陳仕洲
(韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東潮州 521041)
具有奇性的Laplacian型方程周期正解的存在性
陳仕洲
(韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東潮州 521041)
利用重合度理論,研究一類(lèi)具有奇性的Laplacian型方程,獲得其周期正解存在性新的充分條件,推廣和改進(jìn)了已有文獻(xiàn)中的相關(guān)結(jié)論.
Laplacian型方程;周期正解;奇性;重合度理論
具有奇性的微分方程周期解存在問(wèn)題是近年來(lái)研究的熱點(diǎn),已有很多成果[1-6].例如起源于電子學(xué)理論中的電子束B(niǎo)rillouin聚焦問(wèn)題可轉(zhuǎn)化為研究微分方程[1-2].
[1]丁同仁.關(guān)于周期性Brillouin電子束聚焦系統(tǒng)的一個(gè)邊值問(wèn)題[J].北京大學(xué)學(xué)報(bào),1965(1):31-38.
[2]葉彥謙,王現(xiàn).電子注聚焦理論中所出現(xiàn)的非線性微分方程[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),1978(1):13-41.
[3]ZHANG M.Eriodic solutions of Liénard equations with singular forces of repulsive type[J].Journal of mathematical analysis and applications,1996,203(1):254-269.
[4]高亞靜,陶詔靈.一類(lèi)p-Laplacian-Rayleigh方程周期正解的存在性[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2015,32(5):630-634.
[5]鐘濤,魯世平.一類(lèi)具有奇性Rayleigh方程周期正解的存在性[J].揚(yáng)州大學(xué)學(xué)報(bào),2015,18(2):18-21.
[6]陳仕洲.一類(lèi)具有奇性p-Laplacian-Rayleigh方程的周期正解[J].井岡山大學(xué)學(xué)報(bào):自然科學(xué)版,2016,37(4):6-8.
[7]MANASEVICH R,MAWHIN J.Periodic solutions for nonlinear systems withP-Laplacian-like operators[J].J.Differential Equations,1998,145(2):367-393.
Existence of Positive Periodic Solutions for a Laplacian-like Equation With Singularity
CHEN Shi-zhou
(College of Mathematics and Statistics,Hanshan Normal University,Chaozhou,Guangdong,521041)
By using the continuation theorem of coincidence degree,we study a Laplacian-like equation with a singularity.Some new sufficient conditions for the existence of positive periodic solutions are obtained. The results have extended and improved the related reports in the literatures.
Laplacian-like equation;positive periodic solution;singularity;coincidence degree
O 175.12
:A
:1007-6883(2016)06-0008-04
責(zé)任編輯 朱本華
2016-10-08
廣東省高等教育教學(xué)改革項(xiàng)目(項(xiàng)目編號(hào):GDJG20142396);韓山師范學(xué)院理科團(tuán)隊(duì)項(xiàng)目(項(xiàng)目編號(hào):LT201202).
陳仕洲(1959-),男,廣東汕頭人,韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院副教授.