大跨徑懸索橋施工期尖頂型主纜馳振性能分析
李勝利1,王超群1,王東煒1,歐進(jìn)萍2
(1.鄭州大學(xué)土木工程學(xué)院,鄭州450001;2.哈爾濱工業(yè)大學(xué)土木工程學(xué)院,哈爾濱150090)
摘要:針對大跨徑懸索橋主纜施工進(jìn)度對施工期大尺寸尖頂型主纜靜風(fēng)系數(shù)及馳振性能影響問題,用CFD數(shù)值模擬方法,參考西堠門大橋施工期貓道及主纜設(shè)計參數(shù)。結(jié)合貓道風(fēng)洞試驗結(jié)果驗證數(shù)值模擬參數(shù)設(shè)置的正確性;計算考慮貓道影響時施工期三角形形狀、五邊形形狀主纜在不同施工進(jìn)度下的阻力及升力系數(shù);利用登哈托準(zhǔn)則計算施工期主纜不同施工進(jìn)度的馳振力系數(shù)。結(jié)果表明,數(shù)值計算參數(shù)設(shè)置方法正確;考慮貓道影響,隨主纜單層索股數(shù)量增加施工期下部呈三角形形狀、中部呈五邊形形狀主纜工況的阻力系數(shù)變化不大,升力系數(shù)隨攻角變化下降趨勢明顯;隨單層索股數(shù)量增加馳振力系數(shù)總體呈下降趨勢;對稱型較不對稱型工況發(fā)生馳振的可能性更大。
關(guān)鍵詞:懸索橋;施工期;主纜;阻力系數(shù);升力系數(shù);馳振
中圖分類號:Tp12;Tp13.3文獻(xiàn)標(biāo)志碼:A
基金項目:國家民用航天預(yù)研項目(61121003);國家自然科學(xué)基金(61203112)
收稿日期:2014-06-09修改稿收到日期:2014-11-20
Galloping performance of large scale spire type main cable of suspension bridge during construction
LISheng-li1,WANGChao-qun1,WANGDong-wei1,OUJin-ping2(1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China;2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)
Abstract:Based on the analysis of galloping and aerostatic coefficients of the large scale spire type main cable of a suspension bridge considering the effect of catwalk during construction, a numerical simulation method of CFD was proposed. The design parameters of the catwalk and main cable of Xihoumen Suspension Bridge were adopted in calculation. Referring to the results of wind tunnel tests for catwalk, the validity of the parameters set in the numerical simulation was verified. The drag and lift coefficients of main cables with triangular and pentagonal shapes during construction were calculated, considering the aerodynamic interference effect of catwalk. Then, the galloping coefficients of the main cable during construction under different working conditions were calculated by virtue of the Den-Hartog criterion. The results show that the setting of the numerical calculation parameters is correct; the drag coefficients of the main cable with a shape of triangle in lower section and pentagon in middle section under different working conditions do not change obviously with the increase of the number of cable strands considering the aerodynamic interference effect of catwalk, while the downward trend of lift coefficients is more and more obvious; with the increase of the number of strands in the same layer, the galloping coefficients under different working conditions decline gradually; the galloping is more likely to happen under the symmetric shape working condition than the unsymmetrical shape working condition.
Key words:suspension bridge; construction; main cable; drag coefficient; lift coefficient; galloping
懸索橋已成超大跨度最優(yōu)選擇橋型之一。而隨橋梁跨度增大,抗風(fēng)問題成為懸索橋設(shè)計、施工的控制因素[1]。主纜施工為大跨度懸索橋建設(shè)的重要環(huán)節(jié)。主纜直徑由上百根股索組成,每根股索又由上百根高強鋼絲組成,直徑較大,且須現(xiàn)場施工[2]。在國內(nèi)第一大跨徑懸索橋—西堠門大橋施工現(xiàn)場,因吊索及加勁梁未安裝、貓道未改吊,暫態(tài)主纜在風(fēng)作用下振動幅度較大,嚴(yán)重影響施工安全及進(jìn)度。從該橋可行性研究、設(shè)計至施工階段均投入大量人力財力進(jìn)行抗風(fēng)性能研究,尤其施工階段[3]。研究發(fā)現(xiàn),主纜截面形狀隨施工進(jìn)度不斷變化,其馳振性能也發(fā)生變化。因此需對不同施工進(jìn)度的主纜馳振性能進(jìn)行細(xì)化研究,以便對施工抗風(fēng)的理論指導(dǎo)。
馳振即在風(fēng)荷載作用下結(jié)構(gòu)的橫風(fēng)向振動現(xiàn)象,主要發(fā)生于細(xì)長型結(jié)構(gòu),如結(jié)冰狀態(tài)輸電線、橋塔及高層建筑等。馳振為發(fā)散性自激振動,登哈托在研究裹冰電纜的抗風(fēng)問題時首次發(fā)現(xiàn)馳振現(xiàn)象,并提出馳振發(fā)生標(biāo)準(zhǔn),即登哈托判據(jù)[4];Simiu等[4-5]對馳振理論基礎(chǔ)進(jìn)行深入研究及透徹理解;研究[6-10]表明,阻力、升力系數(shù)可判定結(jié)構(gòu)是否馳振失穩(wěn),但靜風(fēng)系數(shù)的計算精度對結(jié)構(gòu)抗風(fēng)分析影響較大。在理論分析基礎(chǔ)上,劉鑰等[11]用CFD中的SST湍流模型對箱梁斷面靜風(fēng)系數(shù)進(jìn)行研究,并將數(shù)值模擬結(jié)果與風(fēng)洞試驗進(jìn)行對比,驗證采用CFD技術(shù)模擬橋梁靜風(fēng)系數(shù)方法的可靠性與可行性。文獻(xiàn)[3]通過用CFD技術(shù)模擬懸索橋主纜不同斷面形狀的升力及阻力系數(shù),認(rèn)為主纜架設(shè)過程中可能發(fā)生馳振,為本文研究主纜馳振性能隨施工進(jìn)度變化提供理論基礎(chǔ)?;诖耍疚膶κ┕て谥骼|馳振性能隨施工進(jìn)度變化規(guī)律進(jìn)行研究,以便為主纜施工抗風(fēng)提供理論指導(dǎo)。
1數(shù)值建模
1.1計算工況
本文所建計算模型中,貓道線形取平行于主纜空纜狀態(tài)時的中心線,貓道-主纜橫斷面布置[12-13]見圖1。在前期研究基礎(chǔ)上對懸索橋施工期不同進(jìn)度的主纜靜風(fēng)系數(shù)分別進(jìn)行數(shù)值模擬研究。計算工況分兩部分,即施工期主纜下部呈三角形形狀及中部呈五邊形形狀對應(yīng)工況,此兩工況據(jù)施工進(jìn)度分為若干工況,見圖2、圖3。施工期尖頂型主纜索股牽引形象進(jìn)度見圖4,各計算工況據(jù)索股的架設(shè)順序進(jìn)行編號。大跨徑懸索橋施工期主纜架設(shè)在貓道上進(jìn)行[14],貓道對施工期暫態(tài)主纜存在氣動干擾效應(yīng)[15],在其影響下主纜三分力系數(shù)會發(fā)生較大變化[16]。為使計算更準(zhǔn)確,計算中考慮貓道影響。
圖1 貓道-主纜橫斷面圖 Fig.1 Cross Section of Catwalk and main cable
圖2 西堠門懸索橋施工期暫態(tài)主纜三角形工況 Fig.2 Triangle shape working conditions of transientmain cable of the Xihoumen suspension bridge during construction
圖3 西堠門懸索橋施工期暫態(tài)主纜五邊形工況 Fig.3 Pentagon shape working conditions of transientmain cable of the Xihoumen suspension bridge during construction
圖4 主纜索股牽引形象進(jìn)度圖 Fig. 4 Visual progress chart of main cable strands
1.2數(shù)值風(fēng)洞模型參數(shù)驗證
本文數(shù)值模擬所用尺寸、比例、風(fēng)速、攻角及風(fēng)洞試驗相同[17-18]。貓道斷面用橫向單排直徑4 mm、豎向單排直徑2 mm的圓模擬,模擬透風(fēng)率分別為84.09%及85.6%,貓道實際透風(fēng)率分別為84.2%及85.5%,模擬值與實際值差別較小。橫風(fēng)向空氣的流動處理為二維定常不可壓,計算分析中不考慮溫度變化及能量交換。流場計算方法選擇SIMPLE算法,離散格式選擇二階迎風(fēng)格式。計算采用風(fēng)軸坐標(biāo)系,定義見圖5。施工期貓道或主纜靜風(fēng)系數(shù)分別為
(1)
(2)
式中:Cd,Cl分別為阻力、升力系數(shù);D,L分別為風(fēng)軸坐標(biāo)系下貓道或主纜所受氣動阻力、升力;ρ= 1.225 kg/m3為空氣密度;U為離斷面足夠遠(yuǎn)處來流平均風(fēng)速;H為節(jié)段模型高度;L為節(jié)段模型長度;B為節(jié)段模型寬度,見圖6。
圖5 體軸、風(fēng)軸坐標(biāo)系 Fig.5 Coordinate system of axon and coordinate system of wind
圖6 貓道節(jié)段模型特征尺寸 Fig.6 The feature size of the catwalk model
三種不同湍流模型(標(biāo)準(zhǔn)K-ε模型、RNGK-ε模型及SST模型[19-20])數(shù)值計算與試驗結(jié)果見圖7、圖8。由兩圖分析知,在-5°~5°風(fēng)攻角范圍內(nèi),CFD計算的阻力、升力系數(shù)在數(shù)值上與風(fēng)洞試驗相差不大,該誤差與模型簡化及風(fēng)洞阻塞效應(yīng)有關(guān)[21-22]。據(jù)Den Hartog準(zhǔn)則[23],誘發(fā)垂直舞動的主纜空氣動力系數(shù)應(yīng)滿足
式中:A為Den Hartog系數(shù)。
圖7 貓道斷面阻力系數(shù) Fig.7 Drag coefficients of the catwalk cross section
圖8 貓道斷面升力系數(shù) Fig.8 Lift coefficients of catwalk cross section
1.3貓道-主纜數(shù)值建模參數(shù)設(shè)置
經(jīng)計算比較,確定計算域為46 m×23 m的矩形區(qū)域,見圖9,入口距迎風(fēng)面取16 m,計算域上下邊界距離模型分別為11.18 m及11.5 m,背風(fēng)面距出口取29.3 m,以盡量避免物體后部卷起的分離漩渦打到外邊界的反射,亦使外邊界附近流場參數(shù)分布能較好與所設(shè)邊界條件相容,使求解收斂性較好。迎風(fēng)面邊界條件定義為速度進(jìn)口邊界條件,空氣密度取1.225 kg/m3;背風(fēng)面邊界條件定義為壓力出口邊界條件,相對壓力值取零;上下邊界均為無滑移墻面;主纜-貓道斷面外壁定義為無滑移墻面(圖9)。采用非結(jié)構(gòu)化網(wǎng)格劃分貓道斷面計算域,并對貓道斷壁面加密網(wǎng)格使數(shù)值模擬更接近實際,迭代殘差值控制為10-6。因網(wǎng)格劃分質(zhì)量的好壞直接影響模擬結(jié)果精度,計算分析前對網(wǎng)格劃分質(zhì)量進(jìn)行評估,對網(wǎng)格劃分質(zhì)量較差的進(jìn)行優(yōu)化[21]。本文劃分網(wǎng)格時通過數(shù)次優(yōu)化調(diào)節(jié),最終獲得較合理的網(wǎng)格形式,見圖10。
圖9 貓道-主纜斷面計算域 Fig.9 Computational domain of catwalk-main cable cross section
圖10 貓道-主纜斷面CFD計算網(wǎng)格 Fig.10 CFD computational grid of the catwalk-main cable cross section
2施工期主纜靜風(fēng)系數(shù)
2.1主纜下部三角形狀工況靜風(fēng)系數(shù)變化規(guī)律
考慮貓道影響,施工期主纜下部呈三角形的計算工況主纜阻力、升力系數(shù)見圖11、圖12。由圖11看出,11號工況施工期主纜阻力系數(shù)在-5°~-1°風(fēng)攻角范圍內(nèi)有一定起伏,在-5°~-3°范圍內(nèi)呈下降趨勢,在-3°~-1°范圍內(nèi)先上升后下降,在0°處達(dá)到峰值1.13,在1°處陡降至0.93,在1°~5°范圍內(nèi)波動較平緩,總體呈下降趨勢,阻力系數(shù)在0.85~1.15之間變化;12號工況主纜阻力系數(shù)在-5°~5°范圍內(nèi)變化平緩,總體呈下降趨勢,阻力系數(shù)在0.85~1.05范圍內(nèi)波動;13號工況主纜阻力系數(shù)在-5°~-2°范圍內(nèi)持續(xù)小幅波動,其值在1.0附近變化不大,而在-1°處陡降至0.91,在-1°~5°范圍內(nèi)變化平穩(wěn)下降;14號工況主纜阻力系數(shù)在-5°~-3°范圍內(nèi)先上升后下降,在-4°處達(dá)最大值1.03,在-3°~5°范圍內(nèi)有微小波動,阻力系數(shù)在0.80~1.05之間變化;15號工況主纜阻力系數(shù)在-5°~1°范圍內(nèi)變化不大,2°時陡然下降,在3°~5°范圍內(nèi)呈上升趨勢,阻力系數(shù)維持在0.9附近。由此,施工期主纜考慮貓道氣動干擾時,隨主纜索股單層數(shù)量不斷增加,阻力系數(shù)無明顯線性變化,總體上在單層索股施工中有較小波動。此因阻力荷載主要由主纜斷面前后表面壓強差所致,隨施工主纜單層索股數(shù)量不斷增加,主纜形狀趨于規(guī)則的三角形,易形成繞流,但總體上變化不大??傊ソ窍碌闹骼|阻力系數(shù)斜率大于負(fù)攻角。
圖11 施工期主纜三角形狀斷面阻力系數(shù)(考慮貓道影響) Fig.11 Drag coefficients of main cable cross section for triangles during construction(with aerodynamic interference effect of catwalk)
由圖12看出,11號工況施工期主纜升力系數(shù)在-5°~-2°風(fēng)攻角范圍內(nèi)無明顯變化,在0°~3°及4°
~5°范圍內(nèi)均有不同幅度下降,升力系數(shù)在0.5~0.8之間變化;12號工況主纜升力系數(shù)在-5°~-2°范圍內(nèi)內(nèi)無明顯變化,在-2°~0°范圍內(nèi)先上升后下降,在2°~5°范圍內(nèi)呈下降趨勢,下降段明顯,升力系數(shù)斜率為負(fù)值,大小在0.5~0.75之間變化;13號工況施主纜升力系數(shù)在-5°~-2°范圍內(nèi)有較小波動,在-2°~0°范圍內(nèi)上升,并在0°處達(dá)最大值0.83,在0°~5°范圍內(nèi)總體呈下降趨勢,升力系數(shù)在0.5~0.85之間變化;14號工況主纜升力系數(shù)在-5°~-2°范圍內(nèi)先下降后上升,在-4°處達(dá)極小值0.48,在1°~5°范圍內(nèi)總體呈下降趨勢,下降段明顯,升力系數(shù)斜率為負(fù)值,大小在0.45~0.95之間變化;15號工況主纜升力系數(shù)在-2°~5°范圍內(nèi)總體呈下降趨勢,下降段明顯,斜率為負(fù)值,在0.3~0.8之間變化??紤]貓道影響,隨施工期主纜單層索股數(shù)量不斷增加,升力系數(shù)隨風(fēng)攻角變化,但波動范圍無明顯變化,隨施工進(jìn)行,升力系數(shù)隨風(fēng)攻角變化的下降段愈加明顯,攻角區(qū)間亦越大,可能誘發(fā)馳振。
圖12 施工期主纜三角形形狀斷面升力系數(shù)(考慮貓道影響) Fig.12 Lift coefficients of main cable cross section for triangles during construction(with aerodynamic interference effect of catwalk)
2.2主纜下部五邊形狀工況靜風(fēng)系數(shù)變化規(guī)律
考慮貓道影響,施工期主纜下部呈五邊形形狀計算工況主纜阻力及升力系數(shù)見圖13、圖14。
圖13 施工期主纜五邊形形狀斷面阻力系數(shù)(考慮貓道影響)Fig.13Dragcoefficientsofmaincablecrosssectionforpentagonduringconstruction(withaerodynamicinterferenceeffectofcatwalk)圖14 施工期主纜五邊形形狀斷面升力系數(shù)(考慮貓道影響)Fig.14Liftcoefficientsofmaincablecrosssectionforpentagonduringconstruction(withaerodynamicinterferenceeffectofcatwalk)
由圖13看出,59號工況施工期主纜阻力系數(shù)在-4°~-3°與4°~5°風(fēng)攻角范圍內(nèi)呈上升趨勢,在-5°~-4°與-3°~4°之間呈下降趨勢,總體在0.8~1.2之間變化。60號工況主纜阻力系數(shù)在-5°~2°與3°~5°范圍內(nèi)呈下降趨勢,在2°~3°范圍內(nèi)呈上升趨勢,在0.8~1.2之間變化。61號工況主纜阻力系數(shù)在-5°~4°范圍內(nèi)呈下降趨勢,在4°~5°范圍內(nèi)呈上升趨勢,在0.75~1.25之間變化。62號工況主纜阻力系數(shù)在-5°~5°范圍內(nèi)呈下降趨勢,且出現(xiàn)波動,總體在0.8~1.2之間變化。63號工況主纜阻力系數(shù)在-5°~-2°與0°~4°范圍內(nèi)呈下降趨勢,在-2°~0°與4°~5°范圍內(nèi)呈上升趨勢,總體在0.8~1.3之間變化。64號工況主纜阻力系數(shù)在-5°~-3°及-1°~5°范圍內(nèi)呈下降趨勢,在-3°~-1°范圍內(nèi)呈上升趨勢,總體在0.8~1.25之間變化。65號工況主纜阻力系數(shù)在-5°~-4°及-1°~2°范圍內(nèi)呈下降趨勢,在-4°~-1°及2°~5°范圍內(nèi)出現(xiàn)較小波動,總體在0.8~1.2之間變化。66號工況主纜阻力系數(shù)在-5°~-3°及0°~4°范圍內(nèi)呈下降趨勢,在-3°~0°及4°~5°范圍內(nèi)呈上升趨勢,即在1.0附近變化??紤]貓道影響,對稱形即66號工況主纜阻力系數(shù)變化相對平緩,出現(xiàn)一定程度下降趨勢,波動較明顯。而非對稱(59~65號)工況主纜阻力系數(shù)下降趨勢明顯,最大值集中在1.25附近,最小值集中在0.85附近。
由圖14看出,59號工況施工期主纜升力系數(shù)在-5°~4°風(fēng)攻角范圍內(nèi)呈上升趨勢,且有一定波動,在4°~5°之間呈下降趨勢,總體在0.4~0.8之間變化。60號工況主纜升力系數(shù)在-5°~5°范圍內(nèi)總體呈上升趨勢,且有一定波動,總體在0.4~0.8之間變化。61號工況主纜升力系數(shù)在-2°~1°及4°~5°范圍內(nèi)呈下降趨勢,總體在0.4~0.8之間變化。62號工況主纜升力系數(shù)在-5°~5°范圍內(nèi)出現(xiàn)明顯波動,總體在0.6附近變化。63號工況主纜升力系數(shù)在-5°~5°范圍內(nèi)總體呈上升趨勢,未現(xiàn)明顯下降段。64號工況主纜升力系數(shù)在-5°~5°范圍內(nèi)總體呈上升趨勢,在2°~5°范圍內(nèi)出現(xiàn)連續(xù)下降段,但變化較小。65號工況主纜升力系數(shù)在-5°~5°范圍內(nèi)變化不明顯,總體平穩(wěn)在0.6附近。66號工況主纜升力系數(shù)在-5°~-2°范圍內(nèi)出現(xiàn)上升段,在-2°~1°及2°~5°范圍內(nèi)出現(xiàn)下降段,波動明顯,且在0.3~0.8之間變化。
考慮貓道影響,對稱形(66號)工況主纜升力系數(shù)變化相對平緩,不對稱(59~65號)工況主纜升力系數(shù)平穩(wěn)上升,趨勢較明顯,且變化過程相似度較高。
3施工期主纜馳振性能
3.1馳振分析方法
3.2施工期主纜馳振性能分析
據(jù)登哈托判斷準(zhǔn)則,分析本文計算工況的馳振穩(wěn)定性。馳振失穩(wěn)必要條件為馳振力系數(shù)小于0,故先判斷施工期暫態(tài)主纜的馳振力系數(shù)是否小于0??紤]貓道影響的施工期主纜各工況馳振力系數(shù)隨攻角變化曲線見圖15、圖16。由兩圖可知,考慮貓道影響的施工期主纜,風(fēng)攻角在-5°~5°范圍內(nèi),下部呈三角形狀各工況及中部呈五邊形狀各工況馳振力系數(shù)均小于0,可能誘發(fā)馳振失穩(wěn)。由圖16發(fā)現(xiàn),五邊形工況主纜在0°~5°風(fēng)攻角范圍內(nèi),對稱的66號工況馳振系數(shù)較非對稱工況小,發(fā)生馳振的可能性更大。五邊形工況在0°、4°及5°時馳振系數(shù)較小,發(fā)生馳振的可能性較大。
圖15 施工期主纜三角形狀各工況馳振力系數(shù)(考慮貓道影響)Fig.15Gallopingcoefficientsofmaincablecrosssectionfortrianglesduringconstruction(withaerodynamicinterferenceeffectofcatwalk)圖16 施工期主纜五邊形狀各工況馳振力系數(shù)(考慮貓道影響)Fig.16Gallopingcoefficientsofmaincablecrosssectionforpentagonsduringconstruction(withaerodynamicinterferenceeffectofcatwalk)
三角形工況主纜馳振系數(shù)在-5°~5°風(fēng)攻角范圍內(nèi)隨該層索股施工進(jìn)度變化曲線見圖17。由圖17看出,考慮貓道影響時三角形工況中除-5°、-4°外主纜馳振系數(shù)均大于零;在-3°~5°下主纜馳振系數(shù)均小于零,且在-3°~4°下主纜馳振系數(shù)隨施工進(jìn)度變化整體出現(xiàn)下降趨勢,即隨施工進(jìn)度變化,主纜出現(xiàn)馳振的可能性增大。
圖17 施工期主纜三角形狀工況馳振力系數(shù)(考慮貓道影響) Fig.17 Galloping coefficients of the main cable cross section for triangles (with aerodynamic interference effect of catwalk)
五邊形工況主纜馳振系數(shù)在風(fēng)攻角0°及5°時隨該層索股施工進(jìn)度變化曲線見圖18。由圖18看出,對稱的66號工況馳振系數(shù)在發(fā)生馳振可能性較大的三項風(fēng)攻角下低于非對稱工況,表明在五邊形工況中單層索股施工完畢時發(fā)生馳振的可能性最大。0°風(fēng)攻角下62號工況即該層索股施工中最不對稱工況馳振系數(shù)均小于零,可能發(fā)生馳振;5°風(fēng)攻角下59號、61號馳振系數(shù)均小于零,也可能發(fā)生馳振。
圖18 施工期主纜五邊形狀工況馳振力系數(shù) (考慮貓道影響) Fig.18 Galloping coefficients of the main cable cross section for pentagons (with aerodynamic interference effect of catwalk)
4結(jié)論
(1)對三角形工況,考慮貓道氣動干擾的施工期主纜,隨其索股單層數(shù)量不斷增加阻力、升力系數(shù)無明顯線性變化;隨施工進(jìn)行升力系數(shù)隨風(fēng)攻角變化的下降段愈加明顯,下降段攻角區(qū)間亦越大,會增大馳振發(fā)生的可能性。
(2)對五邊形工況,考慮貓道氣動干擾時,對稱形工況主纜阻力、升力系數(shù)變化相對平緩;非對稱工況主纜阻力系數(shù)下降趨勢明顯,升力系數(shù)平穩(wěn)上升,且趨勢明顯。
(3)對考慮貓道影響的施工期主纜,風(fēng)攻角在-5°~5°范圍內(nèi),下部呈三角形狀各工況及中部呈五邊形狀各工況均存在馳振力系數(shù)小于0情況,可能發(fā)生馳振。
(4)三角形、五邊形工況在可能發(fā)生馳振風(fēng)攻角范圍內(nèi),隨施工進(jìn)度變化,主纜出現(xiàn)馳振的可能性增大。
參考文獻(xiàn)
[1]李永樂,易仁彥,王東緒,等. 懸索橋主纜架設(shè)過程馳振性能時域分析[J]. 西南交通大學(xué)學(xué)報,2013, 48(1):21-28.
LI Yong-le,YI Ren-yan,WANG Dong-xu,et al. Time-domain analysis of galloping of main cable of suspension bridge during erection process[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 21-28.
[2]李勝利,歐進(jìn)萍. 大跨徑懸索橋施工期暫態(tài)主纜馳振控制[J]. 振動與沖擊,2010, 29(10):137-143.
LI Sheng-li, OU Jin-ping. Galloping control for the transient main cables of long-span suspension bridges during construction[J]. Journal of Vibration and Shock,2010,29(10):137-143.
[3]李勝利,歐進(jìn)萍. 大跨徑懸索橋施工期暫態(tài)主纜馳振分析[J]. 土木工程學(xué)報,2009,42(9):74-81.
LI Sheng-li, OU Jin-ping. Galloping analysis for the transient main cables of long-span suspension bridges during construction[J]. China Civil Engineering Journal,2009, 42(9): 74-81.
[4]Simiu E, Scanlan R H. Wind effects on structures-fundamentals and application to design[M]. New York: Wiley, 1996: 230-243.
[5]Kazakevich M I, VasilenkoA G. Closed analytical solutionfor galloping aeroelastic sel-f oscillations[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,65(1/2/3): 353-360.
[6]Macdonald J H G, Larose G L.Two-degree-of-freedom inclined cable galloping-part 1: general formulation and solution for perfectly tuned system[J]. Journal of Wind Engineering andIndustrial Aerodynamics, 2007, 8:1-17.
[7]Macdonald J H G, Larose G L. A united approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping[J]. Journal of Fluids and Structures,2006,22(2): 229-252.
[8]Baglietto E, Ninokata H. A turbulence model study for simulating flow inside tight lattice rod bundles[J]. Nuclear Engineering and Design, 2005, 235(7) : 773-784.
[9]Matteoni G, Georgakis C T. Effect of bridge cable surface roughness and cross-sectional distortion on aerodynamic force coefficients[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,104/105/106: 176-187.
[10]Rocchi D, Rosa L, Sabbioni E, et al. A numerical-experimental methodology for simulating the aerodynamic forces acting on a moving vehicle passing through the wake of a bridge tower under cross wind[J].Journal of Wind Engineering and Industrial Aerodynamics,2012,104/105/106: 256-265.
[11]劉鑰,陳政清,張志田. 箱梁斷面靜風(fēng)力系數(shù)的CFD數(shù)值模擬[J].振動與沖擊,2010, 29(1): 313-134.
LIU Yao, CHEN Zheng-qing, ZHANG Zhi-tian. CFD numerical simulation of static wind coefficient of box girder section[J]. Journal of Vibration and Shock, 2010, 29(1): 313-134.
[12]葛耀君, 等. 浙江省舟山連島工程東海某大跨徑懸索橋施工階段顫振穩(wěn)定性研究[R]. 上海: 同濟大學(xué)土木工程防災(zāi)國家重點實驗室, 2006.
[13]廖海黎, 等. 浙江省舟山連島工程東海某大跨徑懸索橋施工階段抗風(fēng)性能試驗研究[R]. 成都: 西南交通大學(xué)風(fēng)工程試驗研究中心, 2007.
[14]汪潔,李宇,劉健新,等 . 懸索橋施工貓道非線性靜風(fēng)響應(yīng)[J]. 公路交通科技, 2012, 29(4): 41-42.
WANG Jie,LI Yu,LIU Jian-xin, et al. Nonlinear aerostatic response of catwalk of suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2012,29(4):41-42.
[15]李勝利,路毓,王東煒. 串列鈍體馳振氣動干擾效應(yīng)數(shù)值分析[J]. 東南大學(xué)學(xué)報:自然科學(xué)版, 2012, 42(6): 1169-1174.
LI Sheng-li, LU Yu,WANG Dong-wei. Numerical analysis of aerodynamic interference effect of galloping on bluff bodies in tandem configuration[J].Journal of Southeast University:Natural Science,2012,42( 6):1169-1174.
[16]李勝利,路毓,王東煒. 串列鈍體三分力系數(shù)氣動干擾效應(yīng)數(shù)值模擬[J].公路交通科技,2012(12): 55-56.
LI Sheng-li, LU Yu, WANG Dong-wei. Numerical simulation of aerodynamic interference effect of three- component force coefficient on serial blunt body[J]. Journal of Highway and Transportation Research and Development, 2012(12): 55-56.
[17]賈寧,劉健新,劉萬鋒. 懸索橋施工貓道靜風(fēng)失穩(wěn)機理分析[J]. 公路交通科技, 2008, 25(3): 99-102.
JIA Ning, LIU Jian-xin, LIU Wan-feng. Analysis of wind-resistant stability on the catwalk for suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2008, 25(3): 99-102.
[18]吳勝東,馮兆祥,蔣波. 特大跨徑懸索橋上部結(jié)構(gòu)施工關(guān)鍵技術(shù)研究[J]. 土木工程學(xué)報,2007,40(4):32-37.
WU Sheng-dong, FENG Zhao-xiang, JIANG Bo. Key technology in superstructure construction for suspension bridges[J].China Civil Engineering Journal,2007,40(4):32-37.
[19]李薇,胡兆同,李加武. CFD方法研究橋梁斷面三分力系數(shù)的雷諾數(shù)效應(yīng)[J]. 長安大學(xué)學(xué)報:自然科學(xué)版,2010(6): 44-49.
LI Wei, HU Zhao-tong, LI Jia-wu. Reynolds number effect of three component coefficients in bridge deck using computational fluid dynamics(CFD)[J]. Journal of Chang’an University:Natural Science Edition, 2010(6): 44-49.
[20]鄧文,葛耀君,曹豐產(chǎn). 橋梁閉口箱梁三分力系數(shù)數(shù)值識別中的湍流模型選擇[J].橋梁工程,2006(4):36-40.
DENG Wen, GE Yao-jun, CAO Feng-chan. The difference of three-component coefficient of closed box girder bridge with turbulence model selection in numerical identification [J]. Bridge Engineering,2006(4):36-40.
[21]黃亞進(jìn). 風(fēng)障-列車-簡支箱梁系統(tǒng)氣動性能數(shù)值模擬及風(fēng)洞試驗研究[D].長沙:中南大學(xué),2013:62-64.
[22]蔡萌琦,嚴(yán)波. 覆冰四分裂導(dǎo)線空氣動力系數(shù)數(shù)值模擬[J].振動與沖擊,2013.32(5):132-137.
CAI Meng-qi,YAN Bo. Numerical investigation on aerodynamic coefficients of iced quad bundle conductor[J]. Journal of Vibration and Shock,2013,32(5):132-137.
[23]Den Hartog J P. Transmission line vibration due to sleet [J].Transaction AIEE,1932,51(4):1074-1086.
[24]譚紅霞, 陳政清. CFD在橋梁斷面靜力三分力系數(shù)計算中的應(yīng)用[J]. 工程力學(xué),2009, 26(11): 68-72.
TAN Hong-xia, CHEN Zheng-qing. Application of CFD in calculating static coefficients of bridge section [J]. Engineering Mechanics,2009, 26(11): 68-72.
[25]陳政清. 橋梁風(fēng)工程[M]. 北京:人民交通出版社,2005: 66-68.
第一作者崔培玲女,副教授,1975年生