?
·綜述·
高鹽攝入與骨代謝*
朱曉峰,張榮華△
(暨南大學(xué)附屬第一醫(yī)院,廣東 廣州 510630)
骨質(zhì)疏松癥是以骨質(zhì)減少,骨微觀結(jié)構(gòu)退化為特征,致使骨的脆性增加以及易于發(fā)生骨折的一種全身性骨骼疾病。隨著老齡化人群的不斷增長,骨質(zhì)疏松的防治已經(jīng)成為一個(gè)全球的健康問題。骨質(zhì)疏松與遺傳、性別、年齡、體重、種族、飲食等均有相關(guān)性。和種族、遺傳因素不同,一些危險(xiǎn)因素是可以干預(yù)的,包括飲食營養(yǎng)、性激素、藥物應(yīng)用、生活習(xí)慣等。因此,從飲食營養(yǎng)角度探討骨質(zhì)疏松的防治有著重要意義。
食鹽是人體不可缺少的物質(zhì)成分,它的主要成分是氯化鈉,鈉離子和氯離子在人體參與維持細(xì)胞外液的滲透壓、調(diào)節(jié)體內(nèi)酸堿平衡、維持神經(jīng)和肌肉的興奮性等生理功能。但過量的鹽攝入?yún)⑴c了多種疾病的發(fā)生發(fā)展過程,包括了高血壓、心腦血管病等[1],近期的研究發(fā)現(xiàn)高氯化鈉也參與了類風(fēng)濕性關(guān)節(jié)炎等自體免疫疾病的發(fā)生發(fā)展[2]。也有部分研究表明,鹽也在一些疾病中如皮膚感染中起著正向作用[3]。
飲食鹽攝入與骨健康的關(guān)系也一直受到重視,很多臨床觀察和動(dòng)物實(shí)驗(yàn)顯示氯化鈉可以影響骨代謝,但也有一些矛盾的結(jié)果出現(xiàn),此外氯化鈉影響骨代謝的機(jī)理仍未完全清楚。我們以“氯化鈉”、“食鹽”、“骨”、“骨質(zhì)疏松”、“骨代謝”的不同組合為檢索詞(中英文),截至2015年12月檢索了Medline、Web of Science、中國知網(wǎng)等數(shù)據(jù)庫,根據(jù)文獻(xiàn)綜述了高鹽(氯化鈉)攝入與骨代謝的關(guān)系,對(duì)于明確鹽攝入影響骨代謝的病理生理學(xué)機(jī)制以及從飲食指導(dǎo)方面進(jìn)行骨質(zhì)疏松的防治有重要意義。
1高鹽攝入對(duì)骨代謝影響的臨床研究
1.1高鹽攝入對(duì)骨密度或骨礦含量的影響一系列的臨床觀察已經(jīng)提示高鹽攝入與骨量和骨密度有直接關(guān)系。采用尿鈉作為評(píng)價(jià)鹽攝入的指標(biāo),很早就發(fā)現(xiàn)高氯化鈉引起的高尿鈣可以減少骨量,減少的幅度取決于氯化鈉攝入的多少,一個(gè)橫斷面縱向研究發(fā)現(xiàn)440例絕經(jīng)后婦女的骨密度和24 h尿鈉的水平是負(fù)相關(guān)的[4],在尿鈣結(jié)石形成的病人中也得出了相同的結(jié)果[5]。通過對(duì)124例絕經(jīng)(大于10年)后婦女研究進(jìn)行多元回歸分析發(fā)現(xiàn)超過2年的尿鈉分泌和飲食鈣攝入是髖和踝關(guān)節(jié)部位骨密度顯著的決定因素,每天減少氯化鈉攝入121 mmol和每天提高鈣攝入22 mmol對(duì)骨的保護(hù)作用相當(dāng),尿鈉分泌低于92 mmol/d時(shí)沒有骨丟失的發(fā)生[6]。在低齡的研究對(duì)象中,高氯化鈉攝入加速了鈣的丟失,減少了8~13歲青年女孩的骨量[7]。
在亞洲人群中,納入1 098例中國人的臨床研究采用Logistic回歸分析發(fā)現(xiàn)總髖關(guān)節(jié)和腰椎骨密度和尿鈉、女性呈負(fù)相關(guān),認(rèn)為攝入氯化鈉是骨質(zhì)疏松的一個(gè)主要危險(xiǎn)因素[8]。在對(duì)2 779例韓國絕經(jīng)后婦女進(jìn)行的橫斷面研究結(jié)果顯示有骨質(zhì)疏松的參與者尿鈉顯著高于無骨質(zhì)疏松的參與者,矯正多個(gè)混雜因素后,尿鈉和腰椎骨密度顯著負(fù)相關(guān),平均骨密度隨著尿鈉的升高而降低[9]。
但也有一些研究沒有得到相同甚至得到了相反的結(jié)果。有研究顯示鈉飲食和骨密度是沒有關(guān)系的[10-11],另有研究也顯示鈉對(duì)骨代謝有益,在一個(gè)為期3年的關(guān)于鈉攝入和骨密度或骨礦含量關(guān)系的研究中,參與者為健康的136例絕經(jīng)后白人婦女,一組每日鹽攝入為1 500 mg,另一組為3 000 mg,全部受試者給予鈣和維生素D補(bǔ)充至推薦的標(biāo)準(zhǔn),每6個(gè)月評(píng)估 1 次,結(jié)果顯示前臂和脊柱隨著高鈉攝入在各個(gè)時(shí)點(diǎn)有著更高的骨密度[12]。
1.2高鹽攝入對(duì)骨代謝生化指標(biāo)的影響骨骼是一個(gè)相對(duì)不活躍的組織,骨密度和骨礦含量的變化要求觀察的時(shí)間較長,且需要特定的設(shè)備和條件,因此短期評(píng)價(jià)骨代謝狀況時(shí),多采用尿和血液學(xué)生化指標(biāo)。代表骨吸收的指標(biāo)有抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatase,TRAP)、羥脯氨酸(hydroxyproline,HOP)、膠原吡啶并啉(pyridine,Pyr)、脫氧膠原吡啶并啉(deoxypyridinoline,D-Pyr)、I型膠原氨基端肽(N-terminal telopeptide of type I collagen,NTx)、I型膠原羧基端肽(carboxy-terminal telopeptide of type Ⅰ collagen,CTx);代表骨形成的指標(biāo)有甲狀旁腺激素(parathyroid hormone,PTH)、降鈣素(calcitonin,CT)、骨鈣素(osteocalcin,OC)、骨特異性堿性磷酸酶(bone-specific alkaline phosphatase,BALP)等。值得一提的是最初尿HOP一直作為骨吸收的一個(gè)證據(jù),后來因缺乏特異性,而被更可靠的基于尿的破骨細(xì)胞骨吸收的指標(biāo)(Pyr、D-pyr和NTx等)代替。
多個(gè)橫斷面觀察研究已經(jīng)證實(shí)在不同人群中高鹽攝入和尿鈣以及HOP的分泌是正相關(guān)的[4]。在一個(gè)11例絕經(jīng)后婦女參與的隨機(jī)交叉設(shè)計(jì)試驗(yàn)里,7 d高鹽飲食(300 mmol/d)相比低鹽飲食(50 mmol/d)在尿鈣、尿鈉顯著升高的同時(shí)尿D-pyr也顯著升高27%[13]。一個(gè)有763例自愿者的橫斷面研究中,多元回歸統(tǒng)計(jì)分析結(jié)果顯示50~79歲的女性,尿D-Pyr和尿鈉具有顯著相關(guān)性[14]。對(duì)60例絕經(jīng)后婦女先進(jìn)行低鹽飲食(每天87 mmol鈉)3周,然后隨機(jī)進(jìn)行高鹽飲食(每天225 mmol鈉)加鉀或者安慰劑4周,發(fā)現(xiàn)提高鹽攝入提高了NTx,骨形成標(biāo)志物OC則顯著減少[15]。納入23~76歲的186個(gè)成年人的介入性研究中,低鈉飲食30 d減少了血清OC、CTx和PTH[16],降低了骨轉(zhuǎn)換。高鈉飲食顯著提高了尿鈉、鉀、鈣、氮、NTx,和維生素D受體基因多態(tài)性(f+VDR)也有明確關(guān)系[17]。低鹽飲食(2 g/d)6個(gè)月顯著減少了40例絕經(jīng)后非裔美國婦女和高加索婦女尿鈉、鈣和NTx的分泌[18]。8個(gè)健康男性參與的一項(xiàng)研究表明,高氯化鈉提高了CTx和NTx的分泌[19]。對(duì)10例健康絕經(jīng)后婦女14 d研究發(fā)現(xiàn),高鹽飲食的D-Pyr和NTx濃度在傍晚明顯升高,空腹和餐后的OC值在低鹽飲食組升高[20]。在韓國大規(guī)模的臨床試驗(yàn)中發(fā)現(xiàn)低鹽飲食可以降低骨轉(zhuǎn)換指標(biāo)OC和CTx[21]。
一些陰性的結(jié)果顯示,對(duì)14例絕經(jīng)后婦女隨機(jī)分成高鈉和低鈉2組,干預(yù)8 d顯示并沒有尿D-pyr的不同[22]。橫斷面研究回歸分析表明尿鈉和尿鈣及尿D-pyr有較強(qiáng)的相關(guān)性,但糾正混雜因素尤其是體重后這種相關(guān)性便消失了[23]。另在健康青年人中提高鹽攝入不能改變骨吸收指標(biāo)Pyr和D-pyr或者骨形成指標(biāo)血清OC和BALP[24]。給予29例青年男女(21~39歲)低鹽飲食7周,骨代謝的指標(biāo)沒有明顯的變化[25]。
2高鹽攝入對(duì)骨代謝影響的動(dòng)物實(shí)驗(yàn)
動(dòng)物實(shí)驗(yàn)顯示高氯化鈉攝入和骨丟失有直接關(guān)系,成長期的大鼠飲食添加氯化鈉16 d,其骨鈣低于年齡相當(dāng)?shù)膶?duì)照組,同位素標(biāo)記顯示氯化鈉誘導(dǎo)尿鈉、鈣、磷、cAMP和HOP的分泌,表明氯化鈉誘導(dǎo)的骨丟失主要是提高骨吸收而不是減少骨形成。在去卵巢大鼠中給予限制鈣的飲食和氯化鈉添加加速了骨丟失,也提高了正常和去卵巢大鼠尿鈣和尿HOP的分泌,減少了骨密度[4]。氯化鈉的添加(80 g/kg)增加了斷奶大鼠3到5倍尿鈣的分泌和少量尿磷、尿鎂的分泌,減少了骨量和骨礦含量[26]。
對(duì)正常大鼠予以高鹽加高鈣飲食(0.6%)或者低鈣飲食(0.02%),結(jié)果顯示分別在5周和4個(gè)月時(shí)減少了骨鈣含量[27]。在鹽敏感大鼠中,給予高鹽飲食后8周骨密度開始減少,不但促進(jìn)骨吸收而且抑制骨形成,到22周時(shí)骨密度顯著減少[28]。在3周大的大鼠中添加高鹽(50 g/kg)飲食3周,鹽飲食組大鼠的體重減輕,尿鈣、尿鎂分泌分別提高3倍和2倍,股骨鈣含量減少,尿Pyr和D-pyr的分泌提高[29]。另有研究顯示鹽負(fù)荷的大鼠從實(shí)驗(yàn)第5周開始有一個(gè)顯著的低體重,尿鈣,是對(duì)照動(dòng)物的5倍,骨密度、骨礦含量和股骨重量輕微減少[30]。在失重狀態(tài)下,高鹽飲食能夠更快地減少股骨骨密度和骨強(qiáng)度[31]。
3高鹽攝入影響骨代謝的機(jī)制
3.1高鹽攝入增加尿鈣的排泄高鹽飲食作為骨質(zhì)疏松的主要危險(xiǎn)因素主要基于氯化鈉對(duì)尿鈣排泄的影響。鈣是一個(gè)重要的影響骨密度的營養(yǎng)因素,近99%的鈣存在于骨和牙齒中,另外1%的鈣存在于體液中,機(jī)體鈣平衡直接影響骨礦含量,長時(shí)間的陰性平衡將導(dǎo)致鈣從骨組織動(dòng)員出來從而導(dǎo)致骨質(zhì)疏松。尿鈣的原因部分是鹽誘導(dǎo)的容積擴(kuò)張,伴隨著腎小球?yàn)V過率的升高,另一部分是鈉和鈣離子在近端小管和亨利氏襻存在聯(lián)系或共同的吸收途徑[32]。當(dāng)飲食中氯化鈉升高,鈉在腎小管的重吸收減少,導(dǎo)致了鈣重吸收的平行減少。在對(duì)一項(xiàng)17個(gè)鹽負(fù)荷研究和18個(gè)人群的調(diào)查分析表明,尿鈣/尿鈉的中位比值分別是0.69和1.15[4]。這些數(shù)據(jù)支持每天提高100 mmol(2 290 mg)的飲食鹽將提高1 mmol(40 mg)尿鈣的排泄[33]。
高鹽攝入增加了尿鈣分泌,已經(jīng)被各個(gè)年齡段多個(gè)種族的人體試驗(yàn)所證實(shí),盡管這種關(guān)系不可能是線性的,在年輕婦女中提高鈉攝入即可引起高尿鈣[34],而絕經(jīng)后婦女更為顯著[13]。通過對(duì)50例高加索人及39例非裔美國人的研究發(fā)現(xiàn),鈉分泌是鈣分泌的預(yù)報(bào)器,這種關(guān)系可以被鈣攝入調(diào)節(jié),和種族沒有關(guān)系[35]。而對(duì)1 577例受試者(包括277例白人,227例非裔美國人,239例南亞人)的橫斷面研究發(fā)現(xiàn),進(jìn)行年齡、性別校正后,鹽攝入和種族是尿鈣的獨(dú)立預(yù)測因素[36]。在亞洲人群中也有相同結(jié)果,韓國的一項(xiàng)研究中顯示尿鈣和年齡、血壓、尿鈉、鹽攝入有明確關(guān)系[37]。在中國的一項(xiàng)橫斷面研究中也顯示飲食鈉可以提高尿鈣分泌[38]。在日本,在2組性別中均觀察到每天的尿鈣分泌和尿鈉分泌有顯著的相關(guān)性[39]。通過一項(xiàng)1 010例中國香港人橫斷面分析發(fā)現(xiàn)尿鈉是尿鈣一個(gè)領(lǐng)先的獨(dú)立因素,和蛋白、鈣、磷等無關(guān),多元回歸分析發(fā)現(xiàn)尿鈉每提高100 mmol尿鈣約提高1.4 mmol[40]。在動(dòng)物實(shí)驗(yàn)中,高鹽攝入與尿鈣分泌的關(guān)系得到了更為直接地證實(shí),鹽添加可以使大鼠地尿鈣的排泄增加3倍[29,41]。
提高尿鈣分泌可導(dǎo)致骨吸收或腸道吸收鈣的提高。研究發(fā)現(xiàn)年輕人適應(yīng)高鹽飲食是通過提高血清PTH,繼而依次提高骨化三醇的產(chǎn)生和腸道的鈣吸收來實(shí)現(xiàn)的,然而,通過提高鈣吸收對(duì)尿鈣分泌的補(bǔ)償,尤其是在其它危險(xiǎn)因素如低鈣等情況下,即使在年輕人中也是有限的。在絕經(jīng)后婦女中提高氯化鈉攝入并不伴隨著血清PTH和腸道鈣吸收的升高,主要是通過繼發(fā)的骨吸收起作用[42]。實(shí)驗(yàn)動(dòng)物中,年輕的大鼠中給予鈣缺乏的飲食(0.1%鈣),盡管有高水平的骨化三醇,鈣吸收仍不能補(bǔ)償尿鈣的丟失,因此,鈣不得不從骨中動(dòng)員出來以維持正常的血鈣濃度[4];高鹽飲食引起大鼠股骨鈣容量的減少在低鈣飲食(0.02%鈣)情況下僅需要2個(gè)月,正常鈣飲食(0.6%鈣)情況下是4個(gè)月后出現(xiàn)[43]。
3.2高鹽攝入引起代謝性酸中毒提高氯化鈉攝入可引起高尿鈣分泌,但鈣是怎樣動(dòng)員出骨的仍不清楚。一些研究結(jié)果顯示提高氯化鈉攝入和酸堿平衡有一定的聯(lián)系,提高氯化鈉攝入導(dǎo)致了陽性的鈉平衡,減少了液體潴留,降低了血清pH值和碳酸氫鹽的水平[44]。絕經(jīng)后婦女共同攝入高鹽和碳酸氫鉀顯示,高氯化鈉可以提高pH值減少骨吸收標(biāo)志物的分泌,補(bǔ)充碳酸氫鉀后骨礦平衡和骨骼代謝得到改善,伴隨著血漿碳酸鹽濃度和血pH值的提高,這是酸堿平衡與骨狀況直接關(guān)系的報(bào)道[15]。體內(nèi)和體外實(shí)驗(yàn)已經(jīng)證實(shí)pH值的降低可以激活破骨細(xì)胞,也可以抑制成骨細(xì)胞活性[45],通過環(huán)氧化酶依賴的機(jī)制促進(jìn)核因子κB受體活化因子配體的表達(dá)[46],誘導(dǎo)骨吸收,導(dǎo)致鈣從骨中丟失,在骨丟失和最終發(fā)展至骨質(zhì)疏松過程中起著重要作用[47]。
研究顯示高氯化鈉攝入引起的酸堿失衡是輕度的代謝性酸中毒[45, 48],對(duì)生長期骨皮質(zhì)和骨礦含量以及絕經(jīng)前后婦女骨密度有陰性調(diào)節(jié)作用,可以提高骨吸收標(biāo)志物[49-50]。其原因可能是,一方面輕度代謝性酸中毒直接刺激破骨細(xì)胞,細(xì)胞實(shí)驗(yàn)中pH值的減少,即使接近于生理環(huán)境,也可引起骨吸收的大幅度升高[45];另一方面,輕度的代謝性酸中毒直接影響遠(yuǎn)端腎小管的鈣吸收,導(dǎo)致腎性高尿鈣。除以上機(jī)制外,尿鈣排出也導(dǎo)致PTH的分泌,動(dòng)員鈣溶解。PTH本身也可以通過減少腎小管對(duì)碳酸氫鹽的重吸收誘導(dǎo)代謝性酸中毒[51]。在一項(xiàng)8名健康男性參與的隨機(jī)交叉試驗(yàn)中,一組應(yīng)用90 mmol的碳酸氫鉀補(bǔ)充以抵消氯化鈉誘導(dǎo)的輕度代謝性酸中毒,另一組僅應(yīng)用高氯化鈉攝入作為對(duì)照,結(jié)果顯示碳酸氫鉀補(bǔ)充組尿鈣分泌和骨吸收標(biāo)志物NTx分別減少了12%和8%[52]。越來越多的研究認(rèn)為,典型現(xiàn)代高鈉低鉀的飲食方式引起了慢性輕度的代謝酸中毒,加速了骨丟失的發(fā)生[53]。
值得注意的是氯離子在鈣的代謝中也起著重要作用[54]。氯離子和鈉離子在整個(gè)過程中同樣重要,這個(gè)重要性在利用腸外營養(yǎng)標(biāo)記的病人中得到證實(shí),只有氯化鈉(而不是檸檬酸鈉)提高尿鈣排泄[4]。另外在一項(xiàng)健康人的橫斷面研究中也發(fā)現(xiàn)氯攝入與鈉攝入有強(qiáng)烈的正相關(guān)[55],氯化鈉引起的酸中毒應(yīng)該作為骨質(zhì)疏松的一個(gè)危險(xiǎn)因素。
Figure 1.High salt intake leads to bone resorption by increasing levels of urinary calcium excretion and a low-grade metabolic acidosis.
圖1高氯化納攝入引起骨吸收的相關(guān)機(jī)制
4小結(jié)
總體上來看,長期高氯化鈉攝入對(duì)于骨健康是有害的,盡管在臨床研究中得到了不一致的結(jié)果,這可能與臨床觀察中受到鈣、維生素D補(bǔ)充的影響[10-12,25],或者觀察時(shí)間較短[23-24],或者例數(shù)太少[22,25]有關(guān)。相反,在比較容易控制的動(dòng)物實(shí)驗(yàn)中則得到了明確的結(jié)果。高氯化鈉攝入作為骨質(zhì)疏松的一個(gè)危險(xiǎn)因素,越來越受到重視,其機(jī)制可能與高氯化納引起的尿鈣排泄增加和輕度的代謝性酸中毒相關(guān)(圖1)。在氯化鈉對(duì)骨骼的影響中,氯離子和鈉離子一樣起著重要作用。但是高氯化鈉對(duì)骨骼的影響仍有許多方面尚不清楚,首先必須關(guān)注的是多大負(fù)荷的氯化鈉能影響骨代謝,是否像鹽敏感高血壓一樣有無特定的基因參與了此過程,有無種族和人群的差異?過低攝入氯化鈉是否對(duì)骨骼也有負(fù)面作用?其次,對(duì)于高鹽影響骨代謝機(jī)制的研究,目前僅停留在對(duì)尿鈣的排泄影響和氯化鈉引起的代謝性酸中毒方面,而鈉影響鈣在腎小管的重吸收機(jī)制尚不明確?此外,隨著對(duì)氯化鈉影響機(jī)體的認(rèn)識(shí)不斷深入,我們還發(fā)現(xiàn)氯化鈉可以通過對(duì)免疫細(xì)胞的調(diào)節(jié)參與自身免疫疾病的發(fā)生與發(fā)展[2],而骨骼作為一個(gè)和免疫系統(tǒng)密切相關(guān)的器官[56],氯化鈉能否通過免疫系統(tǒng)影響骨骼健康?氯化鈉能否直接影響骨系細(xì)胞活性?進(jìn)一步開展氯化鈉和骨健康關(guān)系的研究,對(duì)于明確營養(yǎng)物質(zhì)對(duì)骨代謝影響的病理生理學(xué)機(jī)制以及日常生活中對(duì)于骨質(zhì)疏松的防治具有重要的意義。
[參考文獻(xiàn)]
[1]O′Donnell M, Mente A, Yusuf S. Sodium intake and cardiovascular health[J]. Circ Res, 2015, 116(6):1046-1057.
[2]Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells[J]. Nature, 2013, 496(7446):518-522.
[3]Jantsch J, Schatz V, Friedrich D, et al. Cutaneous Na+storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense[J]. Cell Metab, 2015, 21(3):493-501.
[4]Massey LK, Whiting SJ. Dietary salt, urinary calcium, and bone loss[J]. J Bone Miner Res, 1996, 11(6):731-736.
[5]Martini LA, Cuppari L, Colugnati FA, et al. High sodium chloride intake is associated with low bone density in calcium stone-forming patients[J]. Clin Nephrol, 2000, 54(2):85-93.
[6]Devine A, Criddle RA, Dick IM, et al. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women[J]. Am J Clin Nutr, 1995, 62(4):740-745.
[7]Matkovic V, Ilich JZ, Andon MB, et al. Urinary calcium, sodium, and bone mass of young females[J]. Am J Clin Nutr, 1995, 62(2):417-425.
[8]Woo J, Kwok T, Leung J, et al. Dietary intake, blood pressure and osteoporosis[J]. J Hum Hypertens, 2009, 23(7):451-455.
[9]Kim SW, Jeon JH, Choi YK, et al. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011[J]. Endocrine, 2015, 49(3):791-799.
[10]Dawson-Hughes B, Fowler SE, Dalsky G, et al. Sodium excretion influences calcium homeostasis in elderly men and women[J]. J Nutr, 1996, 126(9):2107-2112.
[11]Reid IR, Ames RW, Evans MC, et al. Determinants of the rate of bone loss in normal postmenopausal women[J]. J Clin Endocrinol Metab, 1994, 79(4):950-954.
[12]Ilich JZ, Brownbill RA, Coster DC. Higher habitual sodium intake is not detrimental for bones in older women with adequate calcium intake[J]. Eur J Appl Physiol, 2010, 109(4):745-755.
[13]Evans CE, Chughtai AY, Blumsohn A, et al. The effect of dietary sodium on calcium metabolism in premenopausal and postmenopausal women[J]. Eur J Clin Nutr, 1997, 51(6):394-399.
[14]Itoh R, Suyama Y, Oguma Y, et al. Dietary sodium, an independent determinant for urinary deoxypyridinoline in elderly women. A cross-sectional study on the effect of dietary factors on deoxypyridinoline excretion in 24-h urine specimens from 763 free-living healthy Japanese[J]. Eur J Clin Nutr, 1999, 53(11):886-890.
[15]Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet[J]. J Clin Endocrinol Metab, 2002, 87(5):2008-2012.
[16]Lin PH, Ginty F, Appel LJ, et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults[J]. J Nutr,2003, 133(10):3130-3136.
[17]Harrington M, Bennett T, Jakobsen J, et al. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women and its interaction with vitamin D receptor genotype[J]. Br J Nutr, 2004, 91(1):41-51.
[18]Carbone LD, Barrow KD, Bush AJ, et al. Effects of a low sodium diet on bone metabolism[J]. J Bone Miner Metab, 2005, 23(6):506-513.
[19]Frings-Meuthen P, Buehlmeier J, Baecker N, et al. High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses[J]. J Appl Physiol, 2011, 111(2):537-542.
[20]Linda K, Massey. Effect of dietary salt intake on circadian calcium metabolism, bone turnover, and calcium oxalate kidney stone risk in postmenopausal women[J]. Nutr Res, 2005, 25(10):891-903.
[21]Park SM, Joung JY, Cho YY, et al. Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass[J]. Eur J Clin Nutr, 2015,69(3):361-366.
[22]Lietz G, Avenell A, Robins SP. Short-term effects of dietary sodium intake on bone metabolism in postmenopausal women measured using urinary deoxypyridinoline excretion[J]. Br J Nutr, 1997, 78(1):73-82.
[23]Jones G, Beard T, Parameswaran V, et al. A population-based study of the relationship between salt intake, bone resorption and bone mass[J]. Eur J Clin Nutr, 1997, 51(8):561-565.
[24]Ginty F, Flynn A, Cashman KD. The effect of dietary sodium intake on biochemical markers of bone metabolism in young women[J]. Br J Nutr, 1998, 79(4):343-350.
[25]Natri AM, K?rkk?inen MU, Ruusunen M, et al. A 7-week reduction in salt intake does not contribute to markers of bone metabolism in young healthy subjects[J]. Eur J Clin Nutr, 2005, 59(3):311-317.
[26]Shortt C, Flynn A. Effect of dietary lactose on salt mediated changes in mineral metabolism and bone composition in the rat[J]. Br J Nutr, 1991, 66(1):73-81.
[27]Chan AY, Poon P, Chan EL, et al. The effect of high sodium intake on bone mineral content in rats fed a normal calcium or a low calcium diet[J]. Osteoporos Int, 1993, 3(6):341-344.
[28]Iwasa Y, Shimoyama K, Aoki K, et al. The effect of high salt intake on the mandibular bone loss in Dahl-Iwai salt-sensitive rat[J]. J Med Dent Sci, 2000, 47(3):187-195.
[29]Creedon A, Cashman KD. The effect of high salt and high protein intake on calcium metabolism, bone composition and bone resorption in the rat[J]. Br J Nutr, 2000, 84(1):49-56.
[30]SarifM, Piasek M, Blanusa M, et al. Sodium and calcium intakes and bone mass in rats revisited[J]. Nutrition, 2005, 21(5):609-614.
[31]Liang MT, Navidi M, Cleek TM, et al. Dietary salt, bone strength, and mineral content in unloaded rat femurs[J]. Aviat Space Environ Med, 2011, 82(10):941-945.
[32]Heaney RP. Role of dietary sodium in osteoporosis[J]. J Am Coll Nutr, 2006, 25(3 Suppl):271-276.
[33]Nordin BE, Need AG, Morris HA, et al. The nature and significance of the relationship between urinary sodium and calcium in women[J]. J Nutr, 1993, 123(9):1615-1622.
[34]Susan JW, Timothy JG,Evezyn PM, et al. Effects of excess protein, sodium and potassium on acute and chronic urinary calcium excretion in young women[J]. Nutri Res, 1998, 18(3):475-487.
[35]Carbone LD, Bush AJ, Barrow KD, et al. The relationship of sodium intake to calcium and sodium excretion and bone mineral density of the hip in postmenopausal African-American and Caucasian women[J]. J Bone Miner Metab, 2003, 21(6):415-420.
[36]Blackwood AM, Sagnella GA, Cook DG, et al. Urinary calcium excretion, sodium intake and blood pressure in a multi-ethnic population: results of the Wandsworth Heart and Stroke Study[J]. J Hum Hypertens, 2001, 15(4):229-237.
[37]Lim HJ. A study on the calcium and sodium intakes and urinary calcium excretion of adults in Busan[J]. Korean J Community Nutr, 2011, 16(2):215-226.
[38]Hu JF, Zhao XH, Parpia B, et al. Dietary intakes and urinary excretion of calcium and acids: a cross-sectional study of women in China[J]. Am J Clin Nutr, 1993, 58(3):398-406.
[39]Itoh R, Suyama Y. Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population[J]. Am J Clin Nutr, 1996, 63(5):735-740.
[40]Ho SC, Chen YM, Woo JL, et al. Sodium is the leading dietary factor associated with urinary calcium excretion in Hong Kong Chinese adults[J]. Osteoporos Int, 2001, 12(9):723-731.
[41]Mason RA, Morris HA. Increased urinary calcium excretion potentiates bone turnover in oophorectomized rats[J]. Miner Electrolyte Metab, 1997, 23(1):38-42.
[42]Cohen AJ, Roe FJ. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt[J]. Food Chem Toxicol, 2000, 38(2-3):237-253.
[43]Chan EL, Swaminathan R. Calcium metabolism and bone calcium content in normal and oophorectomized rats consuming various levels of saline for 12 months[J]. J Nutr, 1998, 28(3):633-639.
[44]Heer M, Baisch F, Kropp J, et al. High dietary sodium chloride consumption may not induce body fluid retention in humans[J]. Am J Physiol Renal Physiol, 2000, 278(4):585-595.
[45]Frings-Meuthen P, Baecker N, Heer M. Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption[J]. J Bone Miner Res, 2008, 23(4):517-524.
[46]Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism[J]. J Bone Miner Res, 2003, 18(7):1317-1325.
[47]MacLeay JM, Olson JD, Enns RM, et al. Dietary-induced metabolic acidosis decreases bone mineral density in mature ovariectomized ewes[J]. Calcif Tissue Int, 2004, 75(5):431-437.
[48]Heer M, Frings-Meuthen P, Titze J, et al. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently[J]. Br J Nutr, 2009, 101(9):1286-1294.
[49]New SA, MacDonald HM, Campbell MK, et al. Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women[J]. Am J Clin Nutr, 2004, 79(1):131-138.
[50]Macdonald HM, New SA, Fraser WD, et al. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women[J]. Am J Clin Nutr, 2005, 81(4):923-933.
[51]Peacock M. Primary hyperparathyroidism and the kidney: Biochemical and clinical spectrum[J]. J Bone Miner Res, 2002, 17(Suppl 2):N87-N94.
[52]Buehlmeier J, Frings-Meuthen P, Remer T, et al. Alkaline salts to counteract bone resorption and protein wasting induced by high salt intake: results of a randomized controlled trial[J]. J Clin Endocrinol Metab, 2012, 97(12):4789-4797.
[53]Frassetto LA, Morris RC Jr, Sellmeyer DE, et al. Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American Diets[J]. J Nutr, 2008, 138(2):419S-422S.
[54]Barzel US. Anion effects on calcium metabolism[J]. Miner Res, 1997, 12(2):298-299.
[55]Frassetto LA, Morris RC Jr, Sebastian A. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet[J]. Am J Physiol Renal Physiol, 2007, 293(2):F521-F525.
[56]Maruyama K, Akira S. Emerging molecules in the interface between skeletal system and innate immunity[J]. Pharmacol Res, 2015, 99:223-228.
(責(zé)任編輯:盧萍, 余小慧)
High salt intake and bone metabolismZHU Xiao-feng, ZHANG Rong-hua
(TheFirstAffiliatedHospitalofJinanUniversity,Guangzhou510630,China.E-mail:tzrh@jnu.edu.cn)
[ABSTRACT]Osteoporosis has become a global public health problem, and dietary interventions may potentially be helpful in preventing this disorder. Salt (sodium chloride) is one of the most important dietary nutrients. High sodium chloride intake may play an important role in bone metabolism. In this paper, we reviewed the effects of high sodium chloride intake on bone mineral density, bone mineral content and bone biochemical markers, and analyzed the possible causes through currently available literature. Although there are a few inconsistencies results, we conclude a long-term high salt intake can reduce bone density or bone mineral content, change many biochemical markers of bone resorption, which may be caused mainly by increasing urinary calcium excretion and a low-grade metabolic acidosis. However, there are still many unclear aspects need further exploration.
[關(guān)鍵詞]氯化鈉; 骨質(zhì)疏松; 骨代謝
[KEY WORDS]Sodium chloride; Osteoporosis; Bone metabolism
doi:10.3969/j.issn.1000- 4718.2016.02.030
[中圖分類號(hào)]R363
[文獻(xiàn)標(biāo)志碼]A
通訊作者△Tel: 020-85228202; E-mail: tzrh@jnu.edu.cn
*[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No.81173619; No.81473509);廣東省自然科學(xué)基金資助項(xiàng)目(No.S2012040007531);廣東建設(shè)中醫(yī)藥強(qiáng)省科研項(xiàng)目(No.20151178);暨南大學(xué)附屬第一醫(yī)院科研培育項(xiàng)目(No.2015103)
[收稿日期]2015- 11- 23[修回日期] 2015- 12- 24
[文章編號(hào)]1000- 4718(2016)02- 0371- 06