戚 瑩, 李曉睿, 武云杰, 侯冰清, 張景華,張小全, 翟 欣, 楊鐵釗*
(1.河南農(nóng)業(yè)大學(xué) 煙草學(xué)院, 河南 鄭州 450002; 2.貴州省煙草公司畢節(jié)地區(qū)公司, 貴州 畢節(jié) 551700)
畢節(jié)自育特色烤煙品種煙葉衰老期的氮代謝特征
戚 瑩1, 李曉睿1, 武云杰1, 侯冰清1, 張景華1,張小全1, 翟 欣2, 楊鐵釗1*
(1.河南農(nóng)業(yè)大學(xué) 煙草學(xué)院, 河南 鄭州 450002; 2.貴州省煙草公司畢節(jié)地區(qū)公司, 貴州 畢節(jié) 551700)
為畢節(jié)特色優(yōu)質(zhì)烤煙生產(chǎn)上的合理施肥提供理論依據(jù),通過設(shè)置不同施氮量處理,研究氮素營養(yǎng)對3個畢節(jié)自育特色烤煙品種氮代謝相關(guān)指標(biāo)的影響。結(jié)果表明:隨著施氮量的增加,煙葉成熟過程中質(zhì)體色素、可溶性蛋白和總氮積累量增大,谷氨酰胺合成酶(GS)、谷氨酸脫氫酶(GDH)、硝酸還原酶活性(NR)增強,氨氣補償點升高,煙葉氮代謝強度增強。品種間差異顯著,畢納1號的氮素營養(yǎng)物質(zhì)降解速率較快,其GS活性和NR活性較低,GDH活性較高,氨氣補償點較高,耐肥性較強;黔西1號耐肥性較弱,韭菜坪2號居中。煙葉的氮素運籌是氮素吸收、同化和在再轉(zhuǎn)移能力的表現(xiàn),其中GS活性起主導(dǎo)作用。畢納1號、韭菜坪2號和黔西1號的氮代謝相關(guān)指標(biāo)均以6 kg/667m2施氮量處理氮代謝較為協(xié)調(diào),以畢納1號耐肥性最強,適合6~7.5 kg/667m2肥力條件,黔西1號耐肥性較弱,適合4.5~6 kg/667m2的肥力條件,韭菜坪2號居中,適合6 kg/667m2的肥力條件。
烤煙; 氮代謝; 品種; 施氮量; 畢節(jié)
品種是農(nóng)業(yè)生產(chǎn)的基礎(chǔ),而優(yōu)良的品種則是農(nóng)業(yè)生產(chǎn)的重要條件??緹熎贩N對產(chǎn)量的貢獻率為20%~35%,對品質(zhì)的貢獻率高達50%,在煙草生產(chǎn)中具有重要作用[1-3]。煙草品種具有較廣泛的適應(yīng)性,但只有種植在適宜的生態(tài)條件下,才能獲得最佳的產(chǎn)量和品質(zhì)。畢節(jié)地區(qū)是我國第三大烤煙產(chǎn)區(qū),其烤煙種植區(qū)域分布在海拔800~2 300 m,海拔跨度大,立體氣候特征明顯,土壤類型較多[4-6]。根據(jù)品種對生態(tài)、栽培的響應(yīng),選擇適合當(dāng)?shù)氐奶厣緹熎贩N,充分彰顯畢節(jié)煙葉清甜香風(fēng)格,以提高煙葉品質(zhì)的適配性[7-8]。氮素是影響煙葉產(chǎn)量和品質(zhì)的重要營養(yǎng)元素,不同基因型烤煙具有不同的氮素代謝特性[9-10]。特別是在煙葉衰老期,氮素的運籌和轉(zhuǎn)化對煙葉成熟落黃至關(guān)重要[11-12]。氮素供應(yīng)過多,煙葉產(chǎn)量提高但成熟期推遲,特別是氮化合物含量過高,造成品質(zhì)下降;氮素供應(yīng)過少,則煙葉發(fā)育不良,對產(chǎn)量和品質(zhì)均不利[13]。不同品種的氮素代謝(氮素吸收和轉(zhuǎn)化)存在很大差異,并最終影響煙葉的產(chǎn)量和品質(zhì)[14]。由于不同地區(qū)的土壤特性差異,關(guān)于畢節(jié)地區(qū)煙葉特色烤煙品種氮代謝方面的研究報道極少。為此,通過不同施氮量處理,研究3個畢節(jié)特色烤煙品種的氮代謝特性,以期為當(dāng)?shù)靥厣珒?yōu)質(zhì)烤煙生產(chǎn)上的合理施肥提供理論依據(jù)。
1.1 試驗材料
1.1.1 烤煙品種 畢納1號、韭菜坪2號和黔西1號,畢節(jié)地區(qū)自育優(yōu)質(zhì)烤煙品種。
1.1.2 肥料 硝酸銨、普鈣和硫酸鉀,由畢節(jié)市煙草公司提供。
1.2 試驗時間及試驗地概況
試驗于2014年在畢節(jié)七星關(guān)區(qū)進行。試驗地前茬作物為煙草,土壤肥力均勻,供試土壤為黃棕壤,基礎(chǔ)肥力為全氮1.24 g/kg,堿解氮29.98 mg/kg,速效磷20.21 mg/kg,速效鉀126.15 mg/kg,有機質(zhì)33.87 g/kg,pH6.78。
1.3 試驗設(shè)計
采用隨機區(qū)組設(shè)計,施氮量設(shè)置低氮、中氮和高氮3個處理,分別為施用純氮4.5 kg/667m2、6 kg/667m2和7.5 kg/667m2,磷鉀肥均為P2O56 kg/667m2,K2O 15 kg/667m2。每個處理3次重復(fù),共27個小區(qū)。每個小區(qū)66.7 m2,株行距為55 cm×110 cm。按照大田優(yōu)質(zhì)煙葉生產(chǎn)管理方法進行管理。選取各品種整齊一致的單株,以自下向上第11片葉為試驗對象,在葉齡為30 d、40 d、50 d、60 d和調(diào)制前1 d(自幼葉長1 cm,寬0.5 cm時作為第1天葉齡)取樣,各指標(biāo)測定3次重復(fù)。
1.4 指標(biāo)測定
谷氨酰胺合成酶(GS)活性參照文獻[16]的方法測定,總GS活性計算以1 mg/min粗蛋白催化產(chǎn)生的γ-谷氨酰異羥肟酸μmol數(shù)表示。
谷氨酸脫氫酶(GDH)活性參照文獻[17]的方法測定,總GDH活性計算以1 mg/min粗蛋白催化NADH減少的μmol數(shù)表示。在340 nm處測定30 s內(nèi)吸光值的變化。
χs=Г×KH×Kd
1.5 數(shù)據(jù)處理
采用MicrosoftExcel 2013和SPSS 22.0對數(shù)據(jù)進行分析。
2.1 施氮量對煙葉質(zhì)體色素含量的影響
質(zhì)體色素是煙葉香氣成分的主要香氣前體物,其含量對氮素營養(yǎng)十分敏感,并影響煙葉的外觀和內(nèi)在品質(zhì)[19]。由表1可知,葉綠素含量從葉齡為30 d或40 d時開始逐漸下降,煙葉衰老過程中,前期降幅較小,后期隨著煙葉的成熟降幅增大。不同品種在同一處理下畢納1號最低,黔西1號最高,但品種間差異不顯著。隨著施氮量的增加葉綠素含量顯著提高,特別是高氮處理下葉綠素的積累峰值推遲10 d。類胡蘿卜素的含量變化與葉綠素一致,但含量和降幅均小于葉綠素。品種間的最大積累量差異不明顯,從峰值到調(diào)制前1 d的降幅以畢納1號最大,黔西1號和韭菜坪2號較小。施氮量增大時,類胡蘿卜素積累量增加,在高氮條件下峰值推遲到葉齡為40 d,但與葉綠素不同,在中氮處理下類胡蘿卜素積累量最高。說明,類胡蘿卜素存在品種與栽培的互作。
表1 不同施氮量煙葉衰老期葉綠素及類胡蘿卜素的含量
Table 1 Leaf chlorophyll and carotenoid content of different tobacco varieties at leaf decrepitude period under different nitrogen application rate
處理Treatments品種Variety葉綠素含量/(mg/g)Chlorophyll30?d40?d50?d60?d1??d類胡蘿卜素含量/(mg/g)Carotenoid30?d40?d50?d60?d1??d低氮畢納1號3.21e2.54d1.90e1.51e1.20c0.80ab0.67c0.49d0.43c0.36c Lownitrogen韭菜坪2號3.32de2.53d2.02e1.58e1.16c0.80ab0.74b0.70b0.56b0.42bc黔西1號3.42d2.80c2.20e1.82d1.36bc0.76b0.75b0.60c0.53b0.47bc中氮畢納1號3.74c3.08c2.30de1.82d1.24c0.92a0.72b0.57c0.43c0.32c Middlenitrogen韭菜坪2號3.55cd3.18c2.38d1.96d1.29c0.92a0.85a0.74ab0.61ab0.53b黔西1號3.83c3.57b3.12a2.57c1.91a0.84ab0.77b0.69b0.57b0.46bc高氮畢納1號4.17b4.65a4.20b3.22b1.49b0.83ab0.87a0.81a0.71a0.63a Highnitrogen韭菜坪2號4.35ab4.84a4.46ab3.37ab1.75ab0.70b0.82a0.77a0.72a0.60a黔西1號4.58a4.75a4.56a3.46a1.95a0.77ab0.82a0.76a0.68a0.63a
注:不同字母表示在5%水平上差異顯著,表頭中有*的數(shù)字為葉齡,** 的數(shù)字為調(diào)制前的葉齡(下同)。
Note: Different letters mean significance of difference at 5% level. The figures with * and ** represent leaf age and leaf age before curing respectively.The same below.
2.2 施氮量對煙葉可溶性蛋白和總氮含量的影響
可溶性蛋白主要成分為1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco),特定葉齡的總氮和可溶性蛋白含量可以很好地反映作物氮素營養(yǎng)狀況[20]。由表2可知,可溶性蛋白含量,在煙葉成熟過程中,可溶性蛋白均在葉齡50 d達峰值之后一直呈下降趨勢,同一施氮量品種間差異顯著,以黔西1號最高;不同施氮量處理,可溶性蛋白含量隨施氮量的增加而升高,并在調(diào)制前含量最高。總氮含量,從葉齡30 d或40 d達峰值后下降,均以高氮處理峰值最高,而且中氮和高氮處理在葉齡40 d時達最大值。隨著施氮量的增加,總氮最大積累量升高,且調(diào)制前的總氮含量也較高,從最大值到調(diào)制前的降解比例減少,煙葉衰老速度減慢。
表2 不同施氮量煙葉衰老期的可溶性蛋白及總氮含量
Table 2 Leaf soluble protein and total nitrogen content of different tobacco varieties at leaf decrepitude period under different nitrogen application rate
處理Treatments品種Variety可溶性蛋白含量/(mg/g)Solubleprotein30?d40?d50?d60?d1??d總氮含量/%Totalnitrogen30?d40?d50?d60?d1??d低氮畢納1號4.29cd4.38e3.50e3.00e3.11d2.47c2.38d1.78d1.55de0.82d Lownitrogen韭菜坪2號4.42c4.59e4.42d3.85d3.12d2.74bc2.46d2.04c1.21e0.91d黔西1號4.41c5.90d5.65c4.22c2.63e2.91b2.81c2.22c1.73d0.91d中氮畢納1號5.17d6.67c6.00b4.34c3.47c2.51c2.96c2.19c1.90cd1.75c Middlenitrogen韭菜坪2號5.42c6.16d5.64c4.95b3.12d2.68bc2.82c2.69b2.24c1.94b黔西1號5.77c7.00b5.59cc5.24a4.08b2.99b3.19bc2.44b2.40bc1.97b高氮畢納1號6.20b7.51a5.90b5.40a4.07b3.12ab3.36b2.97a2.28c2.04b Highnitrogen韭菜坪2號6.32ab7.52a5.79bc5.08ab4.26a3.34a3.88a3.01a2.95a2.25a黔西1號6.41a7.57a6.49a5.12ab4.29a3.32a3.78a3.00a2.53b2.05b
Table 3 Leaf concentration of different tobacco varieties at leaf decrepitude period under different nitrogen application rate mmol/L
2.4 施氮量對煙葉衰老期谷氨酰胺合成酶、谷氨酸脫氫酶和硝酸還原酶活性的影響
2.4.2 谷氨酸脫氫酶(GDH) GDH具有合成氨和脫氨功能,是氮代謝的調(diào)節(jié)酶,煙葉衰老期的主要作用是脫氨[24-25]。從表4還看出,同一施氮處理下,GDH活性均在葉齡40 d時達峰值,低氮和中氮處理葉齡40 d以前GDH活性增幅較小;葉齡40~50 d后開始小幅下降,葉齡50 d至調(diào)制前1 d活性大幅下降。隨著施氮量的升高,GDH活性大幅升高,在葉齡40 d后處理間差異顯著。低氮和中氮處理,在不同品種間以畢納1號GDH活性較高,韭菜坪2號和黔西1號差異不顯著;高氮處理,畢納1號顯著高于韭菜坪2號,黔西1號最低。說明,施氮量增大,GDH活性對銨的轉(zhuǎn)運作用增強,在后期氮素的運籌調(diào)節(jié)中起主要作用,品種間也存在差異。
表4 不同施氮量煙葉衰老期谷氨酰胺合成酶(GS)、谷氨酸脫氫酶(GDH)和硝酸還原酶(NR)的活性
Table 4 Leaf GS, GDH and NR activity of different tobacco varieties at leaf decrepitude period under different nitrogen application rate
葉齡/dLeafage低氮Lownitrogen畢納1號韭菜坪2號黔西1號中氮Middlenitrogen畢納1號韭菜坪2號黔西1號高氮Highnitrogen畢納1號韭菜坪2號黔西1號谷氨酰胺合成酶(GS)/[nmol/(mg·min)]30111.39d116.56d121.78d88.51e132.24c135.09c200.98b200.52b211.75ab40108.77d77.01e112.09d187.90c181.11c193.68b229.13a213.93ab232.12a5088.33c64.85d65.38d78.16cd107.07b105.53b118.93ab134.40a126.17a6054.73d44.27e49.91de76.52c75.86c88.25b98.33ab96.34ab106.42a1??41.05d49.79cd61.46b61.50b72.29a67.94ab53.62c60.26b76.05a谷氨酸脫氫酶(GDH)/[nmol/(mgFW·min)]3098.30c75.14d78.06d104.53bc101.96bc100.13bc121.40a108.76b105.17bc40108.54de103.82e102.78e116.17d103.34e100.72e211.46a196.95b172.66c5095.34d90.84d91.77d112.25c94.26d96.10d184.18a174.44b120.06c6087.18de75.63e73.73e91.54de98.96d82.87e145.06a125.77b119.80c1??69.62d33.63f35.82ef45.82e69.73d68.58d120.84a110.55b91.91c硝酸還原酶(NR)/[μg/(gFW·h)]302.37e2.31e2.49d2.63c2.61c2.84b2.63c2.77bc3.08a401.95b2.24e2.45d2.48d2.52d2.81bc2.81c2.91bc3.20a501.54e1.43f1.74d1.70d2.12c1.58e2.25b2.31b2.53a601.23e1.36d1.50c1.57bc1.76b1.55c1.99a1.87ab1.81b1??0.52e0.57e0.74d1.03c1.04c0.99c1.19b1.29a1.30a
2.4.3 硝酸還原酶(NR) NR是植物吸收和同化土壤中氮素的關(guān)鍵酶[26]。由表4可知,同一施氮處理下,隨著葉片的衰老,NR活性逐漸下降,并隨施氮量的增加在葉齡30 d或40 d達峰值后下降,降幅較為平穩(wěn),只在葉齡60 d至調(diào)制前1 d呈大幅下降。品種間以黔西1號NR活性最高,畢納1號和韭菜坪2號差異不大。隨著施氮量的增大,NR活性增強,高氮處理下峰值推遲至葉齡40 d,至調(diào)制前1 d NR活性仍較高。說明,隨著施氮量的增加,煙葉對氮素的吸收能力明顯提高,煙葉衰老推遲。
2.5 施氮量對煙葉衰老期質(zhì)外體銨濃度、pH和氨氣補償點的影響
葉齡/dLeafage低氮Lownitrogen畢納1號韭菜坪2號黔西1號中氮Middlenitrogen畢納1號韭菜坪2號黔西1號高氮Highnitrogen畢納1號韭菜坪2號黔西1號NH+4濃度/(mmol/L)300.41bc0.40bc0.35c0.49b0.49b0.51b0.63a0.56ab0.55ab400.49cd0.41d0.38d0.87b0.55c0.58c0.99b1.11a0.94b500.62c0.50d0.62c0.72c0.96b0.68c1.20a1.21a1.25a600.52de0.45e0.59d0.62d0.78c0.56d1.06b1.19a1.23a1??0.55b0.38c0.44c0.39c0.55b0.54b0.60ab0.55b0.69a質(zhì)外體pH306.58b6.66a6.40b6.56a6.55a6.46b6.42b6.05c6.30b406.66ab6.75a6.63a6.77a6.74a6.60b6.67ab6.55b6.52c506.65a6.64a6.60b6.66a6.60a6.56b6.68a6.46b6.48c606.52a6.45ab6.40b6.46a6.41a6.26b6.52a6.36b6.06c1??6.25a6.23a6.05b5.89b6.07a5.61d6.08b5.97c5.74c25℃氨氣補償點/(nmol/mol)3013.08c15.06a7.35de14.88b14.54b12.24c13.84bc5.26e9.20d4018.74d19.35d13.43d39.82a26.72c19.23d38.34a32.72b25.93c5022.89c18.21c20.40c27.43bc31.76b20.46c47.65a29.13b31.39b6014.30c10.52cd12.32cd14.99c16.74c8.52d29.08a22.64b11.77cd1??8.07a5.35b4.11bc2.50d5.33b1.91d5.98b4.24bc3.14cd
3) 3個品種間氮代謝存在差異,畢納1號的氮素營養(yǎng)物質(zhì)降解相對較快,GS和NR活性較低,GDH活性較高,在高氮條件下也呈相同的變化趨勢,具有相對較強的耐肥性,應(yīng)保證相對較高的肥力條件。黔西1號則耐肥性相對較弱,特別是NR活性顯著高于其他2個品種,GS活性也較高。因此,應(yīng)在中氮處理下適當(dāng)減少施肥量種植。
[1] 唐遠駒.煙葉風(fēng)格特色定位[J].中國煙草科學(xué),2008,29(3):1-5.
[2] 王彥亭.我國煙草育種工作發(fā)展思路[J].中國煙草科學(xué),2001,23(4):1-5.
[3] 賈興華.煙草新品種及豐產(chǎn)栽培技術(shù)[M].北京:中國勞動社會保障出版社,2001.
[4] 代昌明,臘貴曉,翟 欣,等.畢節(jié)地區(qū)植煙土壤肥力狀況評價[J].江西農(nóng)業(yè)學(xué)報,2011,23(8):9-11,16.
[5] 牛路路,陳 雪,翟 欣,等.畢節(jié)不同海拔條件下烤煙化學(xué)成分分析[J].山西農(nóng)業(yè)科學(xué),2013,41(5):446-448.
[6] 符云鵬,王小翠,陳 雪,等.畢節(jié)煙區(qū)土壤pH值分布狀況及與土壤養(yǎng)分的關(guān)系[J].土壤,2013,45(1):46-51.
[7] 王小翠,喻奇?zhèn)?,符云鵬,等.畢節(jié)煙區(qū)烤煙化學(xué)成分、感官質(zhì)量及其相關(guān)性研究[J].河南農(nóng)業(yè)科學(xué),2012,41(6):58-61,64.
[8] 石俊雄,陳 雪,雷 璐,等.生態(tài)因子對貴州煙葉主要化學(xué)成分的影響[J].中國煙草科學(xué),2008,29(2):18-22.
[9] 陳順輝,李文卿,江榮風(fēng),等.施氮量對烤煙產(chǎn)量和品質(zhì)的影響[J].中國煙草學(xué)報,2003(Z1):36-40.
[10] 武云杰,張小全,段旺軍,等.不同氮素利用效率基因型烤煙葉片衰老期間氮素代謝差異研究[J].中國煙草學(xué)報,2012,18(5):23-28.
[11] 武云杰,李 飛,楊鐵釗,等.氮素營養(yǎng)水平對衰老期煙葉氮代謝的影響及品種間差異[J].中國煙草學(xué)報,2014(4):41-47.
[12] 武云杰,張小全,段旺軍,等.烤煙葉片衰老期氨氣揮發(fā)特征及其生理調(diào)控研究[J].西北植物學(xué)報,2012,32(10):2082-2088.
[13] 陳愛國,王樹聲,申國明,等.烤煙葉片成熟期間碳氮代謝主要物質(zhì)流分析[J].中國煙草學(xué)報,2010,16(4):30-34.
[14] 武云杰,楊鐵釗,張小全,等.不同烤煙品種煙葉衰老期氨氣揮發(fā)及其與氮素代謝的相關(guān)性[J].中國農(nóng)業(yè)科學(xué),2013,46(19):4027-4034.
[15] 鄒 琦.植物生理學(xué)實驗指導(dǎo)[M].北京:中國農(nóng)業(yè)出版社,2000.
[16] O’Neal D,Joy K W.Glutamine synthetase of pea leaves.I.Purification, stabilization, and pH optima[J].Archives of Biochemistry and Biophysics,1973,159:113-122.
[17] Turano F J,Dashner R,Upadhyaya A,et al.Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings[J].Plant Physiology,1996,112:1357-1364.
[18] 段旺軍,楊鐵釗,劉化冰,等.煙葉氨氣補償點的品種間差異及其與氮素代謝的關(guān)系研究[J].植物營養(yǎng)與肥料學(xué)報,2011,17(2):419-424.
[19] Week W W.Chemistry of tobacco constituents influencing flavor and aroma[J].RecentAdvance in Tobacco Science,1985,11:175-200.
[20] Biswas A K,Choudhuri M A Mechanism of monocarpic senescence in rice[J].Plant Physiol,1980,65:340-345.
[21] Joy K W.Ammonia,glutamine and asparagine:a carbon-nitrogen interface[J].Can.J.Bot.,1988,66:2103-2109.
[22] Masclaux C,Valadier M H,Brugi re N,et al.Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.)shoots in relation to nitrogen management and leaf senescence[J].Planta,2000,211:510-518.
[23] Brugiere N,Dubois F,Limami A,et al.Glutamine synthetase in the phloem plays a major role in controlling proline production[J].Plant Cell,1999,11:1995-2011.
[24] Miflin B J, Habash D Z.The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J].Journal of Experimental Botany,2002,53(370):979-987.
[25] Skopelitis D S,Paranychianakis N V,Kouvarakis A,et al.The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo[J].Plant Physiology,2007,145:1726-1734.
[26] 劉 麗,甘志軍,王憲澤.植物氮代謝硝酸還原酶水平調(diào)控機制的研究進展[J].西北植物學(xué)報,2004,24(7):1355-1361.
[27] Dubois F,Brugiere N,Sangwan R S,et al.Localization of tobacco cytosolic glutamine synthetase and the corresponding transcrips shows organ-and cell-specific patterns of protein synthesis and gene expression[J].Plant Molecular Biology,1996,31:803-817.
[28] Norman R J, Guindo D, Wells B R,et al.Seasonal Accumulation and Partitioning of Nitrogen-15 in Rice[J].Soil Science Society of America Journal,1992,56(5):1521-1527.
[29] Schjoerring J K,Husted S,M ck G,et al.The regulation of ammonium translocation in plants[J].J.Exp.Bot.,2002,53:883-890.
[30] Purnell M P,Botella,J R.Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo[J].Plant Physiology,2007,143(1):530-539.
[31] Frechilla S,Lasa B, Aleu M,et al.Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants[J].Journal of Plant Physiology,2002,159:811-818.
[32] Mattsson M,Schjoerring J K.Senescence-induced changes in apoplastic and bulk tissue ammonia concentrations of ryegrass leaves[J].New Phytologist,2003,160(11):489-499.
[33] 吳小慶,徐陽春,沈其榮.植物葉片氨揮發(fā)研究進展[J].生態(tài)與農(nóng)村環(huán)境學(xué)報,2006,22(2):80-84.
(責(zé)任編輯: 楊 林)
Nitrogen Metabolism Characteristics of Bijie Specific Tobacco Leaves at Leaf Decrepitude Period
QI Ying1, LI Xiaorui, WU Yunjie1, HOU Bingqing1, ZHANG Jinghua1, ZHANG Xiaoquan1, ZHAI Xin2, YANG Tiezhao1*
(1.CollegeofTobaccoScience,HenanAgriculturalUniversity,Zhengzhou,Henan450002;2.BijieTobaccoCompany,GuizhouTobaccoCompany,Bijie,Guizhou551700,China)
The randomized block design was used to study the effect of different nitrogen application amount on the related indexes of nitrogen metabolism in three specific tobacco varieties bred by Bijie and to provide the theoretical basis for rational application of specific quality tobacco varieties in Bijie. Results: The accumulation amount of plamochromic pigment, soluble protein and total nitrogen in tobacco leaves, leaf GS, GDH and NR activity, leaf ammonia gas compensation point and leaf nitrogen metabolism increase with increase of nitrogen application amount during the tobacco leaf maturation process but there are significant differences among three tobacco varieties. Bina 1 has the characteristics of rapid nitrogen nutrient matter degradation rate, lower GS and Nr activity, high GDH activity, higher ammonia gas compensation point. The fertilizer tolerance of Bina 1 is the strongest, followed by Jiucaiping 2 and Qianxi 1. The nitrogen management of tobacco leaves is performance of nitrogen absorption, assimilation and re-transfer ability and GS activity plays the leading role in nitrogen absorption, assimilation and re-transfers ability of tobacco leaves. The optimum nitrogen metabolism relative index for Bina 1, Jiucaiping 2 and Qianxi 1 is under 6 kg/667m2nitrogen application amount. Bina 1 with strong fertilizer tolerance, Jiucaiping 2 with moderate fertilizer tolerance and Qianxi 1 with weak fertilizer tolerance are suitable to 6~7.5 kg/667m2, 6 kg/667m2and 4.5~6 kg/667m2nitrogen application amount respectively.
tobacco; nitrogen metabolism; variety; nitrogen application rate; Bijie
2015-09-09; 2016-03-03修回
貴州省煙草公司科技攻關(guān)項目“畢節(jié)特色烤煙品種的深度挖掘與配套技術(shù)研究”(2010-16)
戚 瑩(1990-)女,在讀碩士,研究方向:煙草遺傳育種與品質(zhì)改良。E-mail:hnndqiying@163.com
*通訊作者:楊鐵釗(1956-),男,教授,博士生導(dǎo)師,從事煙草遺傳育種與品質(zhì)改良研究。E-mail:yangtiezhao@126.com
1001-3601(2016)03-0113-0059-06
S572.062
A