抑制白血病K562細胞FoxM1表達可增強細胞對高三尖杉酯堿的敏感性*
陳謹1,周敏然2,孫婷2,秦雪梅2,陳忠敏3,陳春燕2,于媛2△
(1安徽醫(yī)學高等??茖W校,安徽 合肥 230601;2山東大學齊魯醫(yī)院血液科,山東 濟南 250012;3重慶理工大學藥學與生物工程學院, 重慶400054)
[摘要]目的: 探討抑制白血病K562細胞叉頭框蛋白M1(FoxM1)是否增強細胞對高三尖杉酯堿(HHT)的敏感性。方法: HHT以不同濃度(0、0.015、0.030和0.045 μmol/L)和最低起效濃度不同時間(0.015 μmol/L,0、24、48和72 h)作用于K562細胞,real-time PCR和Western blot檢測FoxM1 mRNA和蛋白表達;以0.015 μmol/L HHT作用K562細胞后轉(zhuǎn)染FoxM1 siRNA,觀察沉默K562細胞FoxM1后細胞對HHT的敏感性、細胞增殖和凋亡效應(yīng)以及FoxM1相關(guān)靶分子c-Myc和Sp1表達狀況。結(jié)果: 隨著HHT濃度增加和時間延長FoxM1表達逐漸降低,說明HHT抑制K562細胞FoxM1表達;HHT處理K562細胞后轉(zhuǎn)染FoxM1 siRNA,細胞生長和克隆形成顯著下降,細胞凋亡增加,因此抑制FoxM1可增加K562細胞對HHT的敏感性;FoxM1 siRNA組c-Myc和Sp1表達顯著降低,表明FoxM1可正性調(diào)控c-Myc和Sp1表達。結(jié)論: HHT可以抑制白血病K562細胞FoxM1表達,干擾FoxM1可增強細胞對HHT的敏感性。
[關(guān)鍵詞]三尖杉酯堿; 叉頭框蛋白M1; K562細胞; 藥物敏感性
[中圖分類號]R363.2[文獻標志碼]A
doi:10.3969/j.issn.1000-4718.2015.11.002
[文章編號]1000-4718(2015)11-1933-10
[收稿日期]2014-12-29[修回日期] 2015-08-14
[基金項目]*廣州市屬高校重點學科建設(shè)經(jīng)費資助項目(穗教高教[2011]34號)
通訊作者△Tel: 020-84271652; E-mail: xuxia503@126.com
Inhibition of FoxM1 sensitizes leukemia K562 cells to homoharringtonineCHEN Jin1, ZHOU Min-ran2, SUN Ting2, QIN Xue-mei2, CHEN Zhong-min3, CHEN Chun-yan2, YU Yuan2
(1AnhuiMedicalCollege,Hefei230601,China;2DepartmentofHematology,QiluHospital,ShandongUniversity,Jinan250012,China;3SchoolofPharmacyandBioengineering,ChongqingUniversityofTechnology,Chongqing400054,China.E-mail:yuyuandoctor@163.com)
ABSTRACT[]AIM: To study whether inhibition of forkhead box protein M1(FoxM1) sensitizes leukemia K562 cells to homoharringtonine (HHT). METHODS: K562 cells were incubated with HHT at different concentrations (0 μmol/L, 0.015 μmol/L, 0.030 μmol/L and 0.045 μmol/L) for different time (0 h, 24 h, 48 h and 72 h). The mRNA and protein levels of FoxM1 were detected by real-time PCR and Western blot. FoxM1 siRNA was transfected into K562 cells with 0.015 μmol/L HHT after 6 h. After 72 h incubation, the cell proliferation was detected by cell counting and soft agar assay, and the proportion of apoptotic K562 cells was determined by flow cytometry. The expression of c-Myc and Sp1 were detected by real-time PCR and Western blot. RESULTS: FoxM1 expression was reduced time-dependently and dose-dependently, suggesting that HHT mediated the downregulation of FoxM1 in K562 cells. In K562 cells, treatment with FoxM1 siRNA and HHT inhibited the cell proliferation and promoted the apoptosis significantly. Therefore, inhibition of FoxM1 sensitized leukemia K562 cells to HHT. The expression of c-Myc and Sp1 was positively regulated by FoxM1. CONCLUSION: HHT inhibits Forkhead box protein M1 expression in K562 cells. Inhibition of FoxM1 sensitizes K562 cells to HHT.
[KEY WORDS]Homoharringtonine; Forkhead box protein M1; K562 cells; Drug sensitivity
慢性粒細胞白血病(chronic myelogenous leukemia,CML)是起源于多能造血干細胞的惡性克隆增殖性疾病,包含惡性程度遞增的慢性期、加速期和急變期。CML一旦進入急變期,細胞增殖加快、分化受阻,骨髓和外周血中不成熟細胞大量積聚,對靶向抑制BCR/ABL酪氨酸激酶活性的伊馬替尼等治療反應(yīng)差,病情惡化,預(yù)后不佳。研究表明CML在急變演進過程中分子調(diào)控方式發(fā)生了改變,其中涉及不依賴BCR/ABL的復(fù)雜調(diào)控過程[1-2]。
高三尖杉酯堿(homoharringtonine, HHT)是我國從三尖杉屬植物中分離出的抗腫瘤生物堿, HHT通過不依賴于BCR/ABL機制,對于CML加速期和急變期,以及對伊馬替尼等酪氨酸激酶抑制劑耐藥的CML患者也有效[3-6]。然而,HHT有較強的心臟、骨髓抑制、高血糖等毒副作用,臨床用藥受限,因此發(fā)現(xiàn)與HHT具有協(xié)同作用的增敏分子可降低HHT的臨床有效用藥劑量,是提高HHT藥物效應(yīng)的重要策略。HHT屬于細胞周期特異性藥物,叉頭框蛋白M1(forkhead box protein M1, FoxM1)是叉頭基因轉(zhuǎn)錄因子家族成員,主要通過調(diào)控細胞周期相關(guān)分子轉(zhuǎn)錄介導細胞增殖,參與腫瘤發(fā)生[7],抑制FoxM1可提高實體瘤細胞對化療藥物敏感性[8-11]。FoxM1和HHT都可以調(diào)控細胞周期,靶向干預(yù)FoxM1表達是否可以協(xié)同增敏HHT抗白血病效應(yīng)未見報道,我們以慢性髓系白血病急變期細胞系K562為模型,研究抑制K562細胞FoxM1表達是否可以增強HHT的藥物敏感性,為提高HHT治療CML急變的臨床療效提供初步實驗性線索。
材料和方法
1主要試劑
HHT購自山東大學齊魯醫(yī)院,生產(chǎn)廠家杭州民生藥業(yè)有限公司。白血病細胞系K562購自山東省醫(yī)學科學院。FoxM1 siRNA和對照siRNA購自Sigma。FoxM1 siRNA序列為5’-GACAACUGUCAAGUGUACCACUCUU-3’,對照 siRNA序列為5’-CCUACAUCCCGAUCGAUGAUGUUGA-3’。siRNA轉(zhuǎn)染試劑LipofectamineTM2000 reagent和RNA提取相關(guān)試劑TRIzol購自Invitrogen;RT試劑盒購自Fermentas;實時熒光定量PCR試劑盒購自TaKaRa;PCR引物由上海博尚生物技術(shù)有限公司合成。Western blot試劑包括30%丙烯酰胺溶液、5×上樣緩沖液、SDS、Tris、甘氨酸等購自北京索萊寶科技有限公司。FoxM1抗體購自美國Santa Cruz。ECL化學發(fā)光檢測試劑盒購自Millipore。凋亡檢測試劑盒購自南京百奧生物科技有限公司。
2細胞培養(yǎng)
K562細胞系用10% FBS和RPMI-1640培養(yǎng)基,置于37 ℃、5%CO2細胞培養(yǎng)箱中培養(yǎng)。鋪板前用多聚賴氨酸處理培養(yǎng)板24 h,鋪板18~24 h后進行實驗。
3siRNA轉(zhuǎn)染實驗
接種1.0×105cells/well于6孔板中,過夜培養(yǎng)至30%~50%的細胞融合度。取脂質(zhì)體LipofectimineTM2000 5 μL及siRNA 5 μL分別溶于250 μL Opti-MEM中,混勻后室溫靜置。5 min后將上述2種混合液均勻混合構(gòu)成轉(zhuǎn)染復(fù)合物,室溫靜置20 min。將轉(zhuǎn)染復(fù)合物加入每孔細胞中孵育72 h,收集細胞,進行檢測。
4實時熒光定量PCR檢測FoxM1 mRNA水平
4.1引物的設(shè)計與合成FoxM1上游引物5’-TGCAGCTAGGATGTGAATCTTC-3’,下游引物5’-GGAGCCCAGTCCATCAGAACT-3’;β-actin上游引物5’-AGTTGCGTTACACCCTTTCTTG-3’,下游引物5’-CACCTTCACCGTTCCAGTTTT-3’。
4.2RNA提取與逆轉(zhuǎn)錄反應(yīng)0.5 mL TRIzol處理K562細胞,提取RNA。將1 μg 總RNA、1 μL隨機六聚體引物在離心管中混合,補焦碳酸二乙酯(DEPC)水至12 μL,65 ℃保溫5 min,置于冰上;每管中再加入4 μL 5×RT緩沖液,2 μL 10 mmol/L dNTP,1 μL RNA酶抑制劑和1 μL M-MLV逆轉(zhuǎn)錄酶,小心混勻,PCR儀中按“25 ℃,5 min;42 ℃,60 min;70 ℃,5 min”的程序處理樣品,獲得cDNA。
4.3實時熒光定量PCR 將cDNA按照1∶5的比例進行稀釋;建立PCR體系后,在實時熒光定量PCR儀上按程序“95 ℃ 10 s;95 ℃ 5 s,60 ℃ 31 s,40個循環(huán)”進行PCR。
5Western blot檢測FoxM1蛋白水平
提取細胞總蛋白并測定總蛋白濃度;進行聚丙烯酰氨凝膠電泳,溴酚藍染料在濃縮膠階段,電壓80 V,約40 min后,染料進入分離膠時,電泳增至120 V,約1.5 h后,當溴酚藍指示劑剛剛移出凝膠底端時結(jié)束電泳;轉(zhuǎn)膜、封閉、加入I抗(FoxM1 I抗:1∶500;β-actin I抗:1∶8 000);4 ℃孵育過夜、回收I抗;TBST洗膜,10 min×3次;加入II抗、 TBST洗膜,10 min×3次;PBS洗膜,10 min×1次;化學發(fā)光試劑盒顯色。
6細胞生長曲線實驗
將K562細胞用HHT作用后再轉(zhuǎn)染FoxM1 siRNA,轉(zhuǎn)染0 h、24 h、48 h和72 h時分別進行細胞計數(shù),繪制細胞生長曲線。
7軟瓊脂克隆形成實驗
將0.4%上層瓊脂與經(jīng)過不同處理的K562細胞懸液(1 500 cells/well)按照1∶1的比例配制7 mL,混勻后將含有細胞的上層培養(yǎng)基1 mL/well加入已含1%下層瓊脂培養(yǎng)基的6孔板內(nèi)。不同處理的細胞各做3個復(fù)孔。室溫靜置約10 min,待瓊脂凝固后,置于37 ℃、5% CO2細胞培養(yǎng)箱中孵育。約15 d后觀察白色致密不透光的細胞團。
8流式細胞術(shù)檢測細胞凋亡率
收集處理后的K562細胞1×106,冷PBS清洗,將用1×binding buffer重懸的細胞重懸液100 μL放入5 mL流式管中。每管先加入PE標記的5 μL Annexin V,輕輕吹勻后,再加入5 μL 7-AAD,室溫避光孵育15 min。每管中再加入400 μL 1×binding buf-fer。用細胞流式儀進行凋亡率檢測。
9統(tǒng)計學處理
采用SPSS 13.0統(tǒng)計軟件對實驗數(shù)據(jù)進行分析。2組間比較用t檢驗,多組間的比較采用單因素方差分析,數(shù)據(jù)用均數(shù)±標準差(mean±SD)表示。P<0.05表示差異有統(tǒng)計學意義。
結(jié)果
1HHT抑制白血病K562細胞FoxM1表達
以不同濃度(0、0.015、0.030及0.045 μmol/L)HHT作用K562細胞 72 h后, K562細胞中FoxM1表達隨著HHT作用濃度增加逐漸降低;以最低起效濃度0.015 μmol/L的HHT作用于K562細胞不同時間(0 h、24 h、48 h和72 h),K562細胞FoxM1表達隨著HHT作用時間延長而降低,見圖1。以上結(jié)果提示HHT可以抑制K562細胞FoxM1表達,且呈濃度與時間依賴性。
Figure 1.HHT inhibited FoxM1 expression in K562 cells. A: concentration-dependent effect (72 h); B: time-dependent effect (0.15 μmol/L). Mean±SD.n=3.*P<0.05,**P<0.01.
圖1HHT抑制K562細胞FoxM1表達
2抑制FoxM1可增強HHT抑制K562細胞的增殖作用
0.015 μmol/L HHT作用K562細胞6 h后再轉(zhuǎn)染FoxM1 siRNA或?qū)φ?siRNA, 0 h、24 h、48 h和72 h分別進行細胞計數(shù),繪制細胞生長曲線,結(jié)果顯示HHT+FoxM1 siRNA組的細胞增殖速率顯著降低,見圖2A。轉(zhuǎn)染72 h時收集細胞進行軟瓊脂克隆形成實驗,克隆形成能力也顯著降低,見圖2B。
3抑制FoxM1可增強HHT促K562細胞凋亡作用
將K562細胞用0.015 μmol/L HHT處理6 h后再轉(zhuǎn)染FoxM1 siRNA或?qū)φ?siRNA,流式細胞術(shù)檢測到HHT+FoxM1 siRNA組的細胞凋亡率顯著增高,見圖2C。
Figure 2.Inhibition of FoxM1 enhanced the proliferation inhibition and apoptosis promotion in K562 cells induced by HHT. A: cell counting; B: soft agar assay; C: flow cytometry. Mean±SD.n=3.*P<0.05,**P< 0.01vsHHT+NC siRNA.
圖2抑制FoxM1可增強HHT抑制K562細胞增殖和促K562細胞凋亡的作用
4FoxM1正性調(diào)控c-Myc和Sp1表達
當用0.015 μmol/L HHT處理K562細胞6 h后再轉(zhuǎn)染FoxM1 siRNA或?qū)φ?siRNA,HHT+FoxM1 siRNA組FoxM1、c-Myc 和Sp1 的mRNA和蛋白表達也顯著降低,見圖3。
Figure 3.FoxM1 combined with HHT positively regulated the expression of c-Myc and Sp1. Mean±SD.n=3.*P<0.05,**P<0.01vsHHT+NC siRNA.
圖3FoxM1聯(lián)合HHT正性調(diào)控K562細胞c-Myc和Sp1表達
討論
CML的急變發(fā)生機制復(fù)雜,不依賴BCR/ABL機制參與其中,涉及多種癌基因、抑癌基因和轉(zhuǎn)錄因子等網(wǎng)絡(luò)調(diào)控過程,分子間相互作用,共同促進CML急變[2]。
已有文獻報道FoxM1與實體瘤細胞對化療藥物敏感性或耐受性相關(guān),F(xiàn)oxM1過表達可增強肝癌細胞對TNF-α誘導的凋亡耐受性[9],抑制FoxM1通過下調(diào)DNA修復(fù)基因Rad51增加惡性膠質(zhì)瘤細胞對抗腫瘤藥替莫唑胺的敏感性[10],F(xiàn)oxM1敲除可增加腫瘤細胞對蛋白酶體抑制劑的敏感性,促進細胞凋亡[11]。
K562細胞系是從慢性粒細胞白血病(急變期)患者建立的紅白血病細胞株,在本研究中,觀察到隨著HHT作用濃度增加或作用時間延長,K562細胞中FoxM1表達逐漸降低,說明HHT可以抑制K562細胞FoxM1的表達,并且呈濃度和時間依賴性。用低劑量HHT作用K562細胞后,再轉(zhuǎn)染FoxM1 siRNA,觀察到FoxM1 siRNA與HHT協(xié)同作用導致K562細胞生長抑制、細胞凋亡率增高,說明抑制K562細胞FoxM1表達可協(xié)同增敏HHT藥理效應(yīng)。
c-Myc是Myc轉(zhuǎn)錄因子家族的一員,F(xiàn)oxM1可以直接作用于c-Myc的啟動子區(qū),促進其轉(zhuǎn)錄表達,F(xiàn)oxM1也作為c-Myc的直接下游靶基因,部分介導c-Myc對細胞增殖的促進功能[11-12]。研究發(fā)現(xiàn)FoxM1可以與轉(zhuǎn)錄因子Sp1協(xié)同轉(zhuǎn)錄激活c-Myc,而Sp1也可轉(zhuǎn)錄激活FoxM1和c-Myc,在腫瘤細胞發(fā)生發(fā)展中發(fā)揮作用[12-13]。本研究中在用HHT處理K562細胞后再轉(zhuǎn)染FoxM1 siRNA,觀察到FoxM1表達顯著降低的同時,c-Myc和Sp1表達也均降低,表明FoxM1正性調(diào)控c-Myc和Sp1表達,進而影響細胞增殖與凋亡,在其與HHT的協(xié)同增敏中發(fā)揮作用。
綜上所述,靶向干預(yù)K562細胞FoxM1則增強細胞對HHT藥物敏感性,提示FoxM1抑制劑或siRNA可以協(xié)同HHT藥理效應(yīng)的發(fā)揮,此為HHT應(yīng)用于CML急變治療提供了可借鑒的實驗性初步線索。
[參考文獻]
[1]Hehlmann R. How I treat CML blast crisis[J]. Blood, 2012,120(4):737-747.
[2]Perrotti D, Jamieson C, Goldman J, et al. Chronic myeloid leukemia: mechanisms of blastic transformation[J]. J Clin Invest, 2010,120(7):2254-2264.
[3]Wetzler M, Segal D. Omacetaxine as an anticancer therapeutic: what is old is new again[J]. Curr Pharm Des, 2011,17(1):59-64.
[4]Cortes J, Digumarti R, Parikh PM, et al. Phase 2 study of subcutaneous omacetaxine mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or intolerant of tyrosine kinase inhibitors[J]. Am J Hematol, 2013,88(5):350-354.
[5]Cortes J, Lipton JH, Rea D, et al. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation[J]. Blood, 2012,120(13):2573-2580.
[6]Khoury HJ, Cortes J, Baccarani M, et al. Omacetaxine mepesuccinate in patients with advanced chronic myeloid leukemia with resistance or intolerance to tyrosine kinase inhibitors[J].Leuk Lymphoma,2015,56(1):120-127.
[7]Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles[J]. Adv Cancer Res, 2013,118:397-398.
[8]Monteiro LJ, Khongkow P, Kongsema M, et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment[J]. Oncogene,2013,32(39):4634-4645.
[9]Xia L, Mo P, Huang W, et al. The TNF-α/ROS/HIF-1-induced upregulation of FoxM1 expression promotes HCC proliferation and resistance to apoptosis[J]. Carcinogenesis, 2012,33(11):2250-2259.
[10]Zhang N,Wu X,Yang L, et al. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair geneRad51[J]. Clin Cancer Res, 2012,18(21): 5961-5971.
[11]Pandit B, Gartel AL. FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy[J]. Cell Cycle, 2011,10(19):3269-3273.
[12]Li D, Wei P, Peng Z, et al. The critical role of dysregulated FOXM1-PLAUR signaling in human colon cancer progression and metastasis[J]. Clin Cancer Res, 2013, 19 (1):62-72.
[13]Petrovic V, Costa RH, Lau LF, et al. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin[J]. Cancer Biol Ther, 2010, 9(12):1008-1016.
(責任編輯: 盧萍, 羅森)