ETC系統(tǒng)中功分比可變的雙頻正交功分器*
李紅濤1魏曉東1胡斌杰1?張洪林1曾偉森2
(1.華南理工大學(xué) 電子與信息學(xué)院, 廣東 廣州 510640; 2.廣東工業(yè)大學(xué) 自動化學(xué)院, 廣東 廣州 510006)
摘要:文中提出一種可用于多波束電子不停車收費(fèi)(ETC)系統(tǒng)的新型正交Hybrid耦合器.為適應(yīng)ETC系統(tǒng)的不同頻段應(yīng)用,該新型正交耦合器設(shè)計為覆蓋兩個常用的ETC系統(tǒng)工作頻段:2.4GHz(2.2~2.6GHz)和5.8GHz(5.5~6.0GHz).該耦合器在上述兩個頻帶上具有不同的功率分配特性——在2.4GHz頻段為等比例正交輸出,在5.8GHz頻段則是在0.6~7.3dB范圍內(nèi)的正交輸出.文中提出的正交功分器具有頻帶寬度大、電路尺寸小的優(yōu)點(diǎn).實(shí)物測試和仿真數(shù)據(jù)吻合良好,說明該功分器是有效的.
關(guān)鍵詞:功分器;雙頻段;耦合器;可變功分比;寬頻帶
中圖分類號:TN626
doi:10.3969/j.issn.1000-565X.2015.03.011
文章編號:1000-565X(2015)03-0078-06
收稿日期:2014-09-19
基金項(xiàng)目:* 國家自然科學(xué)基金青年基金資助項(xiàng)目(61102069, 61301105); 江蘇省自然科學(xué)基金資助項(xiàng)目(BK20140828);南京航空航天大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)資助項(xiàng)目(NS2015088)
作者簡介:仲偉志(1980-), 女, 講師, 主要從事寬帶移動通信研究. E-mail: zhongwz@nuaa.edu.cn
雖然雙頻段Hybrid 耦合器的研究已有很多,但是現(xiàn)有的設(shè)計還不能同時滿足在兩個頻段上分別實(shí)現(xiàn)等分與功分比可調(diào)不等分的需求,因此文中提出了一種寬頻帶、在雙頻帶上分別實(shí)現(xiàn)等分與功分比連續(xù)可調(diào)不等分、正交功分器.
1雙頻正交功分器的設(shè)計
圖1 寬頻帶雙頻段功分器模型 Fig.1 Broadband dual band power divider model
(a)基本耦合器(b)寬頻帶單頻耦合器
圖2寬頻帶雙頻段耦合器關(guān)鍵結(jié)構(gòu)
Fig.2Key structure of broadband dual band coupler
運(yùn)算整理得
其中Y=Y3tanθ3.
此外,上面的表達(dá)式可以進(jìn)一步整理:
(1)
其中,
Z1sinθ1=±ZT
(2)
(3)
圖2(d)為雙頻微帶線T型等效電路,對應(yīng)的電路參數(shù)見圖3,通過推導(dǎo)可得對應(yīng)T型結(jié)構(gòu)的轉(zhuǎn)移矩陣:
運(yùn)算整理得
(4)
其中,
Z5tanθ5=±ZC
(5)
從方程(4)可以看出,T型結(jié)構(gòu)相當(dāng)于特性阻抗為ZC、電長度為90°的微帶傳輸線.
(6)
其中θ5和θ5′對應(yīng)于中心頻率f1和f2對應(yīng)的微帶線電長度.同樣,此T型結(jié)構(gòu)可以獲得雙頻帶特性.
圖3 寬頻帶雙頻段功分器電路圖 Fig.3 Circuit diagram of the broadband dual band power divider
開路分支線Z3的角度和長度均對功分器輸出功分比有影響.如圖4所示,當(dāng)角度t=0.785rad,也就是45°時,開路分支線與兩邊微帶線之間夾角相同,此時開路分支線長度L3的變化對輸出功分比基本無影響.但是高頻部分諧振頻率隨著L3增大稍有減小,這是因?yàn)殚L度L3影響了雙頻特性中的高頻部分.
圖4 t=0.785rad時L 3對功分比的影響 Fig.4 Effects of L 3 on power division ratios when t=0.785rad
圖5 t=1.1rad時 L 3對功分比的影響 Fig.5 Effects of L 3 on power division ratios when t=1.1rad
圖6 L 3=6.2mm時角度t對功分比的影響 Fig.6 Effects of angle t on power division ratios when L 3=6.2mm
圖7 開路分支線的角度t和長度L 3對5.8GHz頻段功 分比的影響 Fig.7 Effects of angle t and length L 3of the open stub on the power division ratio at 5.8GHz
文中提出的新型正交耦合器覆蓋兩個常用的多波束電子不停車收費(fèi)(ETC)系統(tǒng)工作頻段:2.4GHz(2.2~2.6GHz)和5.8GHz(5.5~6.0GHz),在介電常數(shù)為3.55的介質(zhì)板上的波長分別為66.34mm和27.45mm.L3在2.5mm至6.7mm的變化范圍內(nèi)小于2.4GHz頻段波長的十分之一,而大于5.8GHz頻段波長的十分之一,所以對2.4GHz頻段輸出功分比沒有明顯的影響,基本保持等功分比輸出,而對于5.8GHz頻段輸出功分比影響明顯,變化范圍為0.6dB至7.3dB.
2結(jié)果與討論
文中選取的電路材料為Rogers RO4003,介電常數(shù)為3.55,損耗角正切為0.0027,介質(zhì)厚度為0.508mm.文中設(shè)計的雙頻段功分器如圖8所示,在2.4GHz頻段都是等功分比的,在5.8GHz頻段功分比分別為0.6、4.5和7.3dB,經(jīng)過仿真優(yōu)化,所得5.8GHz頻段4.5dB功分比電路最佳的S參數(shù)相應(yīng)的電路結(jié)構(gòu)參數(shù)如表1所示.
表15.8GHz4.5dB功分比雙頻段功分器設(shè)計參數(shù)
Table 1Parameters of the proposed dual band power divider with a power divider ratio of 4.5 dB at 5.8GHz
參數(shù)數(shù)值參數(shù)數(shù)值L0/mm14.2W0/mm1.50L1/mm10.4W1/mm2.50L2/mm11.8W2/mm1.15L3/mm6.2W3/mm0.20L4/mm2.0W4/mm0.34L5/mm5.9W5/mm1.00t/rad1.1W6/mm0.27
5.8GHz頻段0.6dB功分比電路僅需要使表1中參數(shù)t=1.1rad,L3=2.5mm.5.8GHz 頻段7.3dB功分比電路僅需要使表1中的參數(shù)t=1.3rad,L3=6.7mm.
圖9、10示出了在5.8GHz頻段不同功分比的3個功分器仿真和實(shí)物測試中的S參數(shù)以及輸出端口相位差的對比結(jié)果.
(a)功分比為0.6dB時的 S 11、 S 14參數(shù)
(b)功分比為0.6dB時的 S 12、 S 13參數(shù)
(c)功分比為4.5dB時的 S 11、 S 14參數(shù)
(d)功分比為4.5dB時的 S 12、 S 13參數(shù)
(e)功分比為7.3dB時的 S 11、 S 14參數(shù)
(f)功分比為7.3dB時的S 12、S 13參數(shù) 圖9 雙頻段功分器仿真和測試S參數(shù)結(jié)果 Fig.9 Simulated and measured S-parameters of the proposed dual band power divider
圖10 雙頻段功分器仿真和測試中的輸出端口相位差 Fig.10 Simulated and measured phase difference at out ports of the proposed dual band power divider
調(diào)節(jié)t和L3的值分別為1.1rad和2.5mm,對應(yīng)仿真和測試結(jié)果如圖9所示.圖9(a)中,在5.7~6.0GHz頻段,反射系數(shù)|S11|仿真和測試數(shù)據(jù)都小于-10dB,隔離度|S14|小于-12dB.輸出端口(端口2和端口3)的仿真功分比在5.65~5.95GHz,頻段為0.9~1.2dB,測試功分比在5.7~6.0GHz,頻段為0.6~1.2dB,此頻率偏差由制造誤差引起.在2.2~2.6GHz,反射系數(shù)和隔離度的仿真和測試數(shù)據(jù)都小于-15dB,輸出端口的功分比為0 ~0.3dB(輸出端口值在-3.36~-3.02dB范圍內(nèi)).實(shí)現(xiàn)兩個輸出端口在2.4GHz頻段內(nèi)等功分比輸出,在5.8GHz頻段最小輸出功分比為0.6dB.除去制造誤差,仿真和測試結(jié)果吻合良好.
t和L3的值分別調(diào)節(jié)為1.1rad和6.2mm,對應(yīng)仿真和測試結(jié)果見圖9(c)和(d).在5.5~5.8GHz頻段的仿真數(shù)據(jù),分別為反射系數(shù)小于-10dB,隔離度小于-15dB,輸出功分比在4.4-5.5dB范圍內(nèi).在5.6~5.9GHz頻段的測試數(shù)據(jù),分別為反射系數(shù)小于-10dB,隔離度小于-15dB,輸出功分比在3.9~4.9dB范圍內(nèi).測試和仿真的頻率、功分比偏差由制造誤差引起.在2.2~2.6GHz,反射系數(shù)和隔離度的仿真和測試數(shù)據(jù)都小于-15dB,輸出端口的功分比為0~0.3dB(輸出端口值在-3.36~-3.02dB范圍內(nèi)).實(shí)現(xiàn)兩個輸出端口2.4GHz頻段(帶寬為400MHz)為等功分比,在5.8GHz頻段(帶寬為300MHz)輸出功分比為4.5dB.除去制造誤差,仿真和測試結(jié)果吻合良好.
進(jìn)一步通過調(diào)節(jié)t和L3分別為1.3 rad和6.7mm,對應(yīng)仿真和測試結(jié)果見圖9(e)和(f).在5.5~5.8GHz頻段的仿真數(shù)據(jù),分別為反射系數(shù)小于-10dB,隔離度小于-15dB,輸出功分比在7.1~7.4dB范圍內(nèi).在5.55~5.85GHz頻段的測試數(shù)據(jù),分別為反射系數(shù)小于-10dB,隔離度小于-15dB,輸出功分比在6.5~7.3dB范圍內(nèi).測試和仿真的頻率、功分比偏差由制造誤差引起.在2.2~2.6GHz,反射系數(shù)和隔離度的仿真和測試數(shù)據(jù)都小于-15dB,輸出端口的功分比為0~0.3dB.實(shí)現(xiàn)了兩個輸出端口2.4GHz頻段內(nèi)等功分比輸出,在5.8GHz頻段最大輸出功分比為7.3dB.除去制造誤差,仿真和測試結(jié)果吻合良好.
從圖10中可以看到,在2.4GHz頻段的400MHz頻帶寬度內(nèi)和5.8GHz頻段300MHz的頻帶寬度內(nèi),兩個輸出端口(端口2和端口3)都滿足+90°或-90°的相位差,滿足正交的相位條件.
綜上所述,仿真和實(shí)測結(jié)果表明,通過調(diào)節(jié)參數(shù)L3和t的值,可實(shí)現(xiàn)2.4GHz頻段等功分比正交輸出,而在5.8GHz頻段,連續(xù)可調(diào)功分比范圍為0.6~7.3dB,最終實(shí)現(xiàn)雙頻正交功分器.
3結(jié)語
文中提出一種在ETC系統(tǒng)中應(yīng)用的新型雙頻段正交等分比和不等分比功分器,這種功分器的工作頻率覆蓋2.4GHz頻段(2.2~2.6GHz)和5.8GHz頻段(5.5~6.0GHz),2.4GHz頻段等功分比輸出,在5.8GHz頻段可以通過調(diào)節(jié)參數(shù)實(shí)現(xiàn)0.6~7.3dB任意比例功分比輸出,并且在兩個頻段上兩個輸出端口都是正交的,電路尺寸小(50mm×28mm),實(shí)物測試數(shù)據(jù)和仿真數(shù)據(jù)吻合良好.文中提出的新型雙頻功分器可以在ETC系統(tǒng)中發(fā)揮良好的作用,利用5.8GHz頻段的寬頻范圍優(yōu)勢,將本功分器的任意功分比性能應(yīng)用于多波束Butler 矩陣的設(shè)計,實(shí)現(xiàn)多車道自由流檢測系統(tǒng).本設(shè)計也為其他需要用到雙頻段正交等分比和不等分比功分器的應(yīng)用場合提供了一個良好的解決方案.
參考文獻(xiàn):
[1]Jin S,Han R,Arigong B,et al.A dual-band microstrip crossover and its miniaturization [C]∥Proceedings of Antennas and Propagation Society International Sympo-sium (APSURSI).Chicago:IEEE,2012.
[2]Liu X,Yu C,Liu Y,et al.A novel compact planar crossover with simple design procedure [C]∥Proceedings of Asia-Pacific Microwave Conference 2010 (APMC 2010).Yokohama:IEEE,2010.
[3]Fai-Leung W,Cheng K K M.A novel,planar,and compact crossover design for dual-band applications [J].IEEE Transactions on Microwave Theory and Techniques,2011,59(3):568-573.
[4]Lee Z W,Pang Y H.Compact planar dual-band crossover using two-section branch-line coupler [J].Electronics Letters,2012,48(21):1348-1349.
[5]Ching-Luh H.Design of quadrature hybrid with closely separated dual-passband using three-branch line coupler[C]∥Proceedings of Asia-Pacific Microwave Conference 2010 (APMC 2010).Yokohama:IEEE,2010.
[6]Chilhyeun G,Kwansun C,Inho N,et al.A new branch-line hybrid coupler with arbitrary power division ratio [C]∥Proceedings of Asia-Pacific Microwave Conference 2007 ( APMC 2007).Bangkok:IEEE,2007.
[7]Kholodniak D,Kalinin G,Vernoslova E,et al.Wideband 0-dB branch-line directional couplers [C]∥Proceedings of 2000 IEEE MTT-S International Microwave Symposium Digest.Boston:IEEE,2000.
[8]Jin S,Han R,Arigong B,et al.A fully symmetrical crossover and its dual-frequency Application [J].IEEE Transactions on Microwave Theory and Techniques,2012,60(8):2410-2416.
[9]Reed J,Wheeler G J.A method of analysis of symmetrical four-port networks [J].IRE Transactions on Microwave Theory and Techniques, 1956,4(4):246-252.
[10]Cheng K K M,Fai-Leung W.A novel approach to the design and implementation of dual-band compact planar 90° branch-line coupler [J].IEEE Transactions on Microwave Theory and Techniques,2004,52(11):2458-2463.
[11]Hualiang Z,Chen K J.A stub tapped branch-line coupler for dual-band operations [J].IEEE Microwave and Wireless Components Letters,2007,17(2):106-108.
[12]Ching-Luh H.Dual-band branch line coupler with large power division ratios [C]∥Proceedings of Asia-Pacific Microwave Conference 2009 (APMC 2009).Singapore:IEEE,2009.
[13]Zheng S Y,Wu Y,Li Y,et al.Dual-band hybrid coupler with arbitrary power division ratios over the two bands [J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2014,4(8):1347-1358.
[14]Sinchangreed V,Uthansakul M,Uthansakul P.Design of tri-band quadrature hybrid coupler for WiMAX applications [C]∥Proceedings of 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS).Chiang Mai:IEEE,2011.
[15]林峰,諸慶昕.新型三頻環(huán)形耦合器的設(shè)計 [J].華南理工大學(xué)學(xué)報:自然科學(xué)版,2011,39(7):26-31.
Lin Feng, Chu Qing-xin.Design of a novel tri-band rat race coupler [J].Journal of South China University of Technology:Natural Science Edition,2011,39(7):26-31.
[16]Yao J J.Nonstandard hybrid and crossover design with branch-line structures [J].IEEE Transactions on Microwave Theory and Techniques,2010,58(12):3801-3808.
Dual-Band Orthogonal Power Divider with Variable Power Division
Ratio Applied to ETC System
LiHong-tao1WeiXiao-Dong1HuBin-Jie1ZhangHong-lin1ZengWei-sen2
(1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
2. Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, Guangdong, China)
Abstract:Proposed in this paper is a novel orthogonal Hybrid coupler applied to multi-beam electronic toll collection (ETC) systems. In this coupler, two common frequency bands of ETC system including 2.4GHz (2.2~2.6GHz) and 5.8GHz (5.4~6.0GHz) are covered to adapt different working frequency bands, and different power distribution characteristics are endowed in the two frequency bands, that is, equally orthogonal output in 2.4GHz band and orthogonal output in the range of 0.5~7dB in 5.8GHz band. The proposed divider is of broad bandwidth and small circuit size, and, it is proved feasible due to the good agreement between real test results and simulation data.
Key words: power divider; dual band; coupler; variable power division ratio; broadband
Foundation items: Supported by the National Natural Science Foundation of China(NSFC)(61102069, 61301105) and the Natural Science Foundation of Jiangsu Province(BK20140828)