房文健,上官文峰
(上海交通大學(xué)機(jī)械與動(dòng)力工程學(xué)院燃燒與環(huán)境技術(shù)中心,上海 200240)
綜述與展望
太陽(yáng)能光催化制氫反應(yīng)體系及其材料研究進(jìn)展
房文健,上官文峰*
(上海交通大學(xué)機(jī)械與動(dòng)力工程學(xué)院燃燒與環(huán)境技術(shù)中心,上海 200240)
光催化制氫是利用太陽(yáng)能獲取氫能的重要途徑,是當(dāng)前研究熱點(diǎn)。長(zhǎng)期以來(lái),人們致力于各種新型可見(jiàn)光光催化制氫材料的研究并取得較大進(jìn)展。反應(yīng)體系的設(shè)計(jì)和選擇是實(shí)現(xiàn)高效光催化制氫和能否走向工業(yè)化的核心問(wèn)題之一,因此,近年來(lái)研究者開(kāi)始對(duì)光催化制氫反應(yīng)體系加大研究。光催化制氫主要有非均相光催化制氫(HPC)和光電催化制氫(PEC),不同的體系具有各自的優(yōu)缺點(diǎn)和應(yīng)用范圍。重點(diǎn)介紹光催化制氫半反應(yīng)、光催化完全分解水和光電催化分解水3種主要反應(yīng)體系,分析各種反應(yīng)體系的特點(diǎn),闡述各個(gè)體系涉及的光催化材料的發(fā)展進(jìn)程,并展望太陽(yáng)能光催化制氫研究前景,其中,新型高效的PEC-PV(光伏)耦合光化學(xué)轉(zhuǎn)化系統(tǒng)有望為光解水制氫實(shí)現(xiàn)工業(yè)化提供一種重要的發(fā)展途徑。
催化化學(xué);光催化制氫;反應(yīng)體系;完全分解水;光電催化分解水
太陽(yáng)能具有清潔、能量大和廣泛持久存在的優(yōu)勢(shì),是人類應(yīng)對(duì)能源短缺、氣候變化與節(jié)能減排的重要選擇之一。但太陽(yáng)能不能被直接利用,需要轉(zhuǎn)換為熱能、電能或化學(xué)能。自1972年Fujishima A等[1]發(fā)現(xiàn)TiO2單晶電極在光照下分解水產(chǎn)生氫氣以來(lái),太陽(yáng)能直接轉(zhuǎn)換為化學(xué)能成為可能。目前,光催化技術(shù)廣泛應(yīng)用于能源與環(huán)境兩大領(lǐng)域,如光解水制氫、光催化CO2還原、空氣凈化和水處理等[2-9]。其中,光解水制氫是通過(guò)光催化劑粉末或電極吸收太陽(yáng)能產(chǎn)生光生載流子,繼而將水分解成氫氣和氧氣。光解水制氫為太陽(yáng)能直接轉(zhuǎn)化為清潔、可存儲(chǔ)的化學(xué)能提供了可能途徑,被認(rèn)為是化學(xué)界的“圣杯”[10],通過(guò)太陽(yáng)能獲取氫氣應(yīng)用前景廣闊。
有關(guān)光催化制氫的研究主要集中在各種光催化材料上,而光催化制氫反應(yīng)體系的選擇也是光催化制氫的基本問(wèn)題之一,不同體系具有各自的優(yōu)缺點(diǎn)和應(yīng)用范圍。本文以太陽(yáng)能光催化制氫反應(yīng)各種體系為背景,概述國(guó)內(nèi)外光催化制氫研究進(jìn)展。
光解水制氫主要有兩種方式:(1) 將催化劑粉末直接分散在水溶液中,通過(guò)光照射溶液產(chǎn)生氫氣,稱為非均相光催化制氫(HPC),其中,根據(jù)粉末在水中的狀態(tài)又分為如圖1所示的幾種形式[11]。(2) 將
催化劑制成電極浸入水溶液中,在光照和一定的偏壓下,兩電極分別產(chǎn)生氫氣和氧氣,稱為光電催化制氫(PEC)。方式(1)的優(yōu)點(diǎn)是裝置簡(jiǎn)單,催化劑與水充分接觸;缺點(diǎn)是生成的氫氣和氧氣混合在一起,且光激發(fā)的電子空穴易復(fù)合。方式(2)的優(yōu)點(diǎn)是氫氣和氧氣分別在兩個(gè)電極產(chǎn)生易分離,生成的電子空穴在偏壓下也能很快分離,減少?gòu)?fù)合;缺點(diǎn)是裝置復(fù)雜,光照面積小。
圖 1 非均相光催化制氫(HPC)和光電催化制氫(PEC)示意圖[11]Figure 1 Diagrammatic sketch of heterogeneous photocatalytic hydrogen production (HPC) and photoelectrocatalytic hydrogen production (PEC)
光催化制氫反應(yīng)體系分為光催化制氫半反應(yīng)和光催化完全分解水制氫。截止2015年,各類體系的能量轉(zhuǎn)換效率見(jiàn)圖2[12]。
圖 2 光催化有關(guān)體系能量轉(zhuǎn)換效率[12]Figure 2 Evolution of record solar-to-fuel efficiencies of different approaches,reported in the absence of chemical or electrical bias and under (simulated) solar illumination[12]
最近兩年HPC系統(tǒng)能量轉(zhuǎn)換效率取得一定進(jìn)展,C-dot/-C3N4和SrTiO3:La,Rh/Au/BiVO4:Mo體系能量轉(zhuǎn)換效率均突破1%[13-14]。
光催化制氫半反應(yīng)是指在反應(yīng)體系中加入電子施體(犧牲劑)消耗光生光穴,而光生電子還原水產(chǎn)生氫氣,如圖3所示。
圖 3 犧牲劑存在時(shí)光催化制氫半反應(yīng)示意圖Figure 3 Diagrammatic sketch of H2 evolution reaction in the presence of sacrificial reagents
其中,光催化劑、助催化劑和犧牲劑是光催化制氫半反應(yīng)的3個(gè)關(guān)鍵部分。目前,用于光催化制氫半反應(yīng)的光催化劑主要是窄帶系的硫(氮)化物,如CdS、ZnS等。Tsuji Issei等[15]通過(guò)形成固溶體的方式得到系列ZnS基可見(jiàn)光響應(yīng)高效分解水制氫光催化劑、(AgIn)xZn2(1-x)S2、(CuIn)xZn2(1-x)S2和ZnS-AgInS2-CuInS2。尋找高效廉價(jià)的助催化劑也是研究熱點(diǎn)之一,除了Pt等貴金屬用于光催化制氫半反應(yīng)助催化劑,一些非貴金屬及其氧(碳)化物和石墨烯等也能提高光催化性能[16-17]。本課題組通過(guò)在CdS上負(fù)載Ni及NiOx,顯著提高了CdS光催化制氫效率[13]。
犧牲劑是光催化制氫半反應(yīng)中核心之一,其作用主要有:(1) 通過(guò)消耗空穴抑制光生空穴與電子的復(fù)合,促進(jìn)氫氣產(chǎn)生;(2) 通過(guò)消耗空穴有效防止光催化劑的光腐蝕。不同犧牲劑具有不同的吸光特性(圖4)[18],當(dāng)入射光波長(zhǎng)小于犧牲劑吸收邊時(shí),犧牲劑本身與水發(fā)生光化學(xué)反應(yīng),生成氫氣或氧氣。而犧牲劑與光催化劑共同存在時(shí),犧牲劑與水的光化學(xué)反應(yīng)以及光催化劑與水的光催化反應(yīng)將同時(shí)發(fā)生。因此,光催化制氫半反應(yīng)中需要評(píng)價(jià)兩者對(duì)產(chǎn)生氫氣的貢獻(xiàn)[18]。目前,主要的電子施體犧牲劑分為有機(jī)物和無(wú)機(jī)物兩大類。
圖 4 犧牲劑的紫外可見(jiàn)光吸收光譜(犧牲劑濃度為0.1 mol·L-1)Figure 4 UV-Vis light adsorption spectra of sacrificial reagents (sacrificial reagent concentration 0.1 mol·L-1)
2.1 有機(jī)犧牲劑
有機(jī)物通常具有較強(qiáng)的還原性而易被空穴氧化,進(jìn)而起消耗空穴的作用,常見(jiàn)有機(jī)犧牲劑有醇類、EDTA和乳酸等,其中,研究最多的為甲醇。甲醇存在時(shí)發(fā)生的化學(xué)反應(yīng)可表示為[19]:
整個(gè)反應(yīng):
甲醇被氧化為甲醛,而甲醛會(huì)繼續(xù)被氧化為CO2:
從整個(gè)反應(yīng)可以看出,有機(jī)物消耗了光生空穴,最終被氧化為CO2,而光生電子將水中的氫還原成氫氣[19]。本課題組利用水熱法制備的NiS-PdS/CdS以乳酸為犧牲劑時(shí)的光催化產(chǎn)氫量子效率達(dá)47.5%(420 nm)[20]。醇類雖然是有效的犧牲劑,被廣泛應(yīng)用在光催化產(chǎn)氫的半反應(yīng)體系中,但醇類本身是燃料,作為犧牲劑產(chǎn)氫得不償失,沒(méi)有實(shí)際應(yīng)用價(jià)值。有機(jī)物中除醇類還可用其他有機(jī)廢料或可再生生物質(zhì)等作為電子施體,如三乙醇胺、葡萄糖和甘油等。因此,可以設(shè)計(jì)一個(gè)多功能的光催化系統(tǒng),利用有機(jī)廢棄物作為犧牲劑,光照下,有機(jī)物被降解同時(shí)水被還原為氫氣。
另外一種途徑是利用化石燃料碳?xì)浠衔镒鳛闋奚鼊?,在光催化作用下產(chǎn)生烴類和氫氣[21]。也可以利用生物質(zhì)如蛋白質(zhì)、藻類和糖類等以消耗空穴,但反應(yīng)過(guò)程復(fù)雜,目前還處于研究階段。
2.2 無(wú)機(jī)犧牲劑
在光催化分解水制氫體系中加入犧牲劑,可使光生空穴優(yōu)先與這些易氧化的電子給體反應(yīng),造成光生空穴不可逆大量消耗,使光生電子在光催化劑表面富集,最終提高光催化劑分解水制氫活性。從應(yīng)用角度出發(fā),光催化分解水制氫體系犧牲劑的選擇必須滿足經(jīng)濟(jì)性和高效性特征,犧牲劑必須來(lái)源廣泛、成本低廉、效果顯著和環(huán)境友好,或者犧牲劑轉(zhuǎn)化產(chǎn)物是有用產(chǎn)品,其價(jià)值超過(guò)犧牲劑本身,否則,在實(shí)際應(yīng)用中犧牲劑將受到限制。
光催化分解水的各種類型光催化劑已被相繼開(kāi)發(fā),但由于受熱力學(xué)或動(dòng)力學(xué)因素限制,能同時(shí)產(chǎn)氫和產(chǎn)氧的光催化劑不多,大部分的反應(yīng)體系以電子給體作為犧牲組分實(shí)現(xiàn)產(chǎn)氫半反應(yīng)。雖然僅能進(jìn)行產(chǎn)氫或產(chǎn)氧半反應(yīng)的催化材料在研究光催化機(jī)理方面具有重要作用,其開(kāi)發(fā)也是必要的,但犧牲劑的消耗大大增加了產(chǎn)氫成本。因此,作為光催化制氫的另一體系——光催化完全分解水一直是化學(xué)中的“圣杯”,尋找完全分解水(特別是可見(jiàn)光下)高效催化劑一直是研究熱點(diǎn)和難點(diǎn)。完全分解水反應(yīng)需要符合3個(gè)要求(見(jiàn)圖5)[11]:(1) 氫氣和氧氣的比例必須為2∶1;(2) 氣體生成量與反應(yīng)時(shí)間成正比;(3) 氣體產(chǎn)量足夠大。
圖 5 標(biāo)準(zhǔn)完全分解水反應(yīng)示意圖[11]Figure 5 Important points for evaluation of data for photocatalytic water splitting[11]
3.1 單一體系
單一體系在紫外光下完全分解水的材料主要包括含d0(如Ti4+、Zr4+、Ta5+、Nb5+)和d10(如In3+、Ga3+、Ge4+)結(jié)構(gòu)的金屬氧化物及其含氧酸鹽,其中,Ni/NiOx負(fù)載的La-NaTaO3量子效率最高達(dá)56%[29];能響應(yīng)可見(jiàn)光完全分解水的材料(>420 nm)有GaN:ZnO固溶體[30-31]。在光催化制氫體系中,由于完全分解水要求在光催化劑表面同時(shí)產(chǎn)生氫氣和氧氣,無(wú)論在熱力學(xué)要求(能帶位置)還是動(dòng)力學(xué)因素(分離載流子手段)方面都具有特殊性。在熱力學(xué)方面,完全分解水光催化劑能帶需同時(shí)滿足導(dǎo)帶電位較H2/H2O電位更負(fù),且價(jià)帶電位較O2/H2O電位更正;在動(dòng)力學(xué)方面,與產(chǎn)氫半反應(yīng)不同的是,氧氣的生成具有較高的過(guò)電勢(shì),產(chǎn)氧往往成為控制因素,因此,完全分解水時(shí),在修飾催化材料時(shí)更多地關(guān)注降低析氧過(guò)電勢(shì)。完全分解水過(guò)程中,還需考慮如何抑制產(chǎn)生的氫氣和氧氣再次反應(yīng)生成水,單一體系可見(jiàn)光下完全分解水還處于探索階段。蘇州大學(xué)利用C-dot為助催化劑,g-C3N4在可見(jiàn)光下能完全分解水,且氫氧比為2[13]。
3.2 兩步反應(yīng)法-Z型反應(yīng)
自然界中的光合作用是通過(guò)光激發(fā)過(guò)程和一系列氧化還原中間體實(shí)現(xiàn)由CO2和H2O產(chǎn)生O2和碳?xì)浠?。因此,可以模擬光合作用的Z型反應(yīng)建立光催化分解水的反應(yīng)體系,實(shí)現(xiàn)可見(jiàn)光下完全分解水。Z型反應(yīng)的光解水過(guò)程可以采用不同的催化劑,借助兩次光激發(fā)過(guò)程,分別完成光解水產(chǎn)氫和產(chǎn)氧,如圖6所示[8,32-34]。
圖 6 模擬自然界光合作用的Z型反應(yīng)分解水Figure 6 Solar water splitting by Z-scheme photocatalyst system through simulating photosynthesis in nature
通過(guò)兩種材料導(dǎo)帶和價(jià)帶的電位匹配,以氧化還原中間體實(shí)現(xiàn)體系的電荷平衡,使光解水過(guò)程得以連續(xù)進(jìn)行。由于反應(yīng)體系中的催化劑只需分別滿足各自的光激勵(lì)過(guò)程,為材料設(shè)計(jì)提供很大空間。同時(shí),光解水產(chǎn)氫和產(chǎn)氧過(guò)程的分離可以抑制逆反應(yīng)發(fā)生,反應(yīng)過(guò)程:
還可以利用貴金屬或石墨烯連接兩個(gè)半導(dǎo)體催化劑,實(shí)現(xiàn)電子空穴的分離和轉(zhuǎn)移,如圖6所示。SrTiO3被激發(fā)出的電子轉(zhuǎn)移到Au上,然后與BiVO4激發(fā)出來(lái)的空穴復(fù)合,水分別在BiVO4表面被氧化為O2,而在SrTiO3表面被還原為H2[34]。Demon團(tuán)隊(duì)構(gòu)造的SrTiO3:La和Rh/Au/BiVO4:Mo體系能源轉(zhuǎn)換效率超過(guò)1%[14]。常見(jiàn)的Z型反應(yīng)體系見(jiàn)表1[32]。與單一體系相比,Z型反應(yīng)體系具有如下優(yōu)點(diǎn):(1) 氧化還原中介體與半導(dǎo)體催化劑的選擇充足,可將產(chǎn)氫和產(chǎn)氧效率高的催化劑組合,特別是產(chǎn)氫和產(chǎn)氧催化劑只要分別滿足H2/H2O和O2/H2O電位要求即可,使窄帶隙的半導(dǎo)體可以用于Z型反應(yīng),實(shí)現(xiàn)可見(jiàn)光下完全分解;(2) Red/Ox氧化還原電位位于H2/H2O和 O2/H2O之間,每步化學(xué)轉(zhuǎn)化能比分解水的能量小,因此,相對(duì)于直接光解水容易得多;(3) 可以使用簡(jiǎn)單的濾網(wǎng)膜避免兩種催化劑混合,使產(chǎn)生的氫氣和氧氣分離。
表 1 常見(jiàn)的Z型反應(yīng)體系
Z型反應(yīng)體系也存在很多不足,首先,生成相同量的H2所需的光子數(shù)是傳統(tǒng)光解水所需光子數(shù)的兩倍。例如,以Pt/SrTiO3為產(chǎn)氫催化劑,以BiVO4、Bi2MoO6和WO3為產(chǎn)氧催化劑的3種Z型反應(yīng)體系在440 nm的光照下,量子效率僅為0.3%、0.2%和0.2%[36];其次,Z型反應(yīng)體系比傳統(tǒng)光解水反應(yīng)體系復(fù)雜,溶液中失活催化劑的再生過(guò)程較困難,產(chǎn)生副反應(yīng)的可能性也會(huì)增加。
光催化制氫半反應(yīng)和光催化完全分解水體系主要是針對(duì)非均相光催化制氫系統(tǒng),與光電催化分解水體系有相似之處,例如可加入犧牲劑消耗空穴發(fā)生產(chǎn)氫半反應(yīng)等。不同之處是光電催化制氫將產(chǎn)氫和產(chǎn)氧材料分別制備在兩個(gè)電極上,并將電極、化學(xué)池和導(dǎo)線構(gòu)成一個(gè)回路,通過(guò)光照將太陽(yáng)能轉(zhuǎn)化為電能,然后電解水。光電催化制氫的優(yōu)點(diǎn)是產(chǎn)氫和產(chǎn)氧可以在不同電極上進(jìn)行,且降低了激發(fā)電荷復(fù)合幾率;缺點(diǎn)是必須外加電壓,需要提供額外的能量。上海交通大學(xué)周保學(xué)課題組[37]提出一種自偏壓的概念,即利用半導(dǎo)體價(jià)導(dǎo)帶位置的區(qū)別驅(qū)動(dòng)光生電子空穴的移動(dòng),分別在兩個(gè)電極上分解水,見(jiàn)圖7,但仍需要犧牲劑,否則不能實(shí)現(xiàn)純水的完全分解制氫。因此,光電催化分解水體系的主要研究方向是在如何減小或無(wú)偏壓、無(wú)犧牲劑條件下分解水制氫,其中一種途徑是將PEC系統(tǒng)與光伏(PV)系統(tǒng)耦合以提高對(duì)光能的綜合利用率[38]。目前,利用鈣鈦礦作為PV時(shí),PEC-PV耦合系統(tǒng)的光化學(xué)能轉(zhuǎn)換效率達(dá)12.3%[39]。
圖 7 光電催化分解水(PEC)和PEC-PV耦合體系示意圖Figure 7 Diagrammatic sketch of photoelectrocatalysis hydrogen production(PEC) with self-bias and coupling system of PEC-PV
光催化制氫反應(yīng)體系包括產(chǎn)氫半反應(yīng)、完全分解水和光電分解水,具有各自的優(yōu)缺點(diǎn),但均未取得突破性進(jìn)展。將光電催化分解水與光伏耦合的新型高效的PEC-PV耦合光化學(xué)轉(zhuǎn)化系統(tǒng),光化學(xué)能轉(zhuǎn)化效率明顯提高,有望為光解水制氫實(shí)現(xiàn)工業(yè)化提供一種重要的發(fā)展途徑。目前,雖然太陽(yáng)能光催化制氫效率較低,處于實(shí)驗(yàn)室階段,但利用太陽(yáng)能從水中獲得氫氣是一種完全的可持續(xù)開(kāi)發(fā)和利用的手段,具有極大的潛力。研究者均致力于尋找和開(kāi)發(fā)出具有高效率的光解水催化劑,使“太陽(yáng)氫”真正服務(wù)于人類。
[1]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[2]上官文峰.太陽(yáng)能光解水制氫的研究進(jìn)展[J].無(wú)機(jī)化學(xué)學(xué)報(bào),2001,17(5):619-626. Shangguan Wenfeng.Progress in research of hydrogen production from water on photocatalysts with solar energy[J].Chinese Journal of Inorganic Chemistry,2001,17(5):619-626.
[3]鄒志剛.光催化材料與太陽(yáng)能轉(zhuǎn)換和環(huán)境凈化[J].功能材料信息,2008,(4):17-19. Zou Zhigang.Photocatalytic material,solar energy conversion and environmental purification[J].Functional Materials Information,2008,(4):17-19.
[4]溫福宇,楊宗旭,馬藝,等.太陽(yáng)能光催化制氫研究進(jìn)展[J].化學(xué)進(jìn)展,2009,21(11):2285-2301. Wen Fuyu,Yang Zongxu,Ma Yi,et al.Photocatalytic hydrogen production utilizing solar energy[J].Progress in Chemistry,2009,21(11):2285-2301.
[5]Zhang F,Li C.Semiconductor-based photocatalytic water splitting[M].Germany:Springer International Publishing,2016.
[6]Wang H,Zhang L,Chen Z,et al.Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances[J].Chemical Society Reviews,2014,43(15):5234-5244.
[7]Chen X,Shen S,Guo L,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503-6570.
[8]Maeda K,Domen K.Photocatalytic water splitting:recent progress and future challenges[J].The Journal of Physical Chemistry Letters,2010,1(18):2655-2661.
[9]Nakata K,Fujishima A.TiO2photocatalysis:design and applications[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2012,13(3):169-189.
[10]Bard A J,Fox M A.Artificial photosynthesis:solar splitting of water to hydrogen and oxygen[J].Accounts of Chemical Research,1994,28(3):141-145.
[11]Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,2009,38(1):253-278.
[12]Ronge J,Bosserez T,Martel D,et al.Monolithic cells for solar fuels[J].Chemical Society Reviews,2014,43(23):7963-7981.
[13]Liu J,Liu Y,Liu N,et al.Water splitting.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J].Science,2015,347(6225):970-974.
[14]Wang Q,Hisatomi T,Jia Q,et al.Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J].Nature Materials,2016,15(6):611-615.
[15]Tsuji Issei,Kato Hideki,Kobayashi Hisayoshi,et al.Photocatalytic H2evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2solid solution photocatalysts with visible-light response and their surface nanostructures[J].Journal of the American Chemical Society,2004,126(41):13406-13413.
[16]Chen X,Chen W,Lin P,et al.In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis[J].Catalysis Communications,2013,36:104-108.
[17]Gao H,Chen W,Yuan J,et al.Controllable O2-· oxidization graphene in TiO2/graphene composite and its effect on photocatalytic hydrogen evolution[J].International Journal of Hydrogen Energy,2013,38(29):13110-13116.
[18]Liu H,Yuan J,Shangguan W.Photochemical reduction and oxidation of water including sacrificial reagents and Pt/TiO2catalyst[J].Energy & Fuels,2006,20(6):2289-2292.
[19]Chen T,Feng Z,Wu G,et al.Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2by in situ Fourier transform IR and time-resolved IR spectroscopy[J].Journal of Physical Chemistry C,2007,111(22):8005-8014.
[20]林培賓,楊俞,陳威,等.NiS-PdS/CdS光催化劑的水熱法合成及其可見(jiàn)光分解水產(chǎn)氫性能[J].物理化學(xué)學(xué)報(bào),2013,29(6):1313-1318. Lin Peibin,Yang Yu,Chen Wei,et al.Hydrothermal synthesis and activity of NiS-PdS/CdS catalysts for photocatalytic hydrogen evolution under visible light irradiation[J].Acta Physico-Chimica Sinica,2013,29(6):1313-1318.
[21]Hashimoto K,Kawai T,Sakata T.Photocatalytic reactions of hydrocarbons and fossil fuels with water.Hydrogen production and oxidation[J].The Journal of Physical Chemistry,1984,88(18):4083-4088.
[22]Yan H,Yang J,Ma G,et al.Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J].Journal of Catalysis,2009,266(2):165-168.
[23]Abe R,Sayama K,Arakawa H.Significant influence of solvent on hydrogen production from aqueous I3-/I-redox solution using dye-sensitized Pt/TiO2photocatalyst under visible light irradiation[J].Chemical Physics Letters,2003,379(3/4):230-235.
[24]Kozlova E A,Korobkina T P,Vorontsov A V,et al.Enhancement of the O2or H2photoproduction rate in a Ce3+/Ce4+-TiO2system by the TiO2surface and structure modification[J].Applied Catalysis A:General,2009,367(1/2):130-137.
[25]Sasaki Y,Iwase A,Kato H,et al.The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+electron mediator on overall water splitting under visible light irradiation[J].Journal of Catalysis,2008,259(1):133-137.
[26]Fujihara K,Ohno T,Matsumura M.Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2particles[J].Journal of the Chemical Society,Faraday Transactions,1998,94(24):3705-3709.
[27]Lee S G,Lee S,Lee H-I.Photocatalytic production of hydrogen from aqueous solution containing CN-as a hole scavenger[J].Applied Catalysis A:General,2001,207(1/2):173-181.
[28]Bao N,Shen L,Takata T,et al.Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light[J].Chemistry of Materials,2008,20(1):110-117.
[29]Kudo A,Niishiro R,Iwase A,et al.Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts[J].Chemical Physics,2007,339(1/3):104-110.
[30]Maeda K,Teramura K,Lu D,et al.Photocatalyst releasing hydrogen from water[J].Nature,2006,440(7082):295.
[31]Maeda K,Takata T,Hara M,et al.GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J].Journal of the American Chemical Society,2005,127(23):8286-8287.
[32]Maeda K.Z-Scheme water splitting using two different semiconductor photocatalysts[J].ACS Catalysis,2013,3(7):1486-1503.
[33]Sasaki Y,Nemoto H,Saito K,et al.Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator[J].The Journal of Physical Chemistry C,2009,113(40):17536-17542.
[34]Tada H,Mitsui T,Kiyonaga T,et al.All-solid-state Z-scheme in CdS-Au-TiO2three-component nanojunction system[J].Nature Materials,2006,5(10):782-786.
[35]Lee K.Photocatalytic water-splitting in alkaline solution using redox mediator.1:Parameter study[J].International Journal of Hydrogen Energy,2004,29(13):1343-1347.
[36]Kato H,Hori M,Konta R,et al.Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2and O2under visible light irradiation[J].Chemistry Letters,2004,33(10):1348-1349.
[37]Zeng Q,Bai J,Li J,et al.Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation[J].Nano Energy,2014,(9):152-160.
[38]Turan B,Becker J P,Urbain F,et al.Upscaling of integrated photoelectrochemical water-splitting devices to large areas[J].Nature Communications,2016,(7):12681-12690.
[39]Luo J,Im J H,Mayer M T,et al.Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts[J].Science,2014,345(6204):1593-1596.
Progress in reaction system and related materials for solar photocatalytic hydrogen production
FangWenjian,ShangguanWenfeng*
(Research Center for Combustion and Environmental Technology,School of Mechanical and Power Engineering, Shanghai Jiao Tong University,Shanghai 200240,China)
Photocatalytic hydrogen production,a hot area of research for several years,is one of the most important ways to utilize solar energy.Great progress has been made in the finding of new photocatalytic hydrogen production materials.The choice of reaction systems is important for the development of photocatalytic hydrogen production.In recent years,the research on reaction systems of photocatalytic hydrogen production has also drawn greater attention.At present,there are two main ways for photocatalytic hydrogen production: heterogeneous photocatalytic hydrogen production(HPC) and photoelectric catalyzed hydrogen production(PEC).Different reaction systems have their respective advantages and disadvantages and application field.Three main reaction systems for photocatalytic hydrogen production were introduced,including photocatalytic hydrogen production with sacrificial agent,overall water splitting and photoelectrocatalytic decomposition of water.The advantages and disadvantages of each system were discussed.Based on various photocatalytic hydrogen production reaction systems,the research progress in photocatalytic water splitting for hydrogen was summarized.Moreover,the latest development in photocatalytic materials involved in each system were also reviewed.Finally,the prospects of photocatalytic water splitting for hydrogen were proposed.Especially,exceeding chemical energy conversion efficiency has been reached by coupling PEC with photovoltaic(PV).It provides a new way for photocatalytic hydrogen production to meet the request of industrialization.
catalytic chemistry;photocatalytic hydrogen production;reaction systems;overall water splitting;photoelectrocatalysis water splitting
O644;TQ034 Document code: A Article ID: 1008-1143(2016)12-0001-07
2016-10-08;
2016-11-01
房文健,1988年生,男,江蘇省揚(yáng)州市人,在讀博士研究生,研究方向?yàn)楣獯呋纸馑?/p>
上官文峰,教授,博士研究生導(dǎo)師。
10.3969/j.issn.1008-1143.2016.12.001
O644;TQ034
A
1008-1143(2016)12-0001-07
doi:10.3969/j.issn.1008-1143.2016.12.001