彭 昌 田 杰
?
組蛋白乙?;揎検Ш庠谛募》屎裰械淖饔?/p>
彭 昌 田 杰
心肌肥厚是多種心血管疾病發(fā)生發(fā)展過(guò)程中的一個(gè)重要階段。組蛋白乙?;揎検Ш鈪⑴c了心肌肥厚的發(fā)病過(guò)程,多種組蛋白乙?;缚烧{(diào)控心臟發(fā)育相關(guān)轉(zhuǎn)錄因子的轉(zhuǎn)錄活性,而組蛋白乙?;柑禺愋砸种苿┠軌蚰孓D(zhuǎn)組蛋白高乙?;癄顟B(tài)并修復(fù)這一病理過(guò)程。該文主要介紹表觀遺傳學(xué)中組蛋白乙?;附閷?dǎo)的組蛋白乙酰化修飾失衡對(duì)心肌肥厚的影響。
表觀遺傳學(xué);組蛋白乙?;?;心肌肥厚
心肌肥厚是多種心血管疾病發(fā)生發(fā)展過(guò)程中的重要階段,是誘發(fā)心力衰竭及心源性猝死的重要原因之一,其主要特征為心肌細(xì)胞病理性肥大、蛋白質(zhì)合成增加及肌纖維增粗。隨著人類(lèi)生活方式的轉(zhuǎn)變及人口老齡化,心肌肥厚的發(fā)病率有上升趨勢(shì),但其發(fā)生機(jī)制仍不十分清楚。目前已知多種因素參與了心肌肥厚的發(fā)病過(guò)程,其中包括表觀遺傳學(xué)中組蛋白乙?;揎検Ш鈁1],組蛋白乙?;?histone acetylases, HATs)和組蛋白去乙?;?histone deacetylases, HDACs)通過(guò)調(diào)控心肌細(xì)胞心臟發(fā)育相關(guān)基因的表達(dá),促進(jìn)心肌肥厚的發(fā)生發(fā)展[2-3]。
表觀遺傳學(xué)是研究基因在核苷酸序列不發(fā)生改變的情況下,基因表達(dá)可遺傳變化的一門(mén)遺傳學(xué)分支學(xué)科。表觀遺傳的現(xiàn)象很多,包括DNA甲基化、組蛋白修飾及非編碼RNA調(diào)控等。早在20世紀(jì)60年代就已發(fā)現(xiàn)組蛋白乙?;饔?,但直到20世紀(jì)90年代才發(fā)現(xiàn)了HATs和HDACs。隨后的研究發(fā)現(xiàn),HATs和HDACs共同參與維持組蛋白乙?;揎椀钠胶鉅顟B(tài),進(jìn)而影響染色質(zhì)的組裝和基因表達(dá),因此,HATs和HDACs作為翻譯后修飾的關(guān)鍵酶被看作是基因表達(dá)的沉默子或激活子[4]。
HATs廣泛分布于全身各組織器官,在心肌組織中表達(dá)的HATs主要包括:E1A結(jié)合蛋白p300(adenoviral E1A-associated protein of 300 kDa)、CREB結(jié)合蛋白(CREB binding protein,CBP)、p300/CBP相關(guān)因子(p300/CBP-associated factor,PCAF)、類(lèi)固醇受體輔活化子-1(steroid receptor coactivator-1,SRC-1)、GCN5(general control of nucleotide synthesis-5)、MOF(males absent on the first)[5],各個(gè)亞型中包含有多個(gè)可識(shí)別乙?;?lài)氨酸位點(diǎn)的bromo結(jié)構(gòu)域[6]。p300/CBP是一種轉(zhuǎn)錄輔激活因子,它能與多種轉(zhuǎn)錄因子相互作用,并在轉(zhuǎn)錄因子和轉(zhuǎn)錄通用因子之間構(gòu)架起一座橋梁,使轉(zhuǎn)錄因子被募集到啟動(dòng)子區(qū)域,促進(jìn)轉(zhuǎn)錄起始復(fù)合物的形成,它是介導(dǎo)心肌肥厚的一個(gè)關(guān)鍵因子[7]。PCAF能與p300/CBP結(jié)合成具有乙?;富钚缘膹?fù)合物,乙酰化核小體上的組蛋白和游離組蛋白,其作用位點(diǎn)為H3K14(組蛋白H3的N末端的第14位賴(lài)氨酸)和H4K8。SRC-1是一種核受體共激活因子,主要作用是輔助類(lèi)固醇激素受體的轉(zhuǎn)錄[8]。GCN5也是一種轉(zhuǎn)錄輔激活因子,主要作用于游離組蛋白H3K14,對(duì)H4K8和H4K16作用較弱;GCN5還可以參與間充質(zhì)干細(xì)胞向心肌細(xì)胞分化過(guò)程中對(duì)心臟發(fā)育相關(guān)轉(zhuǎn)錄因子GATA4和NKX2.5的表達(dá)調(diào)控[9];此外,Lin等[10]研究指出,GCN5參與維持多能干細(xì)胞的功能,GCN5缺失的細(xì)胞可通過(guò)自身途徑引起細(xì)胞死亡。MOF屬于組蛋白乙酰化酶MYST家族,在細(xì)胞內(nèi)可乙?;疕4K16位點(diǎn)。
2.1 組蛋白乙?;揎検Ш庠谛募》屎裰械淖饔?/p>
心肌肥厚是心臟因血流動(dòng)力學(xué)超負(fù)荷產(chǎn)生的適應(yīng)性改變,是復(fù)雜的病理過(guò)程。在心肌肥厚發(fā)病過(guò)程中,存在組蛋白高乙?;閷?dǎo)的心臟發(fā)育相關(guān)基因的過(guò)表達(dá)[11],HATs抑制劑姜黃素可通過(guò)降低心臟發(fā)育相關(guān)基因的組蛋白乙?;礁纳菩募》屎馵12]。我們及其他團(tuán)隊(duì)的研究結(jié)果表明,HATs是參與調(diào)控心臟發(fā)育相關(guān)轉(zhuǎn)錄因子GATA4、MEF2C、NKX2.5及心臟結(jié)構(gòu)蛋白基因β-MHC、cTnT、Cx43表達(dá)的關(guān)鍵調(diào)控因子[13-14]。細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)信號(hào)通路可通過(guò)上調(diào)組蛋白H3的乙?;剑瑓⑴c酒精暴露所致的心臟發(fā)育相關(guān)轉(zhuǎn)錄因子的過(guò)表達(dá)[15],提示信號(hào)通路可通過(guò)組蛋白乙?;揎梾⑴c心肌肥厚的發(fā)病過(guò)程。
2.2 HATs不同亞型對(duì)心肌肥厚的調(diào)控作用
多種心臟疾病會(huì)導(dǎo)致心肌肥厚,如高血壓、主動(dòng)脈或肺動(dòng)脈縮窄、慢性心功能不全、心肌梗死、主動(dòng)脈瓣或肺動(dòng)脈瓣狹窄或閉鎖及神經(jīng)體液介導(dǎo)的內(nèi)分泌功能失調(diào)等。心臟發(fā)育相關(guān)轉(zhuǎn)錄因子的轉(zhuǎn)錄活性從某種程度上決定了心肌肥厚發(fā)生與否及嚴(yán)重程度,而這些轉(zhuǎn)錄因子活性與其啟動(dòng)子區(qū)域HATs結(jié)合水平的高低有關(guān)。研究發(fā)現(xiàn),HATs和HDACs介導(dǎo)的組蛋白乙?;揎検Ш庠诓±硇孕募》屎?、心室肌重構(gòu)中發(fā)揮重要作用[2,16]。HATs不同亞型可以單獨(dú)調(diào)控,也可以相互作用。
Li和Shen等[12,17]研究發(fā)現(xiàn),p300介導(dǎo)的GATA4的轉(zhuǎn)錄活化是調(diào)控心肌肥厚的關(guān)鍵因素。Suzuki等[18]也證實(shí)GATA4和p300的交互作用能夠激活活化蛋白激酶C1受體(RACK1),誘導(dǎo)心肌肥厚的發(fā)生。我們的前期研究證實(shí)p300和PCAF可共同調(diào)控NKX2.5的轉(zhuǎn)錄活性,參與胎鼠心肌肥厚的發(fā)生,而HATs抑制劑漆樹(shù)酸能夠逆轉(zhuǎn)HATs介導(dǎo)的組蛋白H3K9的高乙?;M(jìn)而改善心肌肥厚[19]。另外,HATs抑制劑姜黃素能夠下調(diào)p300的活性,逆轉(zhuǎn)脂多糖誘導(dǎo)的心肌肥厚[20-21]。PCAF和HDAC5可共同作用,調(diào)節(jié)HDAC2的轉(zhuǎn)錄活性,參與心肌肥厚的發(fā)病過(guò)程[22]。Papait等[23]通過(guò)基因芯片分析證實(shí),心臟發(fā)育相關(guān)轉(zhuǎn)錄因子MEF2A和MEF2C是介導(dǎo)心肌肥厚的關(guān)鍵轉(zhuǎn)錄因子;而我們的前期研究證實(shí)生理狀態(tài)下HATs亞型p300、PCAF和SRC1均參與了MEF2C的動(dòng)態(tài)調(diào)控[24]。Gusterson等[25]研究證實(shí),p300和CBP共同調(diào)控心鈉素(ANP)基因的過(guò)表達(dá),在苯腎上腺素誘導(dǎo)的心肌肥厚中發(fā)揮重要作用。Lin等[26]發(fā)現(xiàn)心肌肥厚過(guò)程中乙?;揎梾⑴c了肌動(dòng)蛋白加帽蛋白Z(CapZ)的調(diào)控,介導(dǎo)肌原纖維的生長(zhǎng)。國(guó)內(nèi)通過(guò)轉(zhuǎn)基因小鼠證實(shí)了MOF在心肌肥厚中表達(dá)異常,不同的是該酶是心肌肥厚的保護(hù)因子[27]。而GCN5雖在心肌組織中有表達(dá),但尚無(wú)研究證實(shí)其與心肌肥厚相關(guān)。
HATs介導(dǎo)的組蛋白乙?;揎検Ш鈪⑴c了心肌肥厚的發(fā)病過(guò)程,有望成為心肌肥厚防治的新靶點(diǎn)。從表觀遺傳學(xué)角度防治心肌肥厚的相關(guān)臨床試驗(yàn)已在進(jìn)行,但尚無(wú)針對(duì)組蛋白乙?;揎検Ш獾乃幬镞M(jìn)入臨床試驗(yàn)[28]。心肌肥厚發(fā)病過(guò)程中,HATs如何調(diào)控下游基因、HATs的上游信號(hào)通路仍不十分清楚,有待進(jìn)一步的研究。
[1] Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure [J]. Nat Rev Cardiol, 2015,12(8):488-497.
[2] Wang Y, Miao X, Liu Y, et al. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases [J]. Oxid Med Cell Longev, 2014,2014:641979.
[3] 曹珊珊, 蘇永立, 李瑞芳, 等. Ⅰ型組蛋白去乙?;冈谛募》屎裰械陌悬c(diǎn)作用[J]. 國(guó)際心血管病雜志, 2013,40(6):359-361.
[4] Sadoul K, Boyault C, Pabion M, et al. Regulation of protein turnover by acetyltransferases and deacetylases [J]. Biochimie, 2008,90(2):306-312.
[5] Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention [J]. Oncogene, 2007,26(37):5310-5318.
[6] Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the bromodomain [J]. Oncogene, 2007,26(37):5521-5527.
[7] Wei JQ, Shehadeh LA, Mitrani JM, et al. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300 [J]. Circulation, 2008,118(9):934-946.
[8] Chen X, Qin L, Liu Z, et al. Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype [J]. Int J Biol Sci, 2015,11(9):1056-1072.
[9] Li L, Zhu J, Tian J, et al. A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells [J]. Mol Cell Biochem, 2010,345(1-2):309-316.
[10] Lin W, Srajer G, Evrard YA, et al. Developmental potential of Gcn5(-/-) embryonic stem cells in vivo and in vitro [J]. Dev Dyn, 2007,236(6):1547-1557.
[11] Cao Y, Lu L, Liu M, et al. Impact of epigenetics in the management of cardiovascular disease: a review [J]. Eur Rev Med Pharmacol Sci, 2014,18(20):3097-3104.
[12] Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy [J]. J Clin Invest, 2008,118(3):879-893.
[13] Weber D, Heisig J, Kneitz S, et al. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes [J]. J Mol Cell Cardiol, 2015,79:79-88.
[14] Peng C, Zhu J, Sun HC, et al. Inhibition of histone H3K9 acetylation by anacardic acid can correct the over-expression of Gata4 in the hearts of fetal mice exposed to alcohol during pregnancy [J]. PLoS One, 2014,9(8):e104135.
[15] Gao W, Pan B, Liu L, et al. Alcohol exposure increases the expression of cardiac transcription factors through ERK1/2-mediated histone3 hyperacetylation in H9c2 cells [J]. Biochem Biophys Res Commun, 2015,466(4):670-675.
[16] Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation [J]. Circ Res, 2006,98(1):15-24.
[17] Shen P, Feng X, Zhang X, et al. SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300 [J]. J Pharmacol Sci, 2016 Apr 1. [Epub ahead of print].
[18] Suzuki H, Katanasaka Y, Sunagawa Y, et al. Tyrosine phosphorylation of RACK1 triggers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4 [J]. Biochim Biophys Acta, 2016,1862(9):1544-1557.
[19] Peng C, Zhang W, Zhao W, et al. Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts [J]. Biochimie, 2015,113(3):1-9.
[20] Chowdhury R, Nimmanapalli R, Graham T, et al. Curcumin attenuation of lipopolysaccharide induced cardiac hypertrophy in rodents [J]. ISRN Inflamm, 2013,2013:539305.
[21] 周瑤瑤, 張俊峰. 姜黃素在心血管疾病中的應(yīng)用[J]. 國(guó)際心血管病雜志, 2015,42(1):41-43.
[22] Eom GH, Nam YS, Oh JG, et al. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy [J]. Circ Res, 2014,114(7):1133-1143.
[23] Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy [J]. Proc Natl Acad Sci U S A, 2013,110(50):20164-20169.
[24] 彭 昌, 張維華, 潘 博, 等. 組蛋白乙?;笇?duì)心臟發(fā)育核心轉(zhuǎn)錄因子Mef2c的動(dòng)態(tài)調(diào)控作用[J]. 中國(guó)當(dāng)代兒科雜志, 2014,16(4):418-423.
[25] Gusterson RJ, Jazrawi E, Adcock IM, et al. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity [J]. J Biol Chem, 2003,278(9):6838-6847.
[26] Lin YH, Warren CM, Li J, et al. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ [J]. Cell Signal, 2016,28(8):1015-1024.
[27] Qiao W, Zhang W, Gai Y, et al. The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice [J]. Biochem Biophys Res Commun, 2014,448(4):379-384.
[28] Voelter-Mahlknecht S. Epigenetic associations in relation to cardiovascular prevention and therapeutics [J]. Clin Epigenetics, 2016,8:4.
(收稿:2016-04-14 修回:2016-05-06)
(本文編輯:胡曉靜)
國(guó)家自然科學(xué)基金(81560040)
563000 遵義醫(yī)學(xué)院附屬醫(yī)院兒科(彭 昌);400014 重慶醫(yī)科大學(xué)附屬兒童醫(yī)院心內(nèi)科(田 杰)
彭 昌,Email: pengchang_2006@126.com
10.3969/j.issn.1673-6583.2016.05.008