楊佳超, 趙云鶴, 蔣 蓉, 陸 利
(山西醫(yī)科大學(xué)人體解剖學(xué)教研室,山西 太原 030001)
?
18α-GA通過上調(diào)蛋白酶體活性促進(jìn)晚期骨髓間充質(zhì)干細(xì)胞增殖*
楊佳超,趙云鶴,蔣蓉,陸利△
(山西醫(yī)科大學(xué)人體解剖學(xué)教研室,山西 太原 030001)
[摘要]目的: 明確18α-甘草次酸(18α-glycyrrhetinic acid,18α-GA)對晚期骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)衰老標(biāo)志物和增殖能力的影響。方法: 晚期BMSCs(≥14代)應(yīng)用2.0 mg/L的18α-GA持續(xù)作用30 d,比較18α-GA組與DMSO組蛋白酶體活性;衰老相關(guān)β-半乳糖苷酶(senescence-associated β-galactosidase,SA-β-Gal)染色和Western blot檢測衰老相關(guān)蛋白p53、p21和p16的表達(dá)變化;CCK-8、BrdU摻入試驗(yàn)、流式細(xì)胞術(shù)和Western blot分別檢測細(xì)胞增殖能力、細(xì)胞周期分布及細(xì)胞周期相關(guān)分子表達(dá)變化。結(jié)果: 應(yīng)用18α-GA 后BMSCs蛋白酶體活性較DMSO組增高約0.2倍(P<0.01)。18α-GA組SA-β-Gal陽性衰老細(xì)胞較DMSO組減少,且細(xì)胞著色淺淡;衰老相關(guān)蛋白p53和p21表達(dá)水平分別較對照組降低(P<0.05)。CCK-8實(shí)驗(yàn)及流式細(xì)胞術(shù)結(jié)果顯示18α-GA組細(xì)胞增殖能力較DMSO組增高,S期細(xì)胞顯著增多(P<0.05),18α-GA組BrdU染色陽性細(xì)胞率較DMSO對照組增高(P<0.05)。18α-GA組細(xì)胞周期相關(guān)蛋白cyclin D1及CDK4表達(dá)水平分別較DMSO組增高(P<0.05)。結(jié)論: 18α-GA可激活晚期BMSCs蛋白酶體活性延緩細(xì)胞衰老,并且可能通過上調(diào)細(xì)胞周期相關(guān)蛋白表達(dá)水平促進(jìn)晚期BMSCs增殖。
[關(guān)鍵詞]18α-甘草次酸; 蛋白酶體; 骨髓間充質(zhì)干細(xì)胞; 細(xì)胞增殖
骨髓間充質(zhì)干細(xì)胞(bonemarrowmesenchymalstemcells,BMSCs)是目前組織工程應(yīng)用較廣泛的種子細(xì)胞之一,而源自體內(nèi)的BMSCs數(shù)量有限,需經(jīng)體外長期培養(yǎng)擴(kuò)增后方可用于臨床移植治療。近期的研究報(bào)道表明BMSCs存在復(fù)制性衰老,進(jìn)而限制了其臨床應(yīng)用[1-2]。我們的前期研究結(jié)果證實(shí)蛋白酶體活性降低是BMSCs復(fù)制性衰老的重要因素[3],增強(qiáng)蛋白酶體活性有助于維持BMSCs細(xì)胞活力,延緩其衰老進(jìn)程[4]。18α-甘草次酸(18α-glycyrrhetinicacid,18α-GA)是一種源自甘草的三萜類抗氧化劑[5-8]。近期研究結(jié)果提示,18α-GA能夠促進(jìn)蛋白酶體亞單位的組裝與合成,提高成纖維細(xì)胞的細(xì)胞活力[9]。為此,本研究擬觀察18α-GA對晚期BMSCs的影響,探討維持BMSCs細(xì)胞活力的有效途徑,以期為臨床應(yīng)用提供數(shù)量充足的優(yōu)質(zhì)種子細(xì)胞。
材料和方法
1BMSCs的體外培養(yǎng)和18α-GA干預(yù)實(shí)驗(yàn)
BMSCs購自ScienCellResearchLaboratory,用含10%胎牛血清 (HyClone) 的DMEM(Gibco)培養(yǎng)基(內(nèi)含2mmol/LL-谷氨酰胺、1×105U/L青霉素和100 mg/L鏈霉素)培養(yǎng),待細(xì)胞生長至90% 融合時(shí)進(jìn)行傳代。依據(jù)體外傳代次數(shù)將BMSCs分為早期組(≤4)和晚期組(≥14次)。晚期BMSCs分為18α-GA實(shí)驗(yàn)組(2.0 mg/L的18α-GA持續(xù)作用30 d)和DMSO 溶劑對照組(等體積含DMSO的溶劑持續(xù)作用30 d)。
2實(shí)驗(yàn)方法
2.1蛋白酶體活性檢測實(shí)驗(yàn)收集BMSCs,用Lysisbuffer提取蛋白質(zhì),BCA蛋白濃度測定試劑盒測定蛋白濃度,依照蛋白酶體活性分析試劑盒(Millipore)說明書進(jìn)行操作,熒光酶標(biāo)儀激發(fā)光380nm,發(fā)射光460nm處檢測分析。
2.2衰老相關(guān)β-半乳糖苷酶(senescence-associatedβ-galactosidase,SA-β-Gal)染色檢測衰老細(xì)胞將18α-GA干預(yù)完畢的BMSCs消化并調(diào)整至1×107/L,傳代種于包被好的24孔板內(nèi),加新鮮培養(yǎng)基至1 mL,孵箱培養(yǎng)過夜使其貼壁,每組設(shè)3個(gè)復(fù)孔;次日,吸除舊培養(yǎng)基,用0.01 mol/L PBS(pH 7.4)漂洗1~2次,每孔加入1 mL β-半乳糖苷酶固定液,室溫固定15 min;吸除固定液,用0.01 mol/L PBS(pH 7.4)洗3次,于搖床上輕搖;吸除PBS,每孔加入1 mL β-半乳糖苷酶染色工作液;于濕盒內(nèi)37 ℃避光孵育15~18 h;即刻于顯微鏡下觀察、拍照。
2.3CCK-8實(shí)驗(yàn)和BrdU實(shí)驗(yàn)檢測細(xì)胞增殖能力及細(xì)胞活力將細(xì)胞按照每孔2 000個(gè)接種于96孔板,每孔加入10 μL CCK8溶液,培養(yǎng)孵育4 h,酶標(biāo)儀450 nm處測定吸光度。
將MG132和DMSO干預(yù)處理后的細(xì)胞按照1×107/L接種于蓋玻片上,用含有10μmol/LBrdU的培養(yǎng)基作用72h,隨后進(jìn)行BrdU/DAPI免疫熒光雙標(biāo),熒光顯微鏡(Olympus-BX51)觀察,計(jì)數(shù)。
2.4Westernblot實(shí)驗(yàn)檢測衰老相關(guān)蛋白及細(xì)胞周期相關(guān)蛋白表達(dá)水平收集BMSCs細(xì)胞,提取蛋白質(zhì),BCA法測定蛋白濃度。取20μg總蛋白上樣,10%聚丙烯酰胺凝膠電泳,將蛋白轉(zhuǎn)印于PVDF膜,5%脫脂奶粉液封閉后加入I抗[p53(1∶1 000)、p21(1∶1 000)、p16(1∶1 000)、兔抗cyclinD1(1∶1 000)、兔抗CDK4(1∶1 000)和兔抗β-actin(1∶2 000)]4 ℃ 孵育過夜,以上抗體購自康為世紀(jì)生物科技有限公司。辣根過氧化物酶偶聯(lián)抗兔II抗(1∶5 000)室溫雜交2h,按照化學(xué)發(fā)光檢測試劑盒(GEHealthcareLifeScience)說明書曝光顯影于膠片。
2.5流式細(xì)胞術(shù)檢測細(xì)胞周期分布和細(xì)胞增殖指數(shù)收集BMSCs細(xì)胞,PBS清洗2次,棄上清,輕彈管壁分散細(xì)胞團(tuán),70% 冷乙醇4 ℃固定4h,1 000r/min室溫離心5min棄上清,PBS重懸細(xì)胞團(tuán),300 目網(wǎng)過濾,加入50mg/L碘化丙啶(PI)染液(50mg/LPI,10mg/LRNase,1‰TritonX-100),室溫避光20min后流式細(xì)胞儀檢測G0/G1、S和G2/M各期細(xì)胞分布。
3統(tǒng)計(jì)學(xué)處理
采用SPSS16.0 軟件進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示,多組間的比較采用單因素方差分析(one-wayANOVA),SNK-q檢驗(yàn)進(jìn)行兩兩比較,兩組間比較采用t 檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
118α-GA對晚期BMSCs20S蛋白酶體活性的影響
18α-GA組20S蛋白酶體活性較DMSO對照組顯著上升約0.2倍(P<0.01),提示應(yīng)用18α-GA可上調(diào)體外擴(kuò)增培養(yǎng)晚期BMSCs20S蛋白酶體活性,見圖1。
Figure1.Theeffectof18α-GAon20Sproteasomeactivityinlate-passageBMSCs.Mean±SEM. n=3.**P<0.01 vsDMSOgroup.
圖118α-GA對晚期BMSCs20S蛋白酶體活性的影響
218α-GA對晚期BMSCs衰老相關(guān)標(biāo)志的影響
18α-GA組SA-β-Gal陽性細(xì)胞數(shù)量較少且著色淺淡,見圖2A。Westernblot結(jié)果表明給予18α-GA后晚期BMSCs衰老相關(guān)蛋白p53和p21表達(dá)水平均較DMSO組下降(P<0.05),但p16表達(dá)水平無顯著變化,見圖2B。結(jié)果提示應(yīng)用18α-GA有助于延緩BMSCs衰老進(jìn)程。
318α-GA對晚期BMSCs增殖能力的影響
CCK-8檢測結(jié)果表明,晚期BMSCs細(xì)胞增殖能力較早期細(xì)胞顯著下降(P<0.05);但應(yīng)用18α-GA后,BMSCs細(xì)胞增殖能力較DMSO對照組增高0.3倍(P<0.01),見圖3A。BrdU染色結(jié)果顯示18α-GA組細(xì)胞BrdU染色陽性率較DMSO對照組增高(P<0.05),見圖3B。 流式細(xì)胞術(shù)結(jié)果也證明,18α-GA組S期細(xì)胞為顯著高于DMSO對照組(P<0.05),見圖3C及表1。
418α-GA對晚期BMSCs細(xì)胞周期相關(guān)蛋白表達(dá)水平的影響
Westernblot免疫印跡結(jié)果證實(shí),18α-GA組細(xì)胞周期依賴性蛋白cyclinD1的表達(dá)水平顯著增加,為DMSO對照組的2.8倍(P<0.01),其激酶CDK4的表達(dá)水平是DMSO對照組的1.4倍(P<0.05),見圖4。結(jié)果提示應(yīng)用18α-GA能夠增強(qiáng)晚期BMSCs細(xì)胞周期相關(guān)蛋白cyclinD1和CDK4的表達(dá)水平。
討論
18α-GA是源于甘草酸的三萜皂苷類化合物,甘草酸是常用中藥甘草中最主要的活性成分之一,在胃腸道微生物中β-葡萄糖醛酸酶作用下水解成甘草次酸后被吸收,具有抗炎、抗氧化、抗腫瘤、保肝解毒、增強(qiáng)免疫功能等作用[5-8]。NargesB等[7]研究發(fā)現(xiàn),18α-GA通過促進(jìn)樹突狀細(xì)胞的成熟和調(diào)節(jié)Th1/Th2免疫應(yīng)答,對抗宿主體內(nèi)發(fā)生的傳染病,發(fā)揮免疫調(diào)節(jié)作用。此外,還有研究證明18α-GA能夠促進(jìn)人乳腺癌細(xì)胞凋亡作用,抑制腫瘤細(xì)胞生長[8]。近期研究報(bào)道證明,將18α-GA作用于晚期人成纖維細(xì)胞,可以激活核因子E2相關(guān)因子2(nuclearfactorE2-relatedfactor2,Nrf2),促使蛋白酶體亞單位β1、β2和β5轉(zhuǎn)錄激活,增加蛋白酶體的組裝與合成,提高蛋白酶體功能活性,抵抗氧化應(yīng)激,延緩?fù)砥谌顺衫w維細(xì)胞復(fù)制性衰老進(jìn)程[9]。課題組前期研究證實(shí),蛋白酶體活性下調(diào)是導(dǎo)致晚期BMSCs出現(xiàn)復(fù)制性衰老的重要因素,本研究顯示應(yīng)用18α-GA干預(yù)晚期BMSCs,能夠使BMSCs蛋白酶體活性較DMSO對照組上升約0.2倍,SA-β-Gal染色衰老陽性細(xì)胞數(shù)量減少且著色較淺,提示18α-GA可以增強(qiáng)晚期 BMSCs蛋白酶體功能活性,延緩BMSCs復(fù)制性衰老進(jìn)程。同時(shí)Chondrogianni等[10]和Arslan等[11]應(yīng)用WI38成纖維細(xì)胞作為衰老細(xì)胞模型,觀察蛋白酶體亞單位PSMB5過表達(dá)對細(xì)胞衰老的影響,研究結(jié)果發(fā)現(xiàn)提高蛋白酶體活性可增強(qiáng)細(xì)胞活力,延緩細(xì)胞衰老進(jìn)程,與本課題組的研究結(jié)果相一致。相反,趙云鶴等[12]應(yīng)用蛋白酶體可逆性抑制劑MG132抑制小鼠腦室室管膜下區(qū)蛋白酶體活性后,神經(jīng)干細(xì)胞的增殖能力顯著下降,進(jìn)一步表明蛋白酶體活性與細(xì)胞活力密切相關(guān)。
Figure2.Delayedsenescenceprocessoflate-passageBMSCsaftertreatmentwith18α-GA.A:SA-β-Galstaining;B:Westernblotanalysisforp53,p21andp16expression.Mean±SEM. n=4.*P<0.05,**P<0.01vsDMSO group.
圖218α-GA對晚期BMSCs衰老相關(guān)標(biāo)志的影響
Figure3.Theeffectof18α-GAoncellproliferationinBMSCs.A:CCK-8assay;B:BrdUincorporationassay;C:flowcytometry.Mean±SEM. n=6.#P<0.05vsearly group;*P<0.05,**P<0.01 vsDMSOgroup.
圖318α-GA對BMSCs增殖能力的影響
表1流式細(xì)胞術(shù)檢測BMSCs細(xì)胞周期分布
Table1.ThecellcycledistributionofBMSCsmeasuredbyflowcytometry(%.Mean±SEM. n=6)
GroupG0/G1phaseSphaseG2/MphaseEarly83.91±3.7514.64±1.942.94±0.32DMSO93.12±0.79**3.54±1.01**3.67±0.0718α-GA90.97±0.04**7.01±0.65**#2.03±1.01
**P<0.01vsearly group;#P<0.05vsDMSO group.
Figure 4.The expression of cyclin D1 and CDK4 in late-passage BMSCs after treatment with 18α-GA. Mean±SEM.n=4.*P<0.05,**P<0.01vsDMSO group.
圖418α-GA對晚期BMSCs 的cyclin D1和CDK4表達(dá)水平的影響
已有研究報(bào)道隨傳代次數(shù)增加,晚期細(xì)胞p53、p21、p16等衰老相關(guān)蛋白表達(dá)水平上升,細(xì)胞自我更新和增殖能力喪失[1, 13-15]。Kim等[15]研究發(fā)現(xiàn),在纖維軟骨髓核細(xì)胞的衰老過程中,p53表達(dá)上調(diào),而p53活性增高可促進(jìn)p21的表達(dá)從而激活pRB,進(jìn)而引起細(xì)胞衰老。Christian等[16]應(yīng)用人類晚期B-J包皮成纖維細(xì)胞慢病毒轉(zhuǎn)染GSE-22使p53失去活性后,細(xì)胞中DNA的合成以及細(xì)胞增殖上調(diào)90%左右,細(xì)胞群體倍增次數(shù)增高,證明p53失活可以逆轉(zhuǎn)細(xì)胞復(fù)制性衰老。課題組研究發(fā)現(xiàn)應(yīng)用18α-GA 干預(yù)晚期BMSCs提高蛋白酶體活性后,衰老相關(guān)蛋白p53和p21表達(dá)水平下降,細(xì)胞周期相關(guān)蛋白cyclin D1和CDK4的表達(dá)增高,CCK8、BrdU染色和流式細(xì)胞儀的檢測結(jié)果也顯示細(xì)胞增殖能力提高,S期細(xì)胞明顯增多,提示18α-GA可通過抑制晚期BMSCs 細(xì)胞p53和p21表達(dá)活性,激活細(xì)胞周期相關(guān)蛋白cyclin D1和CDK4的表達(dá),促進(jìn)晚期BMSCs越過G1/S細(xì)胞周期轉(zhuǎn)換點(diǎn),恢復(fù)晚期BMSCs細(xì)胞增殖能力,改善細(xì)胞生長速度,延緩細(xì)胞衰老進(jìn)程。
由此可見,18α-GA作用于晚期BMSCs,可以上調(diào)蛋白酶體活性進(jìn)而延緩BMSCs的復(fù)制性衰老進(jìn)程,恢復(fù)細(xì)胞活力。本研究采用化合物改善BMSCs蛋白酶體活性,此方法較基因修飾等手段更安全,并且操作簡便,易于推廣,為干細(xì)胞的臨床應(yīng)用提供實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]Tonoki A, Kuranaga E, Tomioka T, et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process[J]. Mol Cell Biol, 2009, 29(4):1095-1106.
[2]Yew TL, Chiu FY, Tsai CC, et al. Knockdown of p21Cip1/Waf1enhances proliferation, the expression of stemness markers, and osteogenic potential in human mesenchymal stem cells[J]. Aging Cell, 2011, 10(2):349-361.
[3]Lu L, Song HF, Zhang WG, et al. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion [J]. Biochem Biophys Res Commun, 2012, 422(1):121-127.
[4]Lu L, Song HF, Wei JL, et al. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression[J]. Biochem Biophys Res Commun, 2014, 443(4):1182-1188.
[5]Davidson JS, Baumgarten IM. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication[J]. J Pharmacol Exp Ther, 1988, 246(3):1104-1107.
[6]Contreras JE, Sánchez HA, Eugenin EA, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture[J]. Proc Natl Acad Sci U S A, 2002, 99(1):495-500.
[7]Narges B, Mohammad HK, Zahra A. Phenotypic and functional maturation of murine dendritic cells induced by 18 alpha- and beta-glycyrrhetinic acid[J]. Immunopharmacol Immunotoxicol, 2014, 36(1):52-60.
[8]Rossi T, Castelli M, Zandomeneghi G, et al. Selectivity of action of glycyrrhizin derivatives on the growth of MCF-7 and HEP-2 cells[J]. Anticancer Res, 2003, 23(5A):3813-3818.
[9]Kapeta S, Chondrogianni N, Gonos ES. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts[J]. J Biol Chem, 2010, 285(11):8171-8184.
[10]Chondrogianni N, Stratford FL, Trougakos IP, et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation[J]. J Biol Chem, 2003, 278(30):28026-28037.
[11]Arslan MA, Chikina M, Csermely P, et al. Misfolded proteins inhibit proliferation and promote stress-induced death in SV40-transformed mammalian cells[J]. FASEB J, 2012, 26(2):766-777.
[12]趙云鶴, 張衛(wèi)國, 朱茜, 等. 蛋白酶體抑制劑MG132對腦室室管膜下區(qū)神經(jīng)干細(xì)胞增殖潛能的影響[J]. 中國病理生理雜志, 2011, 27(9):1704-1707.
[13]Banfi A, Muraglia A, Dozin B, et al. Proliferation kine-tics and differentiation potential ofexvivoexpanded human bone marrow stromal cells: implications for their use in cell therapy[J]. Exp Hematol, 2000, 28(6):707-715.
[14]Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow[J]. J Cell Biochem, 2006, 97(4): 744-754.
[15]Kim KW, Ha KY, Lee JS, et al. Senescence of nucleus pulposus chondrocytes in human intervertebral discs[J]. Asian Spine J, 2008, 2(1):1-8.
[16]Beauséjour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways[J]. EMBO J, 2003, 22(16): 4212-4222.
(責(zé)任編輯: 陳妙玲, 羅森)
*[基金項(xiàng)目]廣東省醫(yī)學(xué)科研基金立項(xiàng)課題(No. B2012195);國家中醫(yī)藥管理局三級實(shí)驗(yàn)室病理生理實(shí)驗(yàn)室開放基金資助項(xiàng)目(No. 2011ZD004)
Upregulationofproteasomeactivityby18α-GApromotesproliferationoflate-passageBMSCsin vitroYANGJia-chao,ZHAOYun-he,JIANGRong,LULi
(Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China. E-mail: luli7300@126.com)
[ABSTRACT]AIM: To investigate the effect of 18 alpha-glycyrrhetinic acid (18α-GA) on delaying the senescent progress and promoting the proliferation in late-passage bone marrow mesenchymal stem cells (BMSCs). METHODS: Late-passage BMSCs were incubated with 2.0 mg /L 18α-GA or the same volume of DMSO for 30 d, and the cells were harvested to determine the proteasome activity. The expression of senescence-related proteins p53, p21 and p16 was detected by senescence-associated β-galactosidase (SA-β-Gal) staining and Western blot. The cell proliferation, the expression level of cell cycle-related proteins and cell cycle distribution of the cells were measured by CCK-8 assay, BrdU incorporation, Western blot and flow cytometry. RESULTS: Compared with DMSO group, the proteasome activity in 18α-GA group increased significantly by about 0.2 times (P<0.01). SA-β-Gal-positive cells in 18α-GA group decreased, and cell staining was lighter. The contents of p53 and p21 in 18α-GA group were decreased (P<0.05). The results of CCK-8 assay showed that the A value in 18α-GA group was 0.3 times higher than that in DMSO group (P<0.01). BrdU incorporation showed the increased proliferation in 18α-GA group compared with DMSO group (P<0.05). The cells in G1phase in 18α-GA group decreased significantly compared with DMSO group, while the cells in S phase increased significantly (P<0.05). The expression level of cyclin D1 in 18α-GA group was 2.8 times higher than that in DMSO group (P<0.01), and the CDK4 level was 1.4 times higher than that in DMSO group (P<0.05). CONCLUSION: Activation of the proteasome activity by 18α-GA delays the aging process in the BMSCs and promotes the cell proliferation via up-regulation of the cell cycle-related proteins.
[KEY WORDS]18α-Glycyrrhetinic acid; Proteasome; Bone marrow mesenchymal stem cells; Cell proliferation
通訊作者△Tel: 020-38688909; E-mail: tzhuker@jnu.edu.cn
[收稿日期]2015- 09- 06[修回日期] 2015- 10- 30
[文章編號]1000- 4718(2015)12- 2188- 07
doi:10.3969/j.issn.1000- 4718.2015.12.012
[中圖分類號]R363
[文獻(xiàn)標(biāo)志碼]A