廖文菊
(四川民族學(xué)院 環(huán)境與生命科學(xué)系, 四川 康定 626001)
β-環(huán)糊精緩控釋肥對(duì)青稞種子萌發(fā)和幼苗生理指標(biāo)的影響
廖文菊
(四川民族學(xué)院 環(huán)境與生命科學(xué)系, 四川 康定 626001)
為β-環(huán)糊精緩控釋肥在青稞種植中的應(yīng)用提供依據(jù),以純尿素和β-環(huán)糊精-尿素包合物緩控釋肥作基肥進(jìn)行青稞盆栽試驗(yàn),對(duì)比分析不同肥料種類青稞種子萌發(fā)和幼苗生理指標(biāo)變化。結(jié)果表明,施用濃度均為1.33 g/kg時(shí),β-環(huán)糊精緩控釋肥比純尿素種子萌芽率提高21.6%,出苗率提高25.0%,幼苗高度提高8.20 cm,葉片電導(dǎo)率降低33.23%,葉綠素含量升高0.284 mg/g,可溶性蛋白含量升高6.94 mg/g。純尿素對(duì)青稞種子萌發(fā)和幼苗的生長(zhǎng)具有抑制作用,β-環(huán)糊精-尿素包合物可一定程度上屏蔽尿素對(duì)青稞種子萌發(fā)和幼苗生長(zhǎng)的毒害。
β-環(huán)糊精; 尿素; 青稞; 種子萌發(fā); 生理指標(biāo)
青稞在我國(guó)的種植主要分布在西藏、青海和四川西北部等高海拔地區(qū),這些地區(qū)由于土壤普遍發(fā)育緩慢且腐殖化程度低,農(nóng)作物生長(zhǎng)對(duì)肥料的依耐性較大。尿素是青稞種植中重要的肥料源,在青稞生長(zhǎng)過(guò)程中施肥一般分基肥、苗肥和分蘗拔節(jié)肥,但作基肥時(shí),常出現(xiàn)尿素中的縮二脲影響青稞種子萌發(fā)和幼苗生長(zhǎng)的現(xiàn)象,嚴(yán)重影響尿素的有效利用。環(huán)糊精是一類重要的主體化合物[1-3],在藥物控制釋放[4-6]、食品加工[7-8]和環(huán)境保護(hù)[9-10]等領(lǐng)域已有廣泛應(yīng)用,β-環(huán)糊精-尿素緩控釋肥料是以β-環(huán)糊精作為主體分子,尿素作為客體分子制備而成的主客體緩控釋肥料,其緩控釋性能已得到證實(shí)[11]。相較于普通的緩控釋肥而言,環(huán)糊精作為緩控釋材料不會(huì)造成土壤的二次污染,且對(duì)土壤污染修復(fù)具有促進(jìn)作用[12-13]。為尋求尿素中縮二脲對(duì)青稞種子萌發(fā)和幼苗生長(zhǎng)影響的解決辦法,筆者采用β-環(huán)糊精-尿素緩控釋肥進(jìn)行青稞基肥試驗(yàn),對(duì)比分析相同基肥用量下,純尿素與β-環(huán)糊精-尿素包合物緩控釋肥對(duì)青稞萌發(fā)和幼苗生長(zhǎng)的影響,旨在為β-環(huán)糊精緩控釋肥在青稞種植中的應(yīng)用提供依據(jù)。
1.1 試驗(yàn)材料
青稞(HordeumvulgareL.var.nudumHook.f.)品種為康青9號(hào),由甘孜州農(nóng)科所提供。尿素和β-環(huán)糊精(β-CD)均購(gòu)自成都科龍化工試劑廠。β-環(huán)糊精-尿素緩控釋肥的制備采用固相包合法,將質(zhì)量比為1∶1的β-環(huán)糊精和尿素混合均勻,在研缽中充分研磨2 h,獲得試驗(yàn)用的β-環(huán)糊精-尿素緩控釋肥。
1.2 試驗(yàn)設(shè)計(jì)
采用25 cm×20 cm的塑料花盆,每盆裝風(fēng)干土壤3.0 kg。以純尿素、β-環(huán)糊精-尿素緩控釋肥料(包合物)和β-環(huán)糊精作為肥料試驗(yàn)對(duì)象,分別向每盆中均勻施入0.0 g、2.0 g、4.0 g、6.0 g和8.0 g純尿素、β-環(huán)糊精-尿素緩控釋肥料和β-環(huán)糊精,即3種肥料在土壤中施用濃度折合為0.0 g/kg、0.67 g/kg、1.33 g/kg、2.0 g/kg和2.67 g/kg。精選顆粒飽滿、大小一致的青稞種子,用10%的雙氧水消毒10 min,蒸餾水反復(fù)沖洗,置于5℃蒸餾水浸泡24 h后播入花盆。每盆播種20粒,定期澆水,保持土壤濕潤(rùn)。播種后7 d觀察種子萌芽率,15 d記錄幼苗出苗率。每個(gè)處理3次重復(fù)。
1.3 幼苗生理指標(biāo)測(cè)定
播種20 d時(shí),測(cè)定青稞苗高,并取葉片進(jìn)行生理指標(biāo)測(cè)定。葉綠素含量測(cè)定采用混合液提取法[14],可溶性蛋白質(zhì)含量測(cè)定采用考馬斯亮藍(lán)G250法,電導(dǎo)率測(cè)定采用電導(dǎo)率儀法[15]。
2.1 不同肥料種類青稞種子的萌發(fā)及幼苗生長(zhǎng)
1) 萌芽率。由表1可知,純尿素作基肥對(duì)青稞種子的萌芽率影響較大,隨著尿素濃度增加,青稞種子萌芽率減小,當(dāng)尿素濃度達(dá)2.67 g/kg時(shí),種子萌芽率僅20.0%。而β-環(huán)糊精-尿素緩控釋肥料(包合物)可降低尿素對(duì)種子萌發(fā)的影響,包合物中尿素質(zhì)量為1.33 g/kg時(shí),種子萌芽率達(dá)100%,比相同濃度的純尿素高21.6%;包合物中尿素質(zhì)量為2.67 g/kg時(shí),種子萌芽率為65.0%,比相同濃度的純尿素高45.0%。純?chǔ)?環(huán)糊精對(duì)種子萌發(fā)的影響不大,包合物對(duì)種子萌發(fā)的影響可能主要是由于β-環(huán)糊精包合作用屏蔽尿素對(duì)種子的毒害。
2) 出苗率。尿素濃度較高時(shí),青稞種子的萌芽率遠(yuǎn)高于出苗率,即尿素濃度高時(shí),即使種子萌發(fā),幼苗也不一定能成活,主要是由于尿素濃度高導(dǎo)致燒苗,表明高濃度尿素不利于青稞幼苗生長(zhǎng)。而包合物可在一定程度上提高青稞出苗率,當(dāng)尿素濃度為1.33 g/kg時(shí),包合作用使青稞出苗率比同濃度純尿素提高25.0%,再次證實(shí)β-環(huán)糊精能有效屏蔽尿素對(duì)青稞幼苗的毒害作用。但由于環(huán)糊精的屏蔽作用有限,當(dāng)尿素濃度較高,如達(dá)2.67 g/kg時(shí),青稞出苗率僅為10.0%。
3) 青稞苗高。施用純尿素對(duì)青稞苗高有較大影響,當(dāng)尿素濃度為0.67 g/kg時(shí),青稞苗比尿素濃度0.0 g/kg的處理高3.63 cm,表明一定濃度的尿素有利于幼苗生長(zhǎng);但當(dāng)尿素濃度為2.67 g/kg時(shí),平均苗高僅15.03 cm,遠(yuǎn)低于未施肥時(shí)的苗高(26.83 cm),即高濃度尿素會(huì)抑制青稞生長(zhǎng)。β-環(huán)糊精包合作用可有效抑制尿素對(duì)青稞苗生長(zhǎng)的影響,當(dāng)尿素濃度為1.33 g/kg時(shí),以包合物形式施用,青稞苗高可達(dá)34.13 cm,比同濃度的純尿素高8.20 cm。純?chǔ)?環(huán)糊精對(duì)苗高也有一定影響,隨著β-環(huán)糊精濃度的升高,苗高降低,其主要原因是β-環(huán)糊精對(duì)土壤養(yǎng)分的吸附和包合作用[16]影響了青稞對(duì)土壤養(yǎng)分的吸收。
表1 不同肥料種類及濃度青稞的種子發(fā)芽率、出苗率及苗高
Table 1 Seed germination rate, emergence rate and seedling height of hulless barley applied with various types and concentrations of fertilizers
肥料濃度/(g/kg)Concentration尿素Ureaβ?環(huán)糊精β?Cyclodextrin包合物Complex萌芽率/%Germinationrate0.098.4±2.498.4±2.498.4±2.40.6790.0±4.190.0±4.195.0±4.11.3378.4±2.4100.0±0.0100.0±0.02.060.0±4.193.3±2.480.0±4.12.6720.0±4.173.3±2.465.0±0.0出苗率/%Emergencerate0.093.3±2.493.3±2.493.3±2.40.6781.7±6.288.3±2.490.0±4.11.3358.3±4.798.3±2.483.3±2.42.020.0±4.190.0±4.143.3±2.42.678.3±2.473.3±2.410.0±0.0苗高/cmSeedlingheight0.026.83±0.2626.83±0.2626.83±0.260.6730.46±0.2135.13±0.2130.27±0.211.3325.93±0.1734.03±0.2134.13±0.262.024.76±0.2129.43±0.2933.03±0.122.6715.03±0.2127.97±0.1227.03±0.21
2.2 不同肥料種類青稞幼苗的生理指標(biāo)
1) 電導(dǎo)率。由表2看出,純尿素的施用對(duì)青稞葉片電導(dǎo)率的影響較大,隨著尿素濃度升高,葉片相對(duì)電導(dǎo)率也升高,而純?chǔ)?環(huán)糊精和包合物的施用對(duì)葉片相對(duì)電導(dǎo)率的影響較小。當(dāng)包合物中尿素濃度為1.33 g/kg時(shí),青稞葉片的相對(duì)電導(dǎo)率為30.61%,而同濃度純尿素為63.84%。表明以包合物形式施用尿素,可有效降低尿素對(duì)青稞細(xì)胞膜的傷害,對(duì)保持葉片膜結(jié)構(gòu)完整性具有積極作用。
2) 葉片葉綠素及可溶性蛋白含量。尿素對(duì)青稞葉片葉綠素含量和可溶性蛋白含量的影響較大,低濃度尿素有利于提高葉片葉綠素含量和可溶性蛋白含量,隨著施用濃度增加,葉綠素含量和可溶性蛋白含量均降低。當(dāng)純尿素濃度達(dá)2.67 g/kg時(shí),葉片葉綠素含量為0.346 mg/g,低于尿素濃度為0.0 g/kg的處理(0.358 mg/g),這主要是由于高濃度尿素對(duì)青稞幼苗的毒害作用造成。純?chǔ)?環(huán)糊精對(duì)葉綠素含量的增加也具有促進(jìn)作用,但隨著β-環(huán)糊精濃度的增加,葉綠素含量有所降低,這主要是由于未包合尿素的β-環(huán)糊精空腔對(duì)土壤養(yǎng)分的包合作用,降低了土壤中植物可吸收養(yǎng)分含量,從而抑制葉綠素含量和可溶性蛋白含量的增加。包合作用不但可以一定程度上屏蔽尿素對(duì)幼苗的毒害作用,還可以促進(jìn)葉綠素含量和可溶性蛋白含量的增加,當(dāng)包合物中尿素濃度為1.33 g/kg時(shí),青稞葉片葉綠素含量和可溶性蛋白含量分別為0.899 mg/g和41.62 mg/g,分別比同濃度的純尿素處理增加0.284 mg/g和6.94 mg/g。
表2 不同肥料種類及濃度青稞幼苗的生理指標(biāo)
尿素對(duì)青稞種子萌發(fā)和幼苗生長(zhǎng)具有一定的毒害作用,β-環(huán)糊精的包合作用可一定程度上屏蔽尿素對(duì)青稞種子萌發(fā)和幼苗生長(zhǎng)的影響。相同尿素濃度下,施用β-環(huán)糊精緩控釋肥可使青稞種子萌芽率、幼苗成活率、苗高、葉片電導(dǎo)率、葉綠素、可溶性蛋白含量得到改善。尿素濃度為1.33 g/kg的β-環(huán)糊精緩控釋肥對(duì)青稞種子萌發(fā)和幼苗生長(zhǎng)最有利,與同濃度的純尿素相比,青稞種子萌芽率提高21.6%,出苗率提高25.0%,苗高增加8.20 cm,葉片電導(dǎo)率降低33.23%,葉綠素含量升高0.284 mg/g,可溶性蛋白含量升高6.94 mg/g。青稞種子萌芽率和出苗率的提升主要是由于在β-環(huán)糊精-尿素緩控釋肥料中,主體β-環(huán)糊精分子具有空腔結(jié)構(gòu),可對(duì)縮二脲分子和尿素分子產(chǎn)生包合作用,一方面β-環(huán)糊精的包合作用可屏蔽縮二脲對(duì)種子萌發(fā)的毒害作用,保證種子的萌芽率;另一方面包合作用降低尿素的表觀濃度,從而避免高濃度尿素對(duì)青稞幼苗產(chǎn)生燒苗等影響,保證幼苗的出苗率。同時(shí),β-環(huán)糊精具有緩控釋作用,包合物可根據(jù)植物生長(zhǎng)對(duì)養(yǎng)分的需求,緩慢釋放尿素分子,保證青稞生長(zhǎng)對(duì)養(yǎng)分的需求。
β-環(huán)糊精緩控釋肥的施用可提高青稞葉片葉綠素含量和可溶性蛋白含量,降低葉片電導(dǎo)率,表明其對(duì)青稞葉片光合作用和生長(zhǎng)代謝具有促進(jìn)作用,一定程度上提升青稞抗性。
[1] Alvaro Antelo,Aida Jover,Luciano Galantini,et al.Formation of host-guest and sandwich complexes by aβ-Cyclodextrin derivative[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2011,69(1-2):245-253.
[2] H J Buschmann,E Schollmeyer.Cucurbituril andβ-Cyclodextrin as Hosts for the Complexation of Organic Dyes[J].Journal of inclusion phenomena and molecular recognition in chemistry,1997,29(2):167-174.
[3] V Raj,T Chandrakala,K Rajasekaran.Guest-host interactions in the cleavage of phenylphenyl acetates byβ-Cyclodextrin in alkaline medium[J]. Journal of Chemical Sciences,2008,120(3):325-328.
[4] Vivek Ranjan Sinha,Amita,Renu Chadha,et al. Inter-molecular physiochemical characterization for etodolac-hydroxypropyl-β-cyclodextrin polymeric systems in solid and liquid state[J].Central European Journal of Chemistry,2010,8(4):953-962.
[5] Mingsong Shi,Chunchun Zhang,Yani Xie,et al.Stereoselective inclusion mechanism of ketoprofen intoβ-cyclodextrin: insights from molecular dynamics simulations and free energy calculations[J].Theoretical ChemistryAccounts,2014,133(10):1-12.
[6] N Sudha,Israel M V Enoch.Interaction of Curculigosides and Theirβ-Cyclodextrin Complexes with Bovine Serum Albumin:A Fluorescence Spectroscopic Study[J].Journal of Solution Chemistry,2011,40(10):1755-1768.
[8] Xianghe Meng,Qiuyue Pan,Yun Liu.Preparation and properties of phytosterols with hydroxypropylβ-cyclodextrin inclusion complexes[J].European Food Research and Technology,2012,235(6):1039-1047.
[9] Dong Zhao,Liang Zhao,Cheng-shen Zhu,et al.Water-insolubleβ-cyclodextrin polymer crosslinked by citric acid: synthesis and adsorption properties toward phenol and methylene blue[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2009,63(3/4):195-201.
[10] Muhammad Imran Khan,Sardar Alam Cheema,Chaofeng Shen,et al.Assessment of Pyrene Bioavailability in Soil by Mild Hydroxypropyl-β-Cyclodextrin Extraction[J].Archives of Environmental Contamination and Toxicology,2011,60(1):107-115.
[11] 廖文菊,唐德華,程曉彬.β-環(huán)糊精-尿素包合物的制備及應(yīng)用性能研究[J].安徽農(nóng)業(yè)科學(xué),2014(13):3823-3824.
[12] N Szaniszló,é Fenyvesi,J Balla.Structure-Stability Study of Cyclodextrin Complexes with Selected Volatile Hydrocarbon Contaminants of Soils[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 53(3/4): 241-248.
[13] Christophe Viglianti,Khalil Hanna,Christine De Brauer,et al.Use of Cyclodextrins as An Environmentally Friendly Extracting Agent in Organic Aged-contaminated Soil Remediation[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2006,56(1/2):275-280.
[14] 沈偉其.測(cè)定水稻葉片葉綠素含量的混合液提取法[J].植物生理學(xué)通訊,1988(3):62-64.
[15] 張憲政,陳鳳玉,王榮富.植物生理學(xué)實(shí)驗(yàn)技術(shù)[M].沈陽(yáng):遼寧科學(xué)技術(shù)出版社,1994:94-97.
[16] 唐德華.β-環(huán)糊精-磷酸一銨包合物的制備及緩/控釋性能研究[J].廣東農(nóng)業(yè)科學(xué),2013(19):105-107.
(責(zé)任編輯: 姜 萍)
Effects ofβ-Cyclodextrin Controlled Release Fertilizer on Seed Germination and Seedling Physiological Index of Hulless Barley
LIAO Wenju
(DepartmentofEnvironmentandLifeSciences,SichuanUniversityforNationalities,Kangding,Sichuan626001,China)
To provide references for applyingβ-cyclodextrin controlled release fertilizer in plantation of hulless barley, a pot experiment was conducted to explore the effects of urea andβ-cyclodextrin-urea controlled release fertilizer on seed germination and seedling physiological index of hulless barley. Comparing with common urea the germination rate, emergence rate increased by 21.6% and 25.0%, respectively, the seedling height increased by 8.20 cm, relative conductivity of leaves reduced by 33.23%, total chlorophyll content increased by 0.284 mg/g, soluble protein content increased by 6.94 mg/g. Urea inhibited seed germination and seedling growth, whileβ-cyclodextrin controlled release fertilizer could shielding the toxic effects of urea.
β-cyclodextrin; urea; hulless barley; seed germination; physiological index
2015-09-11; 2016-04-04修回
四川省教育廳項(xiàng)目“甘孜州特種糧食(青稞)產(chǎn)業(yè)化發(fā)展研究”(15ZB0328)
廖文菊(1984-),女,講師,從事主客體化學(xué)研究。E-mail:wenjuliao@126.com
1001-3601(2016)05-0195-0028-04
S512.3; Q945.34
A