胡興華,隆 冰,朱曉寧
(1.北京交通大學(xué) 交通運(yùn)輸學(xué)院,北京 100044;2.重慶市交通規(guī)劃研究院,重慶 400000)
?
考慮綠時損失均衡的公交優(yōu)先交叉口配時優(yōu)化
胡興華1,隆冰2,朱曉寧1
(1.北京交通大學(xué)交通運(yùn)輸學(xué)院,北京100044;2.重慶市交通規(guī)劃研究院,重慶400000)
摘要:為了均衡公交優(yōu)先信號控制對交叉口延誤的負(fù)面影響,基于延長綠燈時間、縮短紅燈時間和插入優(yōu)先相位策略,分別提出了3種優(yōu)先策略的綠時損失均衡方法。采用延誤疊加分析方法,考慮進(jìn)口道車流累積疏散和停車起動過程,分析了相位綠時左端和右端時長變化產(chǎn)生的延誤增減,構(gòu)建了交叉口損失均衡下的延誤計算模型。以交叉口減少人均總延誤最大為目標(biāo)函數(shù),以其余相位車輛正常通行為約束條件,建立了考慮綠時損失均衡的公交優(yōu)先配時優(yōu)化模型,對各相位綠時均衡參數(shù)進(jìn)行優(yōu)化,并基于Frank-Wolfe算法,利用對角化技術(shù)設(shè)計了求解算法。結(jié)果表明:新的延誤計算方法可更加準(zhǔn)確地描述公交優(yōu)先信號交叉口的延誤變化;配時優(yōu)化模型可有效地均衡各非優(yōu)先相位的綠時損失,降低交叉口人的總延誤。
關(guān)鍵詞:交通工程;配時優(yōu)化;延誤疊加分析;交叉口;損失均衡;公交優(yōu)先
0引言
公交信號優(yōu)先是提高公交運(yùn)行效率,增加公交吸引率的一種有效方法。Wu等[1-2]針對公共車輛按照不同的信號需求設(shè)置了3種不同運(yùn)行特征的預(yù)處理信號,探討了3種預(yù)處理信號配時與優(yōu)先車輛和非優(yōu)先車輛的延誤分析方法。Wahlstedt等[3-4]利用仿真的方法分析了公交信號優(yōu)先對信號交叉口的影響。Liu等[5]利用解析法分別對優(yōu)先和非優(yōu)先進(jìn)口道車輛在延長綠燈時間和綠燈起亮提前兩種優(yōu)先策略進(jìn)行了延誤分析。Jiang等[6]考慮了交叉口各進(jìn)口道動態(tài)的交通流量到達(dá)過程,以定數(shù)理論為基礎(chǔ),利用Markov特性提出了自適應(yīng)信號控制條件下的平均車輛延誤計算模型[1]。Keita等[7]分別對排隊(duì)增量累計IQA與道路通行能力手冊HCM兩種延誤計算方法進(jìn)行了對比分析。劉廣萍等[8-9]分別對交叉口進(jìn)口道同時處于飽和與非飽和兩種狀態(tài)進(jìn)行了延誤分析與計算。Liu等[10]考慮了交叉口的最大通行能力,以周期內(nèi)交叉口延誤車輛數(shù)最少為目標(biāo)函數(shù)建立了信號配時優(yōu)化模型,并采用差分進(jìn)化細(xì)菌覓食求解算法對其進(jìn)行求解。王殿海等[11]考慮了公交優(yōu)先控制策略對干線協(xié)調(diào)的影響,提出了以干線協(xié)調(diào)為上層,以公交優(yōu)先為下層的雙層優(yōu)化方法,在不破壞協(xié)調(diào)相位綠波帶的情況下采用綠燈延長或提前啟亮的方式為公交提供信號優(yōu)先。王正武等[12]在基于規(guī)則與優(yōu)化的自適應(yīng)公交優(yōu)先控制中考慮了公交優(yōu)先的系統(tǒng)效益和優(yōu)先措施對社會車輛的負(fù)面影響,并構(gòu)建了雙層規(guī)劃模型同時對相位相序和配時參數(shù)進(jìn)行優(yōu)化。柳祖鵬等[13]分別在綠燈和紅燈相位下,針對當(dāng)前相位保持綠燈和需要綠燈的需求程度提出了綠燈需求度的概念,并設(shè)計了綠燈和紅燈相位下綠燈需求度的計算方法,提出了一種基于綠燈需求度的相位切換決策流程,在此基礎(chǔ)上實(shí)現(xiàn)了基于綠燈需求度的公交信號優(yōu)先控制。
上述關(guān)于公交優(yōu)先交叉口配時優(yōu)化的研究中,其研究對象主要集中對優(yōu)先策略和優(yōu)先策略時長的優(yōu)化,考慮了隨優(yōu)先策略變化的信號周期,不利于多交叉口的協(xié)調(diào)控制。本文在不改變原有周期的前提下,對優(yōu)先策略的負(fù)面影響進(jìn)行整周期均衡,并對均衡參數(shù)進(jìn)行優(yōu)化。提出了延長綠燈時間、縮短紅燈時間、插入優(yōu)先相位3種策略的綠時損失均衡方法,在此基礎(chǔ)上進(jìn)行了延誤分析計算,以交叉口減少人總延誤最大為目標(biāo)函數(shù)建立了配時優(yōu)化模型,并設(shè)計了求解算法進(jìn)行實(shí)例分析。
1面向綠時損失均衡的公交優(yōu)先感應(yīng)控制策略
公交優(yōu)先策略會對非優(yōu)先相位造成綠時損失,在考慮綠時損失均衡過程中,需要壓縮非優(yōu)先相位的綠時[14],但僅壓縮非優(yōu)先相位的綠時不利于提高綠時利用效率且與實(shí)際相位之間承接不相吻合,因而在壓縮非優(yōu)先相位綠時同時需要向相鄰相位拓展綠時。設(shè)t為公交到達(dá)時刻,g為相位有效綠燈時間,ge為相位延長綠燈時間,gmin為相位最小綠燈時間;r為相位有效紅燈時間,rs為縮短紅燈時間;gp為插入相位時長,gp_min為最小插入相位時長。
1.1延長綠燈時間
如圖1所示,檢測公交車到達(dá)時,公交通行相位為綠燈,但剩余綠燈時間不足以讓公交車通過交叉口,在最大延長范圍ge_max內(nèi)采用延長綠燈時間的優(yōu)先策略,ge_max取決于相鄰非優(yōu)先相位的最小綠燈時間。為了減弱第1相位優(yōu)先控制對相鄰相位的沖擊,需將其造成的綠時損失通過相位傳遞,逐級耗散在整個周期中。由此,從第2相位綠時末端向下一相位延長綠時以減少其綠時損失,而后,第3相位也依次向下延長綠燈時間,由此實(shí)現(xiàn)綠時損失在各相位逐漸衰減。
圖1 延長綠燈時間的綠時損失均衡方法Fig.1 Green loss equilibrium method for green extension
對于第i相位,在相位綠時左端,因前一相位綠時延長而受到綠時損失Δti1;而在相位綠時右端,則會因相位綠時延長而得到綠時彌補(bǔ)Δti2,則有:
(1)
(2)
(3)
1.2縮短紅燈時間
如圖2所示,檢測公交車到達(dá)時,公交通行相位為紅燈,且執(zhí)行即將結(jié)束,同時上一相位的綠燈執(zhí)行時間已超過最小綠燈時間,在最大縮短范圍rs_max內(nèi)采用縮短紅燈的優(yōu)先策略,rs_max取決于非優(yōu)先相位的最小綠燈時間。為了均衡非優(yōu)先相位的綠時損失,在第n-1相位綠時始端依次向前延長綠時以減小其綠時損失,由此實(shí)現(xiàn)綠時損失在整周期內(nèi)的均衡。
圖2 縮短紅燈時間綠時損失均衡方法Fig.2 Green loss equilibrium method for red truncation
對于第i相位,在相位綠時右端,因后一相位縮短紅時而受到綠時損失Δti2;而在相位綠時左端,則會因相位綠時延長而得到綠時彌補(bǔ)Δti1,則有:
(4)
(5)
(6)
1.3 插入優(yōu)先相位
圖3 插入優(yōu)先相位綠時損失均衡方法Fig.3 Green loss equilibrium method for phase insertion
如圖3所示,檢測公交車到達(dá)時,公交通行相位為紅燈,而紅燈執(zhí)行時間只到中端,對應(yīng)綠時相位已執(zhí)行完最短綠燈時間且剩余綠時小于插入相位時長,在最大插入時長gp_max內(nèi)采用插入相位的優(yōu)先策略。為了避免綠時相位在插入相位后產(chǎn)生過短綠時殘余,同時減少插入相位對單一非優(yōu)先相位的沖擊,選擇當(dāng)前綠時相位末端為插入時刻,將綠時損失分?jǐn)偟絻上噜徬辔?設(shè)phasemid,phasemid+1為直接承擔(dān)插入相位損失的兩相鄰相位。為了降低非優(yōu)先相位的綠時損失,分別在第mid相位綠時始端向前彌補(bǔ)綠時,而在mid+1相位綠時末端向后延長綠時,以此實(shí)現(xiàn)mid,mid+1相位的綠時損失在整周期內(nèi)均衡。
對于第i相位,i∈[1,mid],在相位綠時右端,因后一相位綠時延長而受到綠時損失Δti2;而在相位綠時左端,則會因相位綠時延長而得到綠時彌補(bǔ)Δti1。對于第k相位,k∈[mid+1,n],在相位綠時左端,因前一相位延長綠時而受到綠時損失Δtk1;而在相位綠時右端,則會因相位綠時延長而得到綠時彌補(bǔ)Δtk2。
(7)
(8)
(9)
(10)
(11)
式(11)中,D為公交經(jīng)過交叉口的軌跡線長度;v為公交在交叉口內(nèi)的運(yùn)輸速度;L為插入相位綠燈損失時間。
如圖1~圖3所示的綠時損失均衡過程中,各相位通過相鄰相位之間的承接關(guān)系,利用相位綠時左端和右端的時長變化,逐步減弱優(yōu)先相位對非優(yōu)先相位的不利影響。對于插入優(yōu)先相位策略,綠時變化發(fā)生在相位中部,可將之視為一個綠燈時長為0的獨(dú)立新增相位,如圖4所示,通過新增相位實(shí)現(xiàn)綠時兩端的時長變化在周期內(nèi)傳遞。
圖4 插入優(yōu)先相位的綠時變化傳遞過程Fig.4 Green time changing process of preferred phase insertion
由上分析可知,延長綠燈時間、縮短紅燈時間、插入優(yōu)先相位3種優(yōu)先策略的綠時損失均衡過程均可描述為相位綠時兩端的時長變化。
2交叉口進(jìn)口道車輛延誤分析
圖5 交叉口進(jìn)口道車輛的到達(dá)離開過程Fig.5 Vehicles’ arrival and departure processes at intersection entrance lane
圖5為交叉口進(jìn)口道上車輛的到達(dá)離開過程,圖中將交叉口進(jìn)口道上車輛的到達(dá)離開過程描述為A,B兩個過程的疊加。過程A考慮了靜態(tài)車流在信號控制下的排隊(duì)和離去,而將進(jìn)口道停車線想象為可移動的虛擬線,并將靜態(tài)排隊(duì)車流駛離停車線的過程描述為虛擬線向后移動的過程;過程B在A的基礎(chǔ)上,考慮了車流向交叉口停車線的動態(tài)累積過程。圖中,si為第i輛車的車頭間距。
2.1過程A的延誤分析
圖6為交叉口停車線后靜態(tài)車流的排隊(duì)—駛離過程,該過程不考慮車輛的體積和車頭間距,而將車流虛擬為一串縱向的質(zhì)點(diǎn)累積。
圖6 過程A中車輛的到達(dá)離開過程Fig.6 Vehicle arrival and departure process A
由圖6分析可知,交叉口進(jìn)口道中過程A的延誤分析可描述為如圖7所示的幾何分析。圖中,橫軸t為時間,縱軸Q為標(biāo)準(zhǔn)車輛累積量,φ(t)為交叉口停車線車輛累積函數(shù),s(t)為進(jìn)口道車輛離去函數(shù)。陰影面積SA即為交叉口進(jìn)口道中過程A的車輛延誤DA。
圖7 過程A中車輛在周期內(nèi)的延誤分析Fig.7 Vehicle delay analysis of a period in process A
(12)
(13)
式中t0為延誤計算過程中的中間變量。
2.2過程B的延誤分析
由圖5中過程B的分析可知,車流的累積排隊(duì)過程自身也會造成延誤,車流排隊(duì)長度越長,車流起動響應(yīng)越慢??紤]車輛在排隊(duì)列中均勻分布,可將過程B的延誤描述為進(jìn)口道車流排隊(duì)中起動波的傳播過程。其中,vs為進(jìn)口道車流起動波傳播速度,s為平均車頭間距,v為路段車輛平均運(yùn)行速度,as1為車輛啟動加速度,as2為車輛制動加速度。
由此,交叉口進(jìn)口道中排隊(duì)車輛數(shù)n(t):
(14)
對交叉口t時刻到達(dá)車輛,其進(jìn)口道過程B的延誤可描述為:
(15)
則交叉口進(jìn)口道過程B的延誤為:
(16)
綜上,交叉口進(jìn)口道中的車輛延誤D可描述為過程A與B的疊加,則有:
(17)
3公交優(yōu)先控制下的交叉口進(jìn)口道車輛延誤分析
3.1相位綠時左端的延誤變化
(1)左端綠時延長
圖8為第i相位左端綠燈時間延長下的過程A延誤分析。 φi(t)為交叉口第i相位進(jìn)口道車輛到達(dá)累積函數(shù);Si(t)為交叉口第i相位進(jìn)口道車輛離開累積函數(shù)。由圖可知,陰影面積S即為第i相位的初始延誤;陰影面積SE為綠時左端時間延長的延誤;面積差S-SE即為第i相位左端綠時變化引起的延誤減少量Δdi1_AO。
圖8 第i相位綠時左端延長時間引起的延誤減少量分析Fig.8 Analysis of delay decrement caused by green extension at left end of phase i
(18)
(19)
第i相位左端綠燈時間延長下的過程B延誤減少量Δdi1_BO為:
(20)
第i相位左端綠燈時間延長的延誤減少量Δdi1O為:
(21)
(2)左端綠時縮短
圖9為第i相位左端綠燈時間縮短下的過程A延誤分析。由圖可知,陰影面積S即為第i相位的初始延誤;陰影面積SR為綠時左端時間縮短的延誤;面積差SR-S即為第i相位左端綠時變化引起的延誤增加量Δdi1_AL。
圖9 第i相位綠時左端縮短時間引起的延誤增加量分析Fig.9 Analysis of delay increment caused by green truncation at left end of phase i
(22)
(23)
第i相位左端綠燈時間縮短下的過程B延誤增加量Δdi1_BL為:
(24)
第i相位左端綠燈時間縮短的延誤增加量Δdi1L為:
(25)
3.2相位綠時右端的延誤變化
(1)右端綠時延長
圖10為第i相位右端綠燈時間延長下的過程A延誤分析。由圖可知,陰影面積S即為第i相位的初始延誤;陰影面積SE為綠時右端時間延長的延誤;面積差S-SE即為第i相位右端綠時變化引起的延誤減少量Δdi2_AO。
圖10 第i相位綠時右端延長時間引起的延誤減少量分析Fig.10 Analysis of delay decrement caused by green extension at right end of phase i
(26)
(27)
第i相位右端綠燈時間延長下的過程B延誤減少量Δdi2_BO為:
(28)
第i相位右端綠燈時間延長的延誤減少量Δdi2O為:
(29)
(2)右端綠時縮短
圖11為第i相位右端綠燈時間縮短下的過程A延誤分析。由圖可知,陰影面積S即為第i相位的初始延誤;陰影面積SR為綠時右端時間縮短的延誤;面積差SR-S即為第i相位右端綠時變化引起的延誤增加量Δdi2_AL。
圖11 第i相位綠時右端縮短時間引起的延誤增加量分析Fig.11 Analysis of delay increment caused by green truncation at right end of phase i
(30)
(31)
第i相位右端綠燈時間縮短下的過程B延誤增加量Δdi2_BL為:
(32)
第i相位右端綠燈時間延長的延誤增加量Δdi2L為:
(33)
交叉口第i相位延誤變化量ΔDi為:
(34)
4模型與算法設(shè)計
(1)基于綠時損失均衡的公交優(yōu)先配時優(yōu)化模型
以周期時長內(nèi)車輛總延誤最小為目標(biāo)來確定交叉口的配時參數(shù)對于公交車輛所占比例較大的相位是不公平的,公交車單車載客量明顯大于社會車輛,而減少交叉口延誤的根本目的是減少人的延誤,提高人的出行效率[14]。因而需要對交叉口內(nèi)人的延誤進(jìn)行分析,以交叉口減少的人的延誤最大作為優(yōu)化的目標(biāo)。對于優(yōu)先相位,綠時延長受益的不僅有公交車輛,還包含部分社會車輛;而對于受到綠時損失的非優(yōu)先相位,其社會車輛和公交車輛也均會增加延誤。假設(shè)cari(t)為第i相位社會車輛到達(dá)累積函數(shù);busi(t)為第i相位公交車輛到達(dá)累積函數(shù);pbus為一個pcu的公交車平均載客數(shù)(即公交車的平均載客數(shù)除以其當(dāng)量小汽車換算系數(shù));pcar為一個pcu 的社會車輛平均載客數(shù),參照交叉口車輛延誤分析,得到各相位乘客延誤為:
(35)
采用公交優(yōu)先策略后,以周期內(nèi)交叉口減少人的總延誤最大為目標(biāo)函數(shù)、保障非優(yōu)先相位的最小綠時為約束條件進(jìn)行配時優(yōu)化,得到如下綠時損失耗散的配時優(yōu)化模型。
(36)
(2)算法設(shè)計
②對角化:示目標(biāo)函數(shù)為f(Δt2,Δt3,…,Δti,…,Δtn), 初始化i=2,count=0。
Step1:設(shè)置收斂準(zhǔn)則,ΔT=(Δt2,Δt3,…,Δtn),‖ΔTcount-ΔTcount-1‖ Step2:檢查i,如果i>n,則令i=2,count=count+1,返回step1; Step3:一階Taylor逼近,暫時固定Δt2,Δt3,…,Δti-1,Δti+1,…,Δtn,對f關(guān)于Δti一元展開:f(Δt2,Δt3,…,Δti,…,Δtn)=f(ΔTk)+▽f·(Δtik)T(Δti-Δtik); Step 4: 求解線性規(guī)劃問題:minf(ΔTk)+▽f(Δtik)T(Δti-Δtik)s.tΔti∈S,得到優(yōu)化解Δtiky,Yk=(Δt2k,Δt3k,…,Δtiky,…,Δtnk); 5算例分析 下面以一四相位的交叉口為例,假設(shè)交叉口進(jìn)口道車流為線性到達(dá),以交叉口進(jìn)口道飽和流率作為車流離去函數(shù)。交叉口相位組成與車輛到達(dá)離去情況如表1所示,假設(shè)一個pcu公交車輛平均載客率為30人,一個pcu社會車輛平均載客率為3人,車輛啟動波傳遞速度為4 m/s,進(jìn)口道排隊(duì)車列的平均車頭間距為6 m。 表1 交叉口交通流數(shù)據(jù)及控制參數(shù) 假設(shè)在第1相位紅時運(yùn)行中端檢測到公交優(yōu)先請求,在第1相位插入優(yōu)先相位,根據(jù)交叉口規(guī)模,取插入相位最短時長為gp_min=8 s。 將數(shù)據(jù)代入優(yōu)化模型(36),按照上述算法對其進(jìn)行求解。在求解Δti1,Δti2過程中,目標(biāo)函數(shù)中有Δt22+Δt31=gp。通過計算得到各相位的綠時均衡參數(shù)如表2所示。 表2 優(yōu)化模型計算結(jié)果分析(單位:s) (1)從各相位綠時均衡參數(shù)計算結(jié)果來看,插入公交優(yōu)先相位對交叉口的沖擊得到了逐級耗散,各非優(yōu)先相位的綠時損失均在可接受的范圍內(nèi)。其中,第2,3,4相位綠時損失時間分別為2.8,7.2,3.1 s,有效避免了非優(yōu)先相位因綠時損失過度而無法排空。 (2)通過各相位綠時左端和右端的時長變化傳遞,將交叉口富余綠時資源協(xié)調(diào)到效益最高的相位,提高了交叉口綠時利用效率。從計算結(jié)果可以看出,將車流量較低的3,4相位富余綠時資源傳遞到車流量較大的第1相位,明顯提升了交叉口通行效益。 (3)在周期內(nèi)協(xié)調(diào)各相位的綠時資源,降低了優(yōu)先策略對交叉口的擾動,同時,不改變下一周期的相位狀態(tài),避免了優(yōu)先控制對交叉口群協(xié)調(diào)的破壞。 6結(jié)論 本文圍繞因公交優(yōu)先控制造成的綠時損失均衡問題,建立了考慮綠時損失均衡的公交優(yōu)先配時優(yōu)化模型,形成的基本結(jié)論如下: (1)通過分析延長綠燈時間,縮短紅燈時間,插入優(yōu)先相位3種公交優(yōu)先控制策略,提出了公交優(yōu)先導(dǎo)致的綠時損失均衡方法,在綠時損失均衡過程中考慮相位之間的順承關(guān)系,將公交優(yōu)先的負(fù)面影響通過相鄰相位傳遞至整周期,可避免非優(yōu)先相位承受過大的綠時沖擊。 (2)分別考慮相位兩端的綠時損失和綠時彌補(bǔ)變化,提出了交叉口在損失均衡下的延誤計算公式,可更準(zhǔn)確地描述相位的延誤變化。 (3)以減少交叉口人總延誤最大為目標(biāo)函數(shù),非優(yōu)先相位正常通行為約束條件建立了優(yōu)化模型,算例計算結(jié)果表明,優(yōu)化模型可有效地均衡綠時損失,非優(yōu)先相位以較小的延誤增加實(shí)現(xiàn)了公交優(yōu)先。 可見,本文提出的綠時損失均衡方法不對信號周期造成擾動,基于綠時損失均衡的公交優(yōu)先配時優(yōu)化模型協(xié)調(diào)了周期內(nèi)的綠時資源分配,提升了交叉口綠時資源利用效率和交叉口通行效益,在群交叉口的信號優(yōu)先和多路公交優(yōu)先請求的研究中也具有利用和發(fā)展的空間。 參考文獻(xiàn): References: [1]WU J, HOUNSELL N. Bus Priority Using Pre-signals[J]. Transportation Research Part A: Policy and Practice, 1998, 32(8): 563-583. [2]張衛(wèi)華, 陸化普. 公交優(yōu)先的預(yù)信號控制交叉口車輛延誤分析[J]. 中國公路學(xué)報, 2005, 18(4): 78-82. ZHANG Wei-hua, LU Hua-pu. Analysis of Vehicle Delay of Intersections with Pre-signals Based on Bus Priority[J]. China Journal of Highway and Transport, 2005, 18(4): 78-82. [3]WAHLSTEDT J. Impacts of Bus Priority in Coordinated Traffic Signals[J]. Procedia-Social and Behavioral Sciences, 2011, 16(1): 578-587. [4]馬萬經(jīng), 楊曉光. 單點(diǎn)公交優(yōu)先感應(yīng)控制策略效益分析與仿真驗(yàn)證[J]. 系統(tǒng)仿真學(xué)報, 2008, 20(12): 3309-3313. MA Wan-jing, YANG Xiao-guang. Efficiency Analysis of Transit Signal Priority Strategies on Isolated Intersection[J]. Journal of System Simulation, 2008, 20(12): 3309-3313. [5]LIU H J, ZHANG J, CHENG D X. Analytical Approach to Evaluating Transit Signal Priority[J]. Journal of Transportation Systems Engineering and Information Technology,2008, 8(2): 48-55. [6]JIANG X C, PEI Y L. Delay Model of Adaptive Signal Control Using Fixed Number Theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(3): 66-70. [7]KEITA Y M, SAITO M. Evaluation of the IQA Delay Estimation Method[J]. Procedia-Social and Behavioral Sciences, 2011, 16(16):792-802. [8]劉廣萍, 裴玉龍. 信號控制下交叉口延誤計算方法研究[J]. 中國公路學(xué)報, 2005, 18(1): 104-108. LIU Guang-ping, PEI Yu-long. Study of Calculation Method of Intersection Delay under Signal Control[J]. China Journal of Highway and Transport, 2005, 18(1): 104-108. [9]DION F, RAKHA H, KANG Y S. Comparison of Delay Estimates at Under-saturated and Over-saturated Pre-timed Signalized Intersections[J]. Transportation Research Part B: Methodological, 2004, 38(2):99-122. [10]LIU Q, XU J M. Traffic Signal Timing Optimization for Isolated Intersections Based on Differential Evolution Bacteria Foraging Algorithm[J]. Procedia-Social and Behavioral Sciences, 2012, 43(4): 210-215. [11]王殿海, 朱慧, 別一鳴,等. 干線公交優(yōu)先信號協(xié)調(diào)控制方法[J]. 東南大學(xué)學(xué)報:自然科學(xué)版, 2011, 41(4): 859-865. WANG Dian-hai, ZHU Hui, BIE Yi-ming, et al. Bus Signal Priority Method at Arterial Signal Progression[J]. Journal of Southeast University: Natural Science Edition, 2011, 41(4): 859-865. [12]王正武, 夏利民, 羅大庸. 單交叉口自適應(yīng)公交優(yōu)先控制[J]. 中國公路學(xué)報, 2010, 23(4): 84-90. WANG Zheng-wu, XIA Li-min, LUO Da-yong. Adaptive Transit Priority Control at Isolated Intersection[J]. China Journal of Highway and Transport, 2010, 23(4): 84-90. [13]柳祖鵬, 李克平, 倪穎. 基于綠燈需求度的單點(diǎn)公交信號優(yōu)先控制策略[J]. 同濟(jì)大學(xué)學(xué)報:自然科學(xué)版, 2013, 41(3): 408-414. LIU Zu-peng, LI Ke-ping, NI Ying. Isolated Transit Signal Priority Control Strategy Based on Demand Degree of Green [J]. Journal of Tongji University: Natural Science Edition, 2013, 41(3): 408-414. [14]張衛(wèi)華, 石琴, 劉強(qiáng). 公交優(yōu)先信號交叉口延誤計算與配時優(yōu)化方法[J]. 華中科技大學(xué)學(xué)報:城市科學(xué)版, 2004,21(4): 30-33. ZHANG Wei-hua, SHI Qin, LIU Qiang. Study of Vehicle Delay Calculation and Optimal Signal-planning Method for Intersections with Induced Signal Based on Bus Priority[J]. Journal of Huazhong University of Science and Technology: Urban Science Edition,2004, 21(4): 30-33. [15]FRANK M, WOLFE P. An Algorithm for Quadratic Programming[J]. Naval Research Logistics Quarterly, 1956, 3(1): 95-110. Timing Optimization for Bus Priority Signalized Intersection Considering Green Loss EquilibriumHU Xing-hua1, LONG Bing2, ZHU Xiao-ning1 (1. School of Traffic and Transportation Beijing Jiaotong University, Beijing 100044, China; 2.Chongqing Transport Planning Institute, Chongqing 400000, China) Abstract:For balancing the negative effect of intersection delay caused by bus priority signal control, 3 kinds of green loss equilibrium methods for bus priority strategy are proposed based on green extension, red truncation and phase insertion respectively. By using the method of delay overlay analysis, considering the process of vehicles accumulation, evacuation, stopping and starting in the intersection entrance lane, the delay increase or decrease caused by length variation at left and right ends of the green phase is analysed, and a model of calculating delay under green loss equilibrium is established. Taking maximizing the reduction of total average delay at intersection as the objective function which is subject to the status of vehicles at rest phases may normally move, a bus priority optimal timing model is established to optimize the green time equilibrium parameters of different phases considering the green loss equilibrium. A solving method of the function is designed utilizing the diagonalization algorithm based on Frank-Wolfe algorithm. The result shows that (1) the new delay calculation model can describe the delay change at bus priority signalized intersections more precisely; (2)the optimal timing model shows an effective result of green loss equilibrium with non-priority phases and the amount of delay reduction at intersection. Key words:traffic engineering; timing optimizing; delay superpostion analysis; intersection; loss equilibrium; bus priority 文獻(xiàn)標(biāo)識碼:A 文章編號:1002-0268(2016)02-0096-09 中圖分類號:U491.5+1 doi:10.3969/j.issn.1002-0268.2016.02.015 作者簡介:胡興華(1981-),男,河北石家莊人,博士研究生,高級工程師.(xhhu@bjtu.edu.cn) 基金項(xiàng)目:國家自然科學(xué)基金重大項(xiàng)目(71390332);國家自然科學(xué) (60870014);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研 (20130009110001) 收稿日期:2015-06-03