.1720.1210.2570.1070.1940.114一階自相關(guān)系數(shù)AC10.591-0.1920.879-0.0020.777-0.093公共區(qū)間分析Commonintervalanaly-sis1950—20091900—20091800—2009樣芯間平均相關(guān)系數(shù)RBAR0.2810.3780.2630.2990.2630.352樣本總體代表性EPS0.9100.9400.8650.8850.8870.923信噪比SNR10.15515.7896.4137.6937.83111.970第一特征根解釋量PC1/%33.441.235.234.232.438.7
YAC:幼齡組young age classes;MAC:中齡組middle age classes;OAC:老齡組old age classes;STD:標(biāo)準(zhǔn)年表standard chronologies;RES:差值年表residual chronologies;MS:平均敏感度 mean sensitivity;SD:標(biāo)準(zhǔn)差standard deviation;AC1:一階自相關(guān)系數(shù) autocorrelation order 1;RBAR:樣芯間平均相關(guān)系數(shù) mean correlation among radii;EPS:樣本總體代表性 express population signal;SNR:信噪比 signal-to-noise ratio;PC1:第一特征根解釋量 variance in first eigenvector
圖2 王朗自然保護(hù)區(qū)紫果云杉樣芯敏感度與年齡大小的相關(guān)關(guān)系 Fig.2 Correlation between sensitivity of P. purpurea samplings and ages in the Wanglang Nature Reseve
2.2不同齡級(jí)年表與氣候因子的關(guān)系
由于各齡級(jí)云杉差值年表的信噪比等參數(shù)均優(yōu)于標(biāo)準(zhǔn)年表,因此本文選取差值年表同各氣候因子進(jìn)行相關(guān)及響應(yīng)分析[19],結(jié)果見(jiàn)圖3。對(duì)于幼齡組云杉年表,相關(guān)分析的結(jié)果表明,年輪指數(shù)同下列氣候因子顯著正相關(guān):上年11月份、當(dāng)年2、6、9月份的月平均氣溫,上年11月份、當(dāng)年2、9月份的月平均最高氣溫,當(dāng)年2、3、4、6、7、8、9月份的月平均最低氣溫;年輪指數(shù)還同上年12月與當(dāng)年6月的降水顯著負(fù)相關(guān)。響應(yīng)函數(shù)分析的結(jié)果表明,年輪指數(shù)與當(dāng)年2月份的月平均最高氣溫、月平均最低氣溫以及當(dāng)年4月份的月平均最低氣溫顯著正相關(guān)。
對(duì)于中齡組云杉,同年輪指數(shù)具有明顯相關(guān)關(guān)系的氣候因子相對(duì)較少,僅在相關(guān)分析中有所體現(xiàn)。中齡云杉的徑向生長(zhǎng)同當(dāng)年2月份、7月份的月平均最低氣溫顯著正相關(guān),同當(dāng)年6月份的降水顯著負(fù)相關(guān)。
對(duì)于老齡組云杉,相關(guān)分析顯示,上年8月份的月平均氣溫、月平均最低氣溫以及當(dāng)年9月份的月平均最低氣溫與年輪指數(shù)顯著負(fù)相關(guān);相關(guān)與響應(yīng)函數(shù)分析的結(jié)果均表明上年12月份的降水對(duì)徑向生長(zhǎng)起明顯的負(fù)作用。
圖3 不同齡組紫果云杉差值年表與月氣候因子的相關(guān)及響應(yīng)關(guān)系(*P<0.05)Fig.3 Correlations and responses between P. purpurea residual chronology with different age classes and monthly climatic factors in the Wanglang Nature Reserve (* P<0.05)
3討論
3.1樹(shù)齡對(duì)年表參數(shù)的影響
通過(guò)3個(gè)齡級(jí)年表特征對(duì)比(表1),發(fā)現(xiàn)幼齡云杉年表的質(zhì)量明顯高于中齡與老齡云杉年表,中齡云杉的年表質(zhì)量最差,說(shuō)明幼齡云杉對(duì)于周邊環(huán)境的變化更為敏感,樣芯敏感性與年齡大小關(guān)系也印證了這一點(diǎn)(圖2)。姜慶彪等在對(duì)渾善達(dá)克沙地不同徑級(jí)油松(Pinustubulaeformis)研究時(shí)也發(fā)現(xiàn),小徑級(jí)油松具有更高的敏感度[8]。王婷分析了天山云杉(Piceaschrenkiana)隨年齡變化的年表特征,結(jié)果顯示中齡組的年表質(zhì)量要優(yōu)于幼齡組與老齡組[20]。一般認(rèn)為大徑級(jí)[21]或大齡級(jí)[22]樹(shù)木對(duì)于氣候響應(yīng)更加的敏感,與本研究的結(jié)果有所差別,主要原因可能是不同地點(diǎn)不同樹(shù)種隨年齡(徑級(jí))變化的生理過(guò)程不一致[8]。在王朗自然保護(hù)區(qū)紫果云杉的主要分布區(qū),幼齡或老齡云杉更適合進(jìn)行氣候響應(yīng)分析研究。
3.2不同樹(shù)齡年表對(duì)氣候因子的響應(yīng)差異
不同樹(shù)齡年表對(duì)于氣溫的敏感性存在很大的差異性。幼齡組云杉對(duì)生長(zhǎng)季前(上年11月份、當(dāng)年2月份)及生長(zhǎng)季(6月份、9月份)的氣溫狀況均顯示出明顯的相關(guān)性,生長(zhǎng)季前及生長(zhǎng)季升溫均有利于其徑向生長(zhǎng),特別是當(dāng)年2、3、4月份及6、7、8、9月份的月平均最低氣溫。生長(zhǎng)季前的升溫有利于幼齡云杉度過(guò)寒冷冬季,減少凍害的發(fā)生,同時(shí)通過(guò)增強(qiáng)細(xì)胞活性、促進(jìn)營(yíng)養(yǎng)物質(zhì)運(yùn)輸?shù)确绞綖闃?shù)木生長(zhǎng)做好充足準(zhǔn)備[8]。生長(zhǎng)季初(當(dāng)年6月份)的升溫能夠提高云杉體內(nèi)與生長(zhǎng)相關(guān)的酶活性、提高光合速率、促進(jìn)營(yíng)養(yǎng)物質(zhì)積累。生長(zhǎng)季末(當(dāng)年9月份)較高的氣溫有利于延長(zhǎng)生長(zhǎng)期時(shí)間,促進(jìn)寬輪的產(chǎn)生。在這一區(qū)域最低氣溫有可能是影響幼齡云杉形成層活性的關(guān)鍵因素,由此限制木質(zhì)部的管胞分裂與擴(kuò)展[23]。生長(zhǎng)季較低的氣溫與土壤溫度會(huì)通過(guò)影響水分有效性限制形成層活性,進(jìn)而不利于樹(shù)木徑向生長(zhǎng)[24]。而中齡組云杉差值年表僅與當(dāng)年4月份和7月份的月平均最低氣溫顯著正相關(guān),中齡組云杉標(biāo)準(zhǔn)年表同氣候的關(guān)系還顯示當(dāng)年6月份較高的月平均氣溫和月平均最低氣溫有利于云杉徑向生長(zhǎng),說(shuō)明生長(zhǎng)季前及生長(zhǎng)季低溫是限制中齡云杉徑向生長(zhǎng)的主要?dú)鉁匾蜃?,即中齡組云杉生長(zhǎng)對(duì)當(dāng)年生長(zhǎng)季前及生長(zhǎng)季最低氣溫較為敏感。與幼齡組和中齡組云杉不同,老齡組云杉的差值年表年輪寬度指數(shù)同上年生長(zhǎng)季(上年8月份)的月平均氣溫和月平均最低溫顯示出明顯的負(fù)相關(guān)關(guān)系,另,標(biāo)準(zhǔn)年表的氣候相關(guān)分析也顯示上年7月份、8月份和當(dāng)年9月份的月平均氣溫和月平均最高氣溫與輪寬指數(shù)顯著負(fù)相關(guān)。可見(jiàn)生長(zhǎng)旺季和生長(zhǎng)季末的高溫會(huì)過(guò)度消耗云杉體內(nèi)儲(chǔ)存的光合產(chǎn)物,不利于云杉徑向生長(zhǎng)。
不同齡級(jí)云杉生長(zhǎng)對(duì)于降水的響應(yīng)也不完全一致。幼齡組與中齡組云杉對(duì)當(dāng)年6月份降水持續(xù)增加顯示出明顯的負(fù)相關(guān)關(guān)系,可能的原因是生長(zhǎng)季充沛降雨造成云杉根部的無(wú)氧呼吸,從而消耗較多的有機(jī)物限制年輪寬度增加[25]。而幼齡組與老齡組云杉年表同冬季(上年12月份)的降水顯著負(fù)相關(guān),12月份過(guò)多的降水會(huì)加劇云杉的凍害或機(jī)械損傷,從而影響到下年的生長(zhǎng)[26]。
目前,還不能從機(jī)理上深入揭示不同齡級(jí)云杉生長(zhǎng)對(duì)于氣候因子的響應(yīng)差異,部分學(xué)者認(rèn)為遺傳基因[2]和林分動(dòng)態(tài)[27]等造成的樹(shù)木生理機(jī)能的不同是其主要原因。樹(shù)齡不同,則生理機(jī)能不同,隨之樹(shù)木對(duì)氣候的響應(yīng)也會(huì)不同。例如,幼齡云杉在生長(zhǎng)季末(當(dāng)年9月份)會(huì)受到低溫脅迫,過(guò)早的遭受凍害,從而降低活性影響生長(zhǎng);而對(duì)于老齡云杉,由于長(zhǎng)期的適應(yīng)過(guò)程,會(huì)對(duì)早期凍害產(chǎn)生一定的抗性不易受損,但是生長(zhǎng)季末(當(dāng)年9月份)的高溫會(huì)增強(qiáng)呼吸速率,不利于有機(jī)物質(zhì)的積累。幼齡與老齡云杉對(duì)于冬季(上年12月份)的降水更加敏感,而對(duì)于位于生長(zhǎng)壯年的中齡云杉具有更強(qiáng)的抵御冬季嚴(yán)寒的能力。幼齡和中齡云杉的生長(zhǎng)會(huì)受到當(dāng)年生長(zhǎng)季(當(dāng)年6月份)充足降水的抑制,而對(duì)于老齡云杉而言,由于枝干粗壯、冠幅較大對(duì)于水分的需求量大,會(huì)降低根部無(wú)氧呼吸的強(qiáng)度。
4結(jié)論
在王朗自然保護(hù)區(qū)紫果云杉的集中分布上限區(qū)域,幼齡組云杉年表的統(tǒng)計(jì)參數(shù)要優(yōu)于中齡組與老齡組云杉年表,與之相對(duì)應(yīng),幼齡組云杉對(duì)于環(huán)境的敏感性也高于其他兩個(gè)齡組。在溫度方面,幼齡組云杉生長(zhǎng)同當(dāng)年的氣溫狀況表現(xiàn)出良好的相關(guān)性,老齡組云杉生長(zhǎng)主要受到上年生長(zhǎng)季高溫的顯著抑制,中齡組云杉生長(zhǎng)主要得益于當(dāng)年4月份和7月份較高的低溫。在降水方面,當(dāng)年6月份持續(xù)降水將會(huì)明顯不利于幼齡組與中齡組云杉的生長(zhǎng),上年12月份的降水亦會(huì)對(duì)幼齡組和老齡組云杉產(chǎn)生抑制作用。鑒于此,本文認(rèn)為今后在進(jìn)行樹(shù)輪氣候?qū)W研究時(shí),應(yīng)根據(jù)研究需要恰當(dāng)選取建立年表的樣芯的年齡跨度,以免損失或放大氣候信息。
致謝:感謝王朗自然保護(hù)區(qū)的大力支持。
參考文獻(xiàn)(References):
[1]吳祥定. 樹(shù)木年輪與氣候變化. 北京: 氣象出版社, 1990: 44-145.
[2]Szeicz J M, MacDonald G M. Age-dependent tree-ring growth responses of subarctic white spruce to climate. Canadian Journal of Forest Research, 1994, 24(1): 120-132.
[3]Bond B J. Age-related changes in photosynthesis of woody plants. Trends in Plant Science, 2000, 5(8): 349-353.
[4]彭劍峰, 劉玉振, 王婷. 神農(nóng)山白皮松不同齡組年輪-氣候關(guān)系及PDSI 重建. 生態(tài)學(xué)報(bào), 2014, 34(13): 3509-3518.
[5]Colenutt M E, Luckman B H. The dendrochronological characteristics of alpine larch. Canadian Journal of Forest Research, 1995, 25(5): 777-789.
[6]Colenutt M E, Luckman B H. Dendrochronological investigation ofLarixlyalliiat Larch Valley, Alberta. Canadian Journal of Forest Research, 1991, 21(8): 1222-1233.
[7] Esper J, Niederer R, Bebi P, Frank D. Climate signal age effects-Evidence from young and old trees in the Swiss Engadin. Forest Ecology and Management, 2008, 255(11): 3783-3789.
[8]姜慶彪, 高露雙, 王曉明, 趙秀海. 渾善達(dá)克沙地油松樹(shù)輪寬度與氣候因子的關(guān)系. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2012, 18(3): 405-410.
[9]Linderholm H W, Linderholm K. Age-dependent climate sensitivity ofPinussylvestrisL. in the central Scandinavian Mountains. Boreal Environment Research, 2004, 9(4): 307-317.
[10]Yu G R, Liu Y B, Wang X C, Ma K P. Age-dependent tree-ring growth responses to climate in Qilian juniper (SabinaprzewalskiiKom.). Trees, 2008, 22(2): 197-204.
[11]Vieira J, Campelo F, Nabais C. Age-dependent responses of tree-ring growth and intra-annual density fluctuations ofPinuspinasterto Mediterranean climate. Trees, 2009, 23(2): 257-265.
[12]王曉明, 趙秀海, 高露雙, 姜慶彪. 長(zhǎng)白山北坡不同年齡紅松年表及其對(duì)氣候的響應(yīng). 生態(tài)學(xué)報(bào), 2011, 31(21): 6378-6387.
[13] Taylor A H, Jang S W, Zhao L J, Liang C P, Miao C J, Huang J Y. Regeneration patterns and tree species coexistence in old-growthAbies-Piceaforests in southwestern China. Forest Ecology and Management, 2006, 223(1-3): 303-317.
[14]Duncan R P. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpusdacrydioides). New Zealand Natural Sciences, 1989, 16: 31-37.
[15]Norton D A, Palmer J G, Ogden J. Dendroecological studies in New Zealand 1. An evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany,1987, 25(3): 373-383.
[16]Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983,43: 69-78.
[17]Cook E R. A Time Series Analysis Approach to Tree Ring Standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process)[D]. Tucson: The University of Arizona, 1985.
[18]Biondi F, Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 2004, 30(3): 303-311.
[19]王曉明, 趙秀海, 高露雙, 姜慶彪. 長(zhǎng)白山北坡林線處岳樺年輪年表及其與氣候的關(guān)系. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2012, 18(1): 9-16.
[20]王婷. 天山中部不同海拔高度天山云杉林的生態(tài)學(xué)研究[D]. 武漢: 武漢大學(xué), 2004.
[21]Chhin S, Hogg E H, Lieffers V J, Huang R M. Potential effects of climate change on the growth of lodge pole pine across diameter size classes and ecological regions. Forest Ecology and Management, 2008, 256(10): 1692-1703.
[22]Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate inLarixdeciduaandPinuscembra. Ecology, 2004, 85(3): 730-740.
[23]Deslauriers A, Morin H, Begin Y. Cellular phenology of annual ring formation ofAbiesbalsameain the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 2003, 33(2): 190-200.
[24]Liang E Y, Wang Y F, Xu Y, Liu B, Shao X M. Growth variation inAbiesgeorgeivar.smithiialong altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 2010, 24(2): 363-373.
[25]Lloyd A H, Graumlich L J. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 1997, 78(4): 1199-1210.
[26]徐倩倩. 長(zhǎng)白山東坡長(zhǎng)白落葉松生長(zhǎng)和氣候因子關(guān)系的研究[D]. 北京: 北京林業(yè)大學(xué), 2011.
[27] Szeicz J M, Macdonald G M. Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. Journal of Ecology, 1995, 83(5): 873-885.
Age-dependent radial growth responses ofPiceapurpureato climatic factors in the subalpine region of Western Sichuan Province, China
ZHAO Zhijiang1,2, KANG Dongwei3, LI Junqing3,*
1FujianCIECCEngineeringConsultingCo.Ltd,Fuzhou350003,China
2CollegeofLandscapeArchitectureandForestry,QingdaoAgriculturalUniversity,Qingdao266109,China
3TheKeyLaboratoryforSilvicultureandConservationofMinistryofEducation,BeijingForestryUniversity,Beijing100083,China
Abstract:Although tree growth is mainly dependent on natural climate conditions, factors such as microclimate, growth of the previous year, tree age, and others may also affect tree growth. In dendroclimatological studies, it is generally assumed that the relationships between tree growth and climate factors are age-independent after removing the biological growth trends related to tree age. However, in some multi-aged forest stands, climate-growth relationships may be biased, because the trees′ chronologies respond differently to climate factors depending on their age or size. To assess this age-dependent effect, in this study, we tested the consistency of climate-growth responses in tree-ring series from Picea purpurea trees of different age classes in the Wanglang Nature Reserve, Sichuan province. In the concentrated distribution area of the upper limit, spruces were grouped into three age classes: trees younger than 100 years (young age class, YAC), trees 100—200 years of age (middle age class, MAC), and trees older than 200 years (old age class, OAC). Residual chronologies of the three age classes were built to analyze the climate-growth relationships using correlation and response functions. Correlation analysis indicated that the radial growth of the YAC was significantly and positively correlated with mean monthly temperature of the previous November and current February, June, and September; mean monthly maximum temperature of the previous November and current February and September; and mean monthly minimum temperature of the current February, March, April, June, July, August, and September, and it was significantly and negatively affected by monthly precipitation of the previous December and current June. The ring width of the MAC was positively correlated with mean monthly minimum temperature of the current April and July, and was negatively correlated with monthly precipitation of the current June. The residual chronology of the OAC was significantly and negatively affected by mean monthly temperature of the previous August, mean monthly minimum temperature of the previous August and current September, and monthly precipitation of the previous December. Response analysis showed that radial growth of the YAC was significantly and positively correlated with mean monthly maximum temperature of the current February, and mean monthly minimum temperature of the current February and April. There was no significant correlation between radial growth of the MAC and climate factors. The ring width of the OAC was significantly and negatively affected by monthly precipitation of the previous December.Overall, our results revealed that with an increase in tree age, the sensitivity of spruce to climate factors was reduced. The responses of young spruce were significantly correlated with temperature before the growing season and in the growing season. The chronology of the middle-aged spruce showed a significant and positive correlation with monthly mean minimum temperatures in the current April and July. The ring-width index of old spruce was significantly negatively correlated with monthly mean temperature and monthly mean minimum temperature of the previous August. The “l(fā)ag effect” of high temperatures in the previous growing season was prominent in the old spruce. Spruce within the young and middle-aged groups showed a significant negative correlation with current June precipitation. Adequate precipitation in December was not beneficial for the radial growth of young and old spruce. Our study may demonstrate that future studies should consider the adaptive chronology of age span for spruce in this area to avoid losing or magnifying the climate signals.
Key Words:Picea purpurea; age; radial growth; climatic factors
DOI:10.5846/stxb201409121815
*通訊作者Corresponding author.E-mail: lijq@bjfu.edu.cn
收稿日期:2014- 09- 12;
修訂日期:2015- 06- 08
基金項(xiàng)目:國(guó)家林業(yè)公益性行業(yè)科研專項(xiàng)(201404422);青島農(nóng)業(yè)大學(xué)高層次人才科研基金項(xiàng)目(631403)
趙志江,康東偉,李俊清.川西亞高山不同年齡紫果云杉徑向生長(zhǎng)對(duì)氣候因子的響應(yīng).生態(tài)學(xué)報(bào),2016,36(1):173- 179.
Zhao Z J, Kang D W, Li J Q.Age-dependent radial growth responses ofPiceapurpureato climatic factors in the subalpine region of Western Sichuan Province, China.Acta Ecologica Sinica,2016,36(1):173- 179.