洪娟 戴培東 尹倩
?
·綜述·
耳蝸ribbon突觸的損傷與感音神經(jīng)性聾的相關(guān)研究進展△
洪娟戴培東*尹倩**
感音神經(jīng)性聾的發(fā)病機制未明確。最近多項動物實驗研究表明,在老年性聾、噪聲性聾及氨基糖苷類藥物性耳損傷中,內(nèi)毛細胞與Ⅰ型傳入神經(jīng)纖維形成的突觸損傷早于內(nèi)毛細胞和螺旋神經(jīng)元的死亡,引起隱蔽的聽力損失,并與螺旋神經(jīng)元不可逆性的丟失相關(guān),同時也受橄欖耳蝸傳出神經(jīng)系統(tǒng)的調(diào)節(jié)保護。本文就內(nèi)毛細胞與Ⅰ型傳入神經(jīng)纖維形成的ribbon突觸損傷與感音神經(jīng)性聾的相關(guān)研究進展作一綜述。(中國眼耳鼻喉科雜志,2016,16:218-222 )
內(nèi)毛細胞;螺旋神經(jīng)元;ribbon突觸;神經(jīng)病理;感音神經(jīng)性聾
感音神經(jīng)性聾(sensorineural hearing loss ,SNHL)是一種常見的耳科疾病,嚴重影響人類的健康和生活質(zhì)量。SNHL包括遺傳性聾、噪聲性聾、藥物性聾、老年性聾等多種類型,發(fā)病機制尚不明確,病理主要表現(xiàn)為毛細胞(hair cell, HC)及Ⅰ型螺旋神經(jīng)元(spiral ganglion neurons, SGNs)死亡。Ⅰ型SGNs占耳蝸神經(jīng)元數(shù)量的90%~95%,內(nèi)毛細胞與Ⅰ型傳入纖維(inner hair cell/type Ⅰ afferent nerve fibers, IHC/ANFs)形成突觸連接,在內(nèi)耳神經(jīng)傳入通路中發(fā)揮主要作用;而IHC和支持細胞分泌的神經(jīng)營養(yǎng)因子是SGNs存活的關(guān)鍵信號。所以推斷SNHL的發(fā)病機制是,IHC首先受損,引起某些重要的神經(jīng)營養(yǎng)因子缺失,繼發(fā)Ⅰ型SGNs丟失。但是,最近的研究[1]發(fā)現(xiàn),IHC的丟失和Ⅰ型SGNs的死亡是可以獨立存在的。在小鼠和豚鼠動物模型中,老年性聾、噪聲性聾及氨基糖苷類藥物誘發(fā)藥物性聾的多項研究表明,IHC/ANFs形成突觸的病理改變早于內(nèi)毛細胞和SGNs[2-4]。為什么會出現(xiàn)IHC/ANFs突觸受損?這種聽覺傳入突觸的神經(jīng)病理改變,在感音神經(jīng)性聾的發(fā)病機制中有何意義?本文圍繞這些問題從以下幾個方面展開討論。
1.1IHC/ANFs突觸的結(jié)構(gòu)IHC突觸前膜活化帶上錨有電子致密物的結(jié)構(gòu),稱為ribbon,表面栓有大量的突觸囊泡。ribbon具有特殊的分子結(jié)構(gòu)和功能,以滿足聽覺刺激后在1 ms或者更短時間內(nèi)精準地作出反應(yīng),快速啟動和結(jié)束突觸囊泡的釋放。突觸小體內(nèi)含有至少3種突觸囊泡,包括靠近突觸前膜的囊泡、ribbon相關(guān)的囊泡和游離的胞質(zhì)囊泡。囊泡谷氨酸轉(zhuǎn)運體輸送谷氨酸至突觸囊泡,使之具有生理功能。大量的研究表明,在多種生物種屬,Cav1.3型鈣離子通道聚集在IHC ribbon突觸活化帶上,參與囊泡釋放谷氨酸至突觸間隙。突觸后膜I型SGNs表面主要表達2類谷氨酸鹽受體:α-氨基-3-羥基-5-甲基-4-異口惡唑丙酸受體(K-amino-3-hydroxy-5-methyl-4-iso- xazolepropionic acid receptors,AMPARs)和N-甲基-D-天冬氨酸受體(N-methyl-D-aspartate receptors,NMDARs)[5]。AMPARs是一個復合體,包括GluA1,2,3,4亞型,IHC/ANFs突觸后膜主要表達GluA2,3,4亞型,它與谷氨酸的結(jié)合力低。研究[6-7]表明,生理成熟狀態(tài)下,突觸后膜主要表達AMPARs,IHC/ANFs突觸快速、精確的信號傳導,強烈地依賴于突觸后膜表達的AMPARs。功能性的NMDAR由2級亞型NR1和NR2組成,其中NR1是NMDAR復合體需要的基礎(chǔ)亞型。NMDARs對谷氨酸具有高親和力,需要“谷氨酸和甘氨酸”共同的激動劑,而AMPARs只需要專職的谷氨酸激動劑[8]。NMDARs沒有直接參與神經(jīng)遞質(zhì)的快速傳導,它的特點是慢速、持久,推測其可能參與谷氨酸受體的高級調(diào)控[9]。
1.2IHC/ANFs突觸介導的聽覺神經(jīng)興奮性傳導IHC去極化,主要依賴表達于突觸前膜上的CaV1.3 L-型鈣離子通道開放,引起鈣離子內(nèi)流,突觸囊泡融膜破裂后,順利釋放谷氨酸到突觸間隙[10],激活表達于I型SGNs突觸后膜上的AMPARs,引起細胞膜上偶聯(lián)的陽離子通道(鈉離子、鉀離子、鈣離子)狀態(tài)發(fā)生改變,主要是鈣離子通道,導致細胞膜去極化,發(fā)生興奮性傳導[11],這一信號傳導過程組成聽覺神經(jīng)興奮性傳導通路的開始。
1.3IHC/ANFs突觸的功能調(diào)節(jié)突觸傳遞的強度由突觸小體遞質(zhì)的釋放和突觸后膜上相應(yīng)的受體來決定。突觸小體內(nèi)含多種突觸蛋白,如突觸融合蛋白1、SNAP-25、小突觸小泡蛋白,它們在囊泡胞吐中起關(guān)鍵作用;囊泡谷氨酸轉(zhuǎn)運體參與囊泡谷氨酸的裝配;突觸前膜活化帶上的CaV1.3 L-型鈣離子通道參與突觸前谷氨酸遞質(zhì)的正常釋放[10,12-13]。釋放到突觸間隙的谷氨酸,可由IHC及其周圍的支持細胞對谷氨酸進行重吸收,以滿足下次快速釋放的谷氨酸來源及維持突觸間隙內(nèi)谷氨酸濃度的平衡[14]。突觸后膜谷氨酸受體與遞質(zhì)的結(jié)合具有特異性、飽和性 、可逆性。谷氨酸持續(xù)存在時,突觸后膜NMDARs對甘氨酸親和力下降,并且呈時間依賴性下降,能夠且僅隨高濃度的甘氨酸補償,然而高濃度的細胞外甘氨酸也導致谷氨酸結(jié)合的分離[8]。有研究[15]發(fā)現(xiàn),行豚鼠耳蝸鼓階AMPA灌注,IHC/ANFs突觸及Ⅰ型ANFS末梢呈現(xiàn)急性消失,隨后Ⅰ型ANFS軸突末梢逐漸再生,恢復突觸連接,拮抗NMDARs后延緩了其恢復過程,提示在急性谷氨酸興奮性毒性作用中,經(jīng)NMDARs發(fā)揮類似神經(jīng)營養(yǎng)的作用。
2.1IHC/ANFs突觸與噪聲性聾過度的聲刺激可引起暫時性或永久性的聽力損傷。持續(xù)的噪聲刺激可使耳蝸IHC釋放過多的谷氨酸至突觸間隙,大量堆積的谷氨酸致突觸后膜上AMPARs過度激活,鈣離子大量內(nèi)流,SGNs過度去極化,引發(fā)一系列氧化應(yīng)激性損傷,出現(xiàn)ANFs末梢腫脹、空泡,甚至變形、凋亡等一系列形態(tài)學改變,這一過程又被稱為谷氨酸的興奮性毒性作用[10]。研究發(fā)現(xiàn),16周的雄性CBA/CaJ小鼠,接觸倍頻為8 000~16 000 Hz,100 dB噪聲刺激,持續(xù)2 h后,導致輕度的閾值升高且可完全逆轉(zhuǎn),耳蝸內(nèi)外毛細胞完整,但是引起IHC/ANFs突觸和Ⅰ型ANFS末端的急性丟失及遲發(fā)性的SGNs的退化。盡管隨后DPOAE和低頻的ABR閾值完全恢復,提示耳蝸感覺細胞功能正常,但是高頻的超閾值的ABR1波的振幅下降,提示神經(jīng)反應(yīng)永久性減弱,相對應(yīng)的是IHC/ANFs突觸數(shù)量的減少也無法完全恢復[16]。研究發(fā)現(xiàn)噪聲誘導的耳蝸神經(jīng)病理易選擇性損傷低自發(fā)性放電率,高閾值的ANFs。高、低自發(fā)性放電率的ANFS都能和相同的IHC接觸,然而這兩種不同類型的ANFS趨向于在IHC相反區(qū)域形成突觸[17]。高自發(fā)性放電率、低閾值的聽神經(jīng)纖維趨向于具有更大的尺寸,更多的線粒體在神經(jīng)末梢,并在形成的IHC/ANFs突觸后膜,有更多的谷氨酸AMPARs表達[18],也有觸小體的差異,包括谷氨酸轉(zhuǎn)運體的活性、突觸前膜ribbon表達和突觸前膜CaV1.3 L-型鈣離子通道的數(shù)量差異[18-19]。
2.2IHC/ANFs突觸與老年性聾Sergeyenko 等[3]研究處于相對安靜環(huán)境下的小鼠,于第4~144周死亡,年齡相關(guān)性的IHC/ANFs突觸計數(shù)呈現(xiàn)逐漸減少,丟失數(shù)量達到50%,發(fā)生于耳蝸內(nèi)廣泛的區(qū)域。SGNs的丟失隨時間推移與其達到同樣程度,而IHC的丟失很少。IHC/ANFs突觸丟失與ABR1波振幅下降相關(guān)。中晚期80周前,外毛細胞(outer hair cell, OHC)丟失極少, DPOAE閾值的改變也<5 dB。值得引起注意的是,IHC/ANFs突觸丟失是25%。80周后OHC的存活率陡降,且在144周時接近完全丟失,與聽覺閾值升高50 dB相關(guān)。研究年齡相關(guān)性聾小鼠,僅在OHC功能損傷前所測得的聽功能值才能真實的反映IHC/ANFs突觸的丟失,此時多體現(xiàn)在高頻的超閾值的ABR1波振幅下降或ABR閾值升高,小鼠中晚期后OHC的存活率陡降,與聽覺閾值升高明顯相關(guān),提示在年齡相關(guān)性聾的早期和中晚期發(fā)病機制中,決定性的因素可能不同,很難清楚解釋有多少聽力減退是因為IHC/ANFs突觸的丟失,或由于OHC功能退化引起[20]。
Makary等[21]在人類顳骨組織的年齡相關(guān)性研究中觀察到,人的耳蝸中存在廣泛的SGNs退變。SGNs計數(shù)隨年增長遞減,從出生到100歲,至90歲時平均減少30%,但是沒有明顯的毛細胞丟失。有趣的是,在有明確噪聲接觸史的最年輕個體的顳骨組織,有單獨的SGNs計數(shù)低于平均值并達到50%丟失。由此推測,在人類年齡相關(guān)性聾的發(fā)生過程中,噪聲接觸與SGNs退化有關(guān)。
2.3IHC/ANFs突觸與氨基糖苷類藥物性聾Liu等[4]研究發(fā)現(xiàn),低劑量的硫酸慶大霉素致聾小鼠,首先引起IHC/ANFs突觸數(shù)量和形態(tài)的改變,但不影響耳蝸IHC和OHC及SGNs形態(tài)。Liu等[22]以免疫熒光染色的方法標記IHC/ANFs突觸前膜的ribeye蛋白和突觸后膜谷氨酸AMPARs的Glu2/3亞型,發(fā)現(xiàn)單個內(nèi)毛細胞形成的ribbon突觸數(shù)量減少,但是形態(tài)增大異常的ribbon突觸明顯增多,在耳蝸底回的ribbon損傷較中回和頂回更顯著,并且隨后觀察到ribbon突觸數(shù)量和ABR閾值逐漸部分程度的恢復。和以前的研究顯示氨基糖苷類抗生素首先引起OHC纖毛缺失的結(jié)果不同,推測可能和藥物使用的劑量及作用后耳蝸損傷的發(fā)展過程有關(guān)。
Ⅰ型ANFs末端是脫髓鞘的,很難在光學顯微鏡下看到,以前的研究大多數(shù)著眼于毛細胞的損傷,而SGNs的死亡過程緩慢,造成很久以來對IHC/ANFs突觸病理改變的忽視。近來的研究中提到“隱蔽的聽力損失(hidden hearing loss)”這個概率,是指常規(guī)的聽力檢查閾值正常,而可僅表現(xiàn)為ABR1波振幅下降或高頻超閾值的ABR1波振幅下降。這也在耳鳴患者中體現(xiàn),臨床常規(guī)的聽力檢查正常時,可能存在耳蝸病理改變,這時可能見到ABR1波改變[23]。文獻推測“隱蔽的聽力損失”可能有3種原因[20]:①ANFs快速傳播興奮性信號,僅僅需要少量聲強值的增加(例如2~3 dB)來接近閾值,以加倍協(xié)調(diào)ANFs自發(fā)性放電率,經(jīng)過ANFS的聚集,到達一個特別的音調(diào)頻率,因此補償IHC/ANFs突觸損失;②因為ABR接近閾值的反應(yīng)是噪聲性的,并且因為閾值的測量常常是5 dB大小進行的,這樣一個小的閾值改變表現(xiàn)不明顯[24];③IHC/ANFs突觸的丟失呈現(xiàn)出選擇性,高度偏向于具有低自發(fā)性放電率,高閾值的ANFs,而它們對噪聲環(huán)境下的聽覺是關(guān)鍵的。選擇性高閾值A(chǔ)NFs的丟失,或許能夠解釋盡管存在明顯噪聲誘導的神經(jīng)病理,ABR閾值尚能恢復。
理解隱蔽的IHC/ANFs突觸損失和隱蔽的聽力損失,提示可能需要更精確的檢查來明確它們的存在和發(fā)展,幫助理解感音神經(jīng)性聾及耳鳴的發(fā)病機制,以獲得早期診斷和及時治療。
噪聲接觸和相對安靜的情況下,都存在IHC/ANFs突觸損傷和SGNs的不可逆性地丟失。雖然需要隨著時間推移,逐漸達到同樣程度的丟失,它們之間存在什么聯(lián)系?
生理狀態(tài)下由IHC和支持細胞,對IHC/ANFS突觸的ANFs末端的信號反應(yīng),釋放腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)和神經(jīng)營養(yǎng)因子-3(neurotrophin-3,NT-3),是SGNs存活的關(guān)鍵信號[25]。在腦內(nèi)由神經(jīng)元釋放的神經(jīng)調(diào)節(jié)蛋白結(jié)合膠質(zhì)細胞上的ErbB受體,反過來誘導膠質(zhì)細胞來源的NT-3或BDNF的釋放,它們又能結(jié)合神經(jīng)元上的TrK受體,促進神經(jīng)元存活和神經(jīng)突起生長等生理功能的恢復[26]。在組織結(jié)構(gòu)和功能上,支持細胞包圍SGNs脫髓鞘的ANFs末端,起到類似神經(jīng)膠質(zhì)細胞的作用。是否可以假設(shè),噪聲刺激直接損傷IHC/ANFs突觸,由于ANFs末端退化,SGNs釋放的神經(jīng)調(diào)節(jié)蛋白無法經(jīng)ANFs末端傳導至IHC和支持細胞表面,無法激活釋放NT,導致神經(jīng)元逐漸退化死亡。
體外研究表明,用谷氨酸激動劑NMDA干預,模擬聽覺初級傳入神經(jīng)興奮性損傷,IHC/ANFs突觸損傷無法完全恢復,NT-3和BDNF都能促進神經(jīng)末梢再生和突觸形成。選擇性的阻斷內(nèi)源性NT-3經(jīng)TrkC-IgG信號途徑,減少了軸突的再生;但是阻斷BDNF經(jīng)TrkB-IgG信號途徑?jīng)]有類似的作用,顯示SGNs軸突生長和突觸合成需要內(nèi)源性的NT-3[27]。體內(nèi)研究表明,使用細胞特異性誘導的基因重組技術(shù),支持細胞來源的NT-3,促進噪聲接觸后的聽力恢復和IHC/ANFs突觸的再生[28]。
橄欖耳蝸傳出系統(tǒng)由2部分組成:①內(nèi)側(cè)橄欖耳蝸傳出系統(tǒng)(the medial efferent olivocochlear system,MOC),由有髓鞘的軸索枝支配對側(cè)的外毛細胞,控制耳蝸對聲音的放大供給,組成聲音誘發(fā)的正、負性反饋循環(huán)。MOC能較強地抑制OHC活性,保護耳蝸免受強聲引起的聽覺損害和有助于噪聲環(huán)境下目標聲音信號的辨識。近來研究發(fā)現(xiàn)MOC在聽覺選擇性注意中發(fā)揮重要作用,與聽覺皮質(zhì)作用一致,通過MOC介導的快速調(diào)節(jié),抑制干擾信號,增加信噪比,有助于檢測到目標信號[29-30]。②外側(cè)橄欖耳蝸傳出系統(tǒng)(the lateral efferent olivocochlear system,LOC),由脫髓鞘的軸索投射至同側(cè)耳的與IHC形成突觸的Ⅰ型ANFs樹突。LOC可能通過與Ⅰ型ANFs樹突形成的突觸,釋放強啡肽、多巴胺等多種神經(jīng)遞質(zhì),經(jīng)突觸后膜上表達的NMDARs介導,發(fā)揮調(diào)節(jié)作用[29,31-32]。
研究表明它們在抗IHC/ANFs突觸病理發(fā)生過程中都發(fā)揮保護作用。Maison等[33]在噪聲接觸耳的研究中,切掉所有的傳出神經(jīng)對內(nèi)耳的反饋系統(tǒng),明顯加劇IHC/ANFs突觸的丟失,損失數(shù)量在耳蝸頂回和底回達到2倍。Yin等[34]、Liberman等[35]在對照的年齡相關(guān)性的研究中,在相對安靜的環(huán)境下,在小鼠年齡早期第6周時,干預橄欖耳蝸傳出神經(jīng)系統(tǒng)使其失支配,在年齡中期(第52周時)IHC/ANFs突觸損失量幾乎是同期的3倍,從年齡相關(guān)性的頂回突觸損失20%,到丟失傳出神經(jīng)支配的同區(qū)域損失達60%。選擇性的定位損壞LOC,噪聲刺激后在同側(cè)耳出現(xiàn)從低頻到高頻超閾值的ABR1波振幅增加,OAE雙側(cè)對稱完好,提示LOC調(diào)節(jié)同側(cè)耳蝸傳入神經(jīng)的興奮性,保護耳蝸在急性聽覺損傷中免受神經(jīng)損害,但不影響OHC的功能[36]。
SNHL的發(fā)病機制不清。Ⅰ型ANFs與IHC形成突觸連接,而支持細胞包圍脫髓鞘的ANFs末端,似乎Ⅰ型ANFs末端是在SGNs和IHC及支持細胞間架起的一座橋梁。研究IHC/ANFs突觸的致病機制,可為理解感音神經(jīng)性聾的發(fā)病機制提供依據(jù),并為治療感音神經(jīng)性聾提供有效的靶點。早期的人工耳蝸植入及NT的補充,促進Ⅰ型ANFs末梢生長和IHC/ANFs突觸再生,恢復神經(jīng)傳入的連接,有利于延緩SGNs的丟失和聽力恢復。臨床上如何發(fā)現(xiàn)“隱藏的聽力損失”,值得引起重視,可能需要更精確的檢查來明確,有利于SNHL及耳鳴損傷機制中的早期診斷和及時治療。避免接觸噪聲環(huán)境及不合理使用耳毒性藥物,培養(yǎng)良好的生活習慣對維護聽力健康很重要。
[1]Zilberstein Y, Liberman MC, Corfas G. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea[J]. J Neurosci,2012,32(2): 405-410.
[2]Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss[J]. J Neurosci,2009,29(45):14077-14085.
[3]Sergeyenko Y, Lall K, Liberman MC,et al. Age-related cochlearsynaptopathy: an early-onset contributor to auditory functional decline[J]. J Neurosci,2013,33(34):13686-13694.
[4]Liu K, Jiang X, Shi C,et al.Cochlear inner hair cell ribbon synapse is the primary target of ototoxic aminoglycoside stimuli[J]. Mol Neurobiol, 2013,48(3):647-654.
[5]Nouvian D, Beutner TD,Parsons J,et al. Structure and function of the hair cell ribbon synapse[J]. Membrane Biol,2006,209(2/3):153-165.
[6]Parks TN. The AMPA receptors of auditory neurons[J]. Hear Res,2000,147(1/2):77-91.
[7]Glowatzki E, Fuchs PA.Transmitter release at the hair cell ribbon synapse[J]. Nat Neurosci,2002,5(2):147-154.
[8]Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-D-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus[J]. Brain Res,2013,1499:80-108.
[9]Sanchez JT, Ghelani S, Otto-Meyer S. From development to disease: diverse functions of NMDA-type glutmate receptors in the lower auditory pathway[J]. Neuroscience,2015,285:248-259.
[10]Frank T, Khimich D, Neef A, et al. Mechanisms contributing to synaptic Ca2+signals and their heterogeneity in hair cells[J]. Proc Nat Acad Sci USA,2009,106(11):4483-4488.
[11]Traynelis SF, Wollmuth LP, McBain CJ, et al.Glutamatereceptor ion channels: structure, regulation, and function[J]. Pharmacol Rev, 2014,66(4):1141-1267.
[12]Seal RP, Akil O, Yi E, et al.Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3[J]. Neuron, 2008,57(2):263-275.
[13]Ruel J, Emery S, Nouvian R,et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice[J].Am J Human Genetic,2008,83(2): 278-292.
[14]Lee AC, Godfrey DA. Cochlear damage affects neurotransmitter chemistry in the central auditory system[J].Front Neurol, 2014,19(5):227-242.
[15]d’Aldin CG, Ruel J, Assie R, et al.Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea[J]. Int J Dev Neurosci,1997,15(4/5):619-629.
[16]Kujawa SG,LibermanMC.Adding Insult to Injury: Cochlearnerve degeneration after “temporary” noise-induced hearing loss[J].J Neurosci,2009,29(45): 14077-14085.
[17]Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates[J].J Neurophysiol,2013,110(3):577-586.
[18]Liberman LD, Wang H, Liberman MC. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses[J].J Neurosci,2011(31):801-808.
[19]Furness DN, Lawton DM. Comparative distribution of glutamate transporters and receptors in relation to afferent innervation density in the mammalian cochlea[J]. J Neurosci,2003,23(36):11296-11304.
[20]Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res,2015,330(Pt B):191-199.
[21]Makary CA, Shin J, Kujawa SG, et al. Age-related primary cochlear neuronal degeneration in human temporal bones[J]. J Assoc Res Otolaryngol,2011,12(6):711-717.
[22]Liu K, Chen D, Guo W, et al. Spontaneous and partial repair of ribbon synapse in cochlear inner hair cells after ototoxic withdrawal[J]. Mol Neurobiol,2015,52(3):1680-1689.
[23]Plack CJ, Barker D, Prendergast G. Perceptualconsequences of “hidden” hearing loss[J]. Trends Hear,2014,18:1-11.
[24]Bourien J, Tang Y, Batrel C,et al. Contribution of auditory nerve fibers to compound action potential of the auditory nerve[J]. J Neurophysiol,2014,112(5):1025-1039.
[25]Stankovic K, Rio C, Xia A, et al. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear[J]. J Neurosci, 2004,24(40):8651-8661.
[26]Green SH, Bailey E, Wang Q, et al. The Trk A, B, C's of neurotrophins in the cochlea[J]. Anat Rec (Hoboken), 2012, 295(11): 1877-1895.
[27]Wang Q, Green SH. Functional role of NT-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic traumainvitro[J].J Neurosci, 2011,31(21): 7938-7949.
[28]Wan G, Gómez-Casati ME, Gigliello AR,et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma[J]. Elife,2014,20(3):1-18.
[29]Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans[J]. EarHear,2006,27(6):589-607.
[30]Smith DW, Keil A. The biological role of the medial olivocochlear efferents in hearing: separating evolved function from exaptation[J].Front Syst Neurosci,2015,9:12.
[31]Ruel J,Chabbert C,Nouvian R,et al.Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses[J].J Neurosci, 2008, 28(29):7313-7323.
[32]Darrow KN, Simons EJ, Dodds L, et al.Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers[J]. J Comp Neurol,2006,498(3):403-414.
[33]Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure[J].J Neurosci,2013,33(13):5542-5552.
[34]Yin Y, Liberman LD, Maison SF, et al. Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology[J]. J Assoc Res Otolaryngol,2014,15(4):571-583.
[35]Liberman MC, Liberman LD, Maison SF. Efferent feedback slows cochlear aging[J]. J Neurosci, 2014,34(13):4599-4607.
[36]Darrow KN, Maison SF, Liberman MC,et al.Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury[J].J Neurophysiol,2007,97(2): 1775-1785.
(本文編輯楊美琴)
Review of progress in researching neuropathology of cochlea ribbon synapse between inner hair cell and type Ⅰ afferent nerve fibers with sensorineural hearing loss
HONG Juan, DAI Pei-dong*,YIN Qian**.
Department of Otolaryngology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031,China Corresponding author: DAI Pei-dong,Email:peters818@aliyun.com
The pathogenesis of sensorineural hearing loss is not clear. Recently a number of animal studies showed that in age-related hearing loss, noise-induced hearing loss and aminoglycosides-induced damage in inner ear, cochlear ribbon synapse between inner hair cells and type I afferent nerve fibers was easier to be injuried than inner hair cells and spiral ganglion neurons. The synaptic injury causing hidden hearing loss was associated with irreversible loss of spiral neuron.Also it was refraid from injury by olivecochlear efferent nerve system. In this paper the progress in research of neuropathology of cochlea ribbon synapse with sensorineural hearing loss was reviewed.(Chin J Ophthalmol and Otorhinolaryngol, 2016,16: 218-222)
Inner hair cell; Spiral ganglion neurons; Ribbon synapse; Neuropathology; Sensorineural hearing loss
△浙江省自然科學基金(LY14H130002)
復旦大學附屬眼耳鼻喉科醫(yī)院耳鼻喉科*實驗中心上海200031;**溫州醫(yī)科大學附屬第一醫(yī)院耳鼻喉科溫州325000
戴培東(Email:peters818@aliyun.com)
10.14166/j.issn.1671-2420.2016.03.021
2015-05-24)