申瑞玲 張文杰 董吉林 相啟森
藜麥的營(yíng)養(yǎng)成分、健康促進(jìn)作用及其在食品工業(yè)中的應(yīng)用
申瑞玲 張文杰 董吉林 相啟森
(鄭州輕工業(yè)學(xué)院食品與生物工程學(xué)院,鄭州 450001)
藜麥(Chenopodium quinoa)是一種營(yíng)養(yǎng)豐富的假谷物,具有多種保健作用,被譽(yù)為“超級(jí)谷物”。藜麥突出的營(yíng)養(yǎng)保健作用成為國(guó)內(nèi)外學(xué)者關(guān)注的熱點(diǎn)。詳細(xì)綜述了藜麥的宏量營(yíng)養(yǎng)素、微量營(yíng)養(yǎng)素和植物化學(xué)物質(zhì)的組成特點(diǎn);抗氧化、抗癌、降糖降脂、抗炎抗菌等多種健康促進(jìn)作用;藜麥在食品工業(yè)中的應(yīng)用前景,目的是為我國(guó)藜麥的全面利用以及相關(guān)產(chǎn)品研發(fā)提供科學(xué)依據(jù)。
藜麥 營(yíng)養(yǎng)成分 健康促進(jìn)作用
藜麥(Chenopodium quinoa),莧科藜屬雙子葉假谷物,原產(chǎn)于南美洲安第斯山脈地區(qū),在當(dāng)?shù)匾延? 000年的種植歷史,是印加土著居民的主要傳統(tǒng)食物[1,2]。藜麥籽粒形狀呈扁圓形,大小和小米相近,有多種顏色,富含優(yōu)質(zhì)蛋白質(zhì)、不飽和脂肪酸、礦物質(zhì)、維生素E和多種植物化學(xué)物質(zhì)。藜麥?zhǔn)锹?lián)合國(guó)國(guó)際糧農(nóng)組織(FAO)確認(rèn)的唯一一種能滿足人體基本營(yíng)養(yǎng)需求的單體植物,被正式推薦為最適宜人類的完美“全營(yíng)養(yǎng)食品”,具有“超級(jí)谷物”之美譽(yù)[3]。藜麥總共有3 000多個(gè)品種,不同藜麥品種具有適應(yīng)不同地區(qū)生長(zhǎng)的能力,主要種植地分布在南美洲的玻利維亞、秘魯和厄瓜多爾;北美地區(qū)的藜麥種植已經(jīng)有一定規(guī)模;歐洲、非洲和亞洲各地的潛在種植國(guó)也進(jìn)行了試驗(yàn)性種植[4-5]。我國(guó)藜麥種植可追溯到20世紀(jì)90年代,最初在西藏進(jìn)行試種,目前山西、河北、甘肅、青海和吉林等地區(qū)也種植成功[6-8]。
隨著消費(fèi)者保健意識(shí)提高,對(duì)優(yōu)質(zhì)食品需求不斷增強(qiáng),藜麥優(yōu)越的營(yíng)養(yǎng)價(jià)值和功能特性成為國(guó)內(nèi)外食品研究領(lǐng)域的熱點(diǎn)。國(guó)外對(duì)藜麥的研究主要集中在藜麥生物活性物質(zhì)的健康促進(jìn)作用和藜麥?zhǔn)称返拈_(kāi)發(fā);目前,我國(guó)藜麥研究仍處于育種和種植階段,對(duì)藜麥營(yíng)養(yǎng)價(jià)值的研究和應(yīng)用相對(duì)較少。本綜述全面分析了藜麥籽粒(以下簡(jiǎn)稱藜麥)的營(yíng)養(yǎng)價(jià)值、健康促進(jìn)作用及其在食品工業(yè)中的應(yīng)用前景,以期為藜麥的充分利用以及相關(guān)產(chǎn)品的研發(fā)提供參考。
藜麥?zhǔn)且环N營(yíng)養(yǎng)價(jià)值很高的假谷物,適合老年人、孕婦、兒童和運(yùn)動(dòng)員等不同人群使用。
藜麥營(yíng)養(yǎng)價(jià)值遠(yuǎn)高于小麥、水稻和玉米等傳統(tǒng)谷物(見(jiàn)表1~ 表2)[1,9-13]。
藜麥蛋白含量豐富,其中白蛋白和球蛋白含量占總蛋白質(zhì)的44%~77%,不含麩質(zhì)蛋白(Gluten);藜麥含有16種氨基酸,包括9種人體必需氨基酸(見(jiàn)表3),組成比例均衡,適宜人體吸收,其中賴氨酸和組氨酸含量較高,補(bǔ)充藜麥?zhǔn)称房筛纳莆覈?guó)膳食結(jié)構(gòu)導(dǎo)致的“賴氨酸缺乏癥”,是孕產(chǎn)婦嬰幼兒的優(yōu)質(zhì)營(yíng)養(yǎng)源。
表1 藜麥主要營(yíng)養(yǎng)組成/g/100 g
表2 藜麥與常見(jiàn)谷物宏量營(yíng)養(yǎng)素的比較/g/100 g
表3 藜麥與小麥、稻米、大豆氨基酸組成比較/g/100 g蛋白
與其他谷物相比,藜麥中脂肪含量較高;藜麥含有多種不飽和脂肪酸(如亞油酸和α-亞麻酸),不飽和脂肪酸(表4)含量約占總脂肪酸的70%[15]。藜麥油脂肪酸組成與玉米胚芽油和大豆油相似,屬于高品質(zhì)的油類。藜麥碳水化合物含量與其他谷物相當(dāng);淀粉是藜麥中主要的碳水化合物,質(zhì)量分?jǐn)?shù)為58.1%~64.2%,直鏈淀粉所占比例較低[16];藜麥中葡萄糖、果糖、蔗糖和麥芽糖分別為1.7、0.2、2.9、1.4 mg/100 g,蔗糖含量較高,而果糖含量較低[11]。藜麥膳食纖維含量豐富,其中不可溶膳食纖維占78%,可溶性膳食纖維占22%。分析結(jié)果表明,藜麥膳食纖維主要由富含阿拉伯糖的果膠多糖和木聚糖組成[17]。
表4 藜麥與小麥胚芽、玉米胚芽、大豆脂肪酸組成比較/% 總脂肪酸
藜麥的礦物質(zhì)含量(表5)十分豐富[12,18],尤其是鈣、鎂、鐵等含量都大大高于禾谷類作物。藜麥中鈣含量約為小麥(34.0 mg/100 g)的2倍,稻米和玉米的5倍以上,而且這種鈣是天然的,可作為補(bǔ)鈣的良好來(lái)源;鎂含量是小麥(4.0 mg/100 g)的20倍,稻米(34.0 mg/100 g)的2 倍以上[4]。研究表明:100 g藜麥中鐵、鎂和錳元素含量可以滿足嬰兒和成人每天對(duì)礦質(zhì)元素的需要;磷和鋅含量足以滿足兒童每日需求。但是,不同藜麥品種礦質(zhì)元素含量差異較大,這可能與其生長(zhǎng)環(huán)境有關(guān)[12]。此外,谷物中的植酸會(huì)影響礦物質(zhì)元素的吸收,藜麥植酸含量(見(jiàn)表5)與其他谷物(7.6~14.7 mg/g)相當(dāng),目前降低植酸最有效的方式是將藜麥進(jìn)行發(fā)芽處理,這樣會(huì)使植酸完全水解,從而增加礦物質(zhì)的利用度[19]。
藜麥?zhǔn)呛芎玫木S生素來(lái)源(見(jiàn)表5)[20-21],尤其是維生素B族、維生素E和葉酸。每100 g藜麥含有葉酸和維生素B6的量能滿足兒童和成人每日所需;維生素E和維生素B2的含量可以滿足兒童每日所需量的80%及成人每日所需量的40%[12]。
表5 藜麥的主要礦物質(zhì)元素、維生素和植物化學(xué)物質(zhì)組成
藜麥中含有多種植物化學(xué)物質(zhì),如多酚、異黃酮、膽堿、植物甾醇、植酸和皂苷等(見(jiàn)表5)。藜麥總多酚含量(以沒(méi)食子酸GAE當(dāng)量表示)明顯高于小麥(56.0 mg GAE/100 g)、大麥(88.0 mg GAE/100 g)和小米(139.0 mg GAE/100 g)。據(jù)報(bào)道,藜麥至少含有23種酚類化合物,主要為酚酸,如,香草酸、阿魏酸及其衍生物;槲皮素和山奈酚是藜麥中主要的黃酮化合物,而常見(jiàn)谷物(小麥、大麥、燕麥、黑麥)不含有黃酮類化合物[22-23]。蛻皮激素(Ecdysteroids)屬于植物甾醇/酮,是植物的次級(jí)代謝產(chǎn)物,人體內(nèi)的蛻皮激素主要集中在大腦,而日常膳食中,只有少數(shù)食物(如菠菜、藜屬植物)含有蛻皮激素。藜麥中含有的蛻皮激素主要以20-羥基蛻皮激素形式存在[24]。藜麥皂苷主要為三萜烯皂苷,它也是許多中草藥如人參、甘草和柴胡等的有效成分。根據(jù)皂苷含量可將藜麥分為甜藜麥(皂苷含量小于鮮重的0.11%)和苦藜麥(皂苷含量大于鮮重的0.11%)2種[25],藜麥皂苷含量與品種和土壤的水分條件有關(guān)[1,11]。皂苷味苦澀,會(huì)影響藜麥的口感,除去皂苷常采用洗滌方法。
藜麥豐富的營(yíng)養(yǎng)價(jià)值也決定其具有突出的健康促進(jìn)作用和藥用價(jià)值。研究表明,藜麥富含的維生素、多酚、類黃酮類、皂苷和植物甾醇類物質(zhì)具有多種健康功效。
藜麥VE、多種類黃酮和植物甾醇類物質(zhì)具有很強(qiáng)的抗氧化能力。已有體外清除DPPH自由基、FRAP自由基試驗(yàn)的研究證實(shí)了藜麥強(qiáng)抗氧化活性[26];藜麥蛻皮激素通過(guò)抑制皮膚膠原酶活性表現(xiàn)出抗氧化性[27]。藜麥葉乙醇提取物含的沒(méi)食子酸、山奈酚和蘆丁等物質(zhì)能夠抑制脂質(zhì)過(guò)氧化,抑制前列腺癌細(xì)胞增殖和交叉感受態(tài)細(xì)胞的運(yùn)動(dòng)性,具有抗癌活性[26]。此外,Letelier等[28]研究發(fā)現(xiàn),藜麥種皮醇提取物中含有的三萜烯皂苷和多酚硫醇化合物(抗氧化劑),能夠抑制Cu2+/抗壞血酸對(duì)大鼠肝臟微粒體的脂質(zhì)過(guò)氧化作用,其中的還原性物質(zhì)能夠通過(guò)降低二硫化合物二聚體的催化活性,抑制谷胱甘肽轉(zhuǎn)移酶(GST)活性。
藜麥中不飽和脂肪酸、膳食纖維、蛻皮激素等物質(zhì)具有防治糖尿病和抑制肥胖的作用。藜麥可以作為糖尿病人群的主食,藜麥血糖指數(shù)較低(藜麥35,大米90),可以延緩血糖升高,藜麥油脂能夠增強(qiáng)胰島素的敏感性[29-30]。Graf等[31]的研究也發(fā)現(xiàn),萌動(dòng)藜麥籽粒醇(70%乙醇)提取物(含有0.9%蛻皮激素,1.0%植物甾酮,2.6%黃酮類物質(zhì),11.9%油脂,20.4%蛋白質(zhì))能夠顯著降低肥胖高血糖大鼠的空腹血糖。有研究證實(shí),藜麥蛻皮激素除了具有降低血糖功效,還能增強(qiáng)碳水化合物和脂肪代謝,每天給膳食誘導(dǎo)肥胖的大鼠補(bǔ)充20-羥基蛻皮激素劑量為5 mg/kg體重的藜麥乙醇提取物,發(fā)現(xiàn)肥胖大鼠的脂肪累積量減少了23%,脂肪細(xì)胞的平均大小減少了32%[32]。
由于含有多種不飽和脂肪酸,藜麥具有降低低密度脂蛋白膽固醇(LDL-C),升高高密度脂蛋白膽固醇(HDL-C)的作用,能夠有效預(yù)防血管動(dòng)脈粥樣硬化[18]。臨床試驗(yàn)表明,35歲的超重女性每天攝入25 g藜麥粉,連續(xù)4周,血清中甘油三酯(TG)和總膽固醇(TC)含量都明顯下降,谷胱甘肽含量則顯著提高[33]。另外,藜麥蘆丁也具有多重生理功效,如:降低血管的通透性及脆性、防止血細(xì)胞的凝集、擴(kuò)張冠狀動(dòng)脈和增強(qiáng)冠狀動(dòng)脈血流量等。
藜麥的抗炎、抗菌和增強(qiáng)免疫應(yīng)答作用源于藜麥皂苷和類黃酮物質(zhì)。大量研究證實(shí)皂苷具有抗菌、抗病毒和抗炎的作用。Estrada等[34]通過(guò)動(dòng)物模型試驗(yàn)發(fā)現(xiàn),藜麥皂苷能夠與胃內(nèi)或鼻內(nèi)的霍亂毒素或卵清蛋白發(fā)生協(xié)同作用,增強(qiáng)血清、腸道和肺部的特異性免疫球蛋白的免疫應(yīng)答,調(diào)節(jié)黏膜對(duì)抗原的滲透性。同時(shí),藜麥皂苷(劑量為5 mg/mL)經(jīng)過(guò)堿處理后,能夠100%抑制分生孢子萌芽,具有強(qiáng)抗真菌活性[35]。Verz等[36]對(duì)藜麥皂苷進(jìn)行毒理試驗(yàn)并測(cè)定了低于約47μg劑量的藜麥皂苷的免疫佐劑活性,試驗(yàn)證實(shí),藜麥皂苷能顯著增強(qiáng)卵清球蛋白的免疫應(yīng)答,皂苷在低溶血性條件下同樣具有良好的免疫助劑作用。藜麥醇溶谷蛋白能夠激發(fā)腸道疾病患者的腸道免疫力,處于治療階段的乳糜瀉患者(19位),每天食用50 g藜麥(無(wú)麩質(zhì)蛋白膳食的一部分),連續(xù)6周之后,其胃腸指標(biāo)(如:腸表皮細(xì)胞高度、表皮淋巴球細(xì)胞數(shù)量)恢復(fù)到正常范圍[37]。此外,藜麥中的阿拉伯聚糖、果膠多糖具有保護(hù)胃黏膜,抗?jié)兓钚裕?7]。
藜麥具有豐富的營(yíng)養(yǎng)價(jià)值和突出的健康促進(jìn)作用,能廣泛應(yīng)用于食品工業(yè)中。隨著發(fā)達(dá)國(guó)家藜麥主食化和多樣化發(fā)展,新的藜麥產(chǎn)品不斷涌現(xiàn),極大地促進(jìn)了藜麥的消費(fèi)。藜麥米可以代替大米作為谷物早餐,也可以生成芽苗食用,甚至可以做成零食[38]。藜麥粉具有良好的凝膠性、吸水性、乳化性和穩(wěn)定性[39],可用來(lái)制作湯羹、面條,還能與多種谷物混合制作餅干、面包及其他加工食品。用藜麥面粉替代40%~100%的米粉或玉米粉制成的無(wú)麩質(zhì)面包體積增大33%,并且面包質(zhì)地均勻[40];添加藜麥全粉(25%、50%)和雙歧桿菌植酸酶的面包,營(yíng)養(yǎng)價(jià)值、礦物質(zhì)的吸收和利用率提高[41];Coda 等[42]用植物乳桿菌(Lactobacillus plantarum C48)發(fā)酵無(wú)麩質(zhì)面團(tuán)(添加蕎麥、莧菜、鷹嘴豆和藜麥粉比例為1∶1∶5.3∶1),發(fā)酵后面團(tuán)與小麥粉面團(tuán)相比,游離氨基酸和γ-氨基丁酸含量顯著增加,淀粉體外水解率顯著降低,并且有較好的適口性。藜麥、大豆、大米和燕麥混合粉做成的植物代乳制品與牛乳相比,具有更多的分散相,藜麥乳經(jīng)葡糖糖內(nèi)酯化后能發(fā)生凝膠作用且營(yíng)養(yǎng)豐富[43]。
近年來(lái),有機(jī)食品市場(chǎng)全球化加速,藜麥的國(guó)際市場(chǎng)也日益擴(kuò)大,藜麥被評(píng)為21世紀(jì)最具安全性的食物之一。聯(lián)合國(guó)大會(huì)將2013年設(shè)為“國(guó)際藜麥年”,旨在讓世界關(guān)注藜麥的生物多樣性和營(yíng)養(yǎng)價(jià)值,及其在提供糧食和營(yíng)養(yǎng)安全、消除貧困等方面所能發(fā)揮的作用[3]。我國(guó)是人口大國(guó),對(duì)藜麥及其制品的潛在需求量巨大,但是直到近年才逐漸開(kāi)始對(duì)藜麥有了認(rèn)識(shí)和逐步的重視。目前藜麥發(fā)展還存在以下問(wèn)題:1)藜麥在我國(guó)的育種栽培管理問(wèn)題。盡管在我國(guó)多地種植成功,但穩(wěn)定的藜麥的品種、栽培的田間管理和病害以及收獲方式等都需要深入研究。2)國(guó)內(nèi)缺乏藜麥的加工設(shè)備,藜麥果實(shí)為扁圓形,現(xiàn)采用小米脫皮設(shè)備進(jìn)行藜麥脫皮,碎米率較高,利用率低,因此加工設(shè)備亟待研發(fā)。3)對(duì)藜麥營(yíng)養(yǎng)與加工研究不足。此外,藜麥原糧銷售價(jià)格較高,廣大群眾對(duì)藜麥認(rèn)知程度也低,造成藜麥的生產(chǎn)與銷售脫節(jié)。因此,我國(guó)藜麥產(chǎn)業(yè)的發(fā)展蘊(yùn)藏著極大的機(jī)遇與挑戰(zhàn)。
[1]Koziol M J.Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.)[J].Journal of Food Composition and Analysis,1992,5(1):35-68
[2]Vega-Gálvez A,Miranda M,Vergara J,et al.Nutrition facts and functional potential of quinoa(Chenopodium quinoa Willd.)an ancient Andean grain:a review[J].Journal of the Science of Food and Agriculture,2010,90(15):2541-2547
[3]FAO.Quinoa:an ancient rop to contribute to world food security [D].Italy:Food and Agriculture Organization,2011
[4]Bhargava A,Shukla S,Ohri D.Chenopodium quinoa:an Indian perspective[J].Industrial Crops and Products,2006,23(1):73-87
[5]Wilson H D.Quinua and relatives(Chenopodium sect.Chenopodium subsect.Cellulata)[J].Economic Botany,1990,44:92-110
[6]貢布扎西,旺姆,張崇璽,等.南美藜在西藏的生物學(xué)特性研究[J]. 西北農(nóng)業(yè)學(xué)報(bào),1994,16(4):43-48
Gongbu Trashi,Wang Mu,Zhang Chongxi,et al.Preliminary study of biological characters of quinoa in Tibet[J].Acta Agriculturae Boreali-Occidentalis Sinica,1994,16(4):43-48
[7]肖正春,張廣倫.藜麥及其資源開(kāi)發(fā)利用[J].中國(guó)野生植物資源,2014,33(2):62-66
Xiao Zhengchun,Zhang Guanglun.Development and Utilization of Chenopodium quinoa Willd.[J].Chinese Wild Plant Resources,2014,33(2):62-66
[8]周海濤,劉浩,么楊,等.藜麥在張家口地區(qū)試種的表現(xiàn)與評(píng)價(jià)[J].植物遺傳資源學(xué)報(bào),2014,15(1):222-227
Zhou Haitao,Liu Hao,Yao Yang,et al.Evaluation of agronomic and quality characters of quinoa cultivated in Zhangjiakou[J].Journal of Plant Genetic Resources,2014,15(1):222-227
[9]Cardozo A,Tapia M E.Valor nutritivo.Quinua y Kaniwa.Cultivos Andinos.In:Tapia,M.E. (ed.)Serie Libros y Materiales Educativos.Instituto Interamericano de Ciencias Agricolas,Bogota,Colombia,1979,49:149-192
[10]Wright K H,Pike O A,F(xiàn)airbanks D J,et al.Composition of Atriplex hortensis,Sweet and Bitter Chenopodium quinoa Seeds[J].Food Chemistry and Toxicology,2002,67(4):1383-1385
[11]Repo-Carrasco R,Espinoza C and Jacobsen S E.Nutritional value and use of the Andean crops quinoa(Chenopodium quinoa)and ka?iwa (Chenopodium pallidicaule)[J].Food Reviews International,2003,19(1):179-189
[12]Nascimento A C,Mota C,Coelho I,et al.Characterisation of nutrient profile of quinoa (Chenopodium quinoa),amaranth (Amaranthus caudatus)and purple corn (Zea mays L.)consumed in the north of Argentina:Proximates,minerals andtrace elements[J].Food Chemistry,2014,148(4):420-426
[13]楊月欣,王光亞,潘興昌.中國(guó)食物成分表(第1冊(cè))[M].第二版.北京:北京大學(xué)醫(yī)學(xué)出版社,2009
Yang Yuexin,Wang Guangya,Pan Xingchang.Chinese food composition table (vol.1)[M].The second edition.Beijing:Peking University Medical Press,2009
[14]Escuredo O,González Martín M I,Moncada G W,et al.Amino acid profile of the quinoa(Chenopodium quinoa Willd.)using near infrared spectroscopy and chemometric techniques[J].Journal of Cereal Science,2014,60(1):67-74
[15]Peiretti PG,Gai F,Tassone S.Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.)seeds and plants at different growth stages[J].Animal Feed Science and Technology,2013,183(1):56-61
[16]Cordeiro L M C,Reinhardt V F,Baggio CH,et al.Arabinan and arabinan-rich pectic polysaccharides from quinoa(Chenopodium quinoa)seeds:structure and gastroprotective activity[J].Food Chemistry,2012,130(4):937-944
[17]Lamothe L M,Srichuwong S,Reuhs B L,et al.Quinoa(Chenopodium quinoa W.)and amaranth (Amaranthus caudatus L.)provide dietary fibres high in pectic substances and xyloglucans[J].Food Chemistry,2015,167(1):490-496
[18]Abugoch L E.Quinoa (Chenopodium quinoa Willd.):composition,chemistry,nutritional,and functional properties[J].Advances in Food Nutrition Research,2009,58:1-31
[19]Ando H,Chen Y,Tang H,et al.Food components in fractions of quinoa seed[J].Food Science and Technology Research,2002,8(1):80-84
[20]Ruales J,Nair B M.Nutritional quality of the protein in quinoa (Chenopodium quinoa WiIld.)seeds[J].Plant Foods for Human Nutrition,1992(1),42:1-12
[21]Moncada G W,Martín M G,Escuredo O,et al.Multivariate calibration by near infrared spectroscopy for the determination of the vitamin E and the antioxidant properties of quinoa[J].Talanta,2013,116(11):65-70
[22]Repo-Carrasco-Valencia R,Hellstr?m JK,Pihlava JM,et al.Flavonoids and other phenolic compounds in Andean indigenous grains:Quinoa (Chenopodium quinoa),ka?iwa(Chenopodium pallidicaule)and kiwicha (Amaranthus caudatus)[J].Food Chemistry,2010,120(1):128-133
[23]Tang Y,Li X,Zhang B,et al.Characterisation of phenolics,betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd.Genotypes[J].Food Chemistry,2015,166(1):380-388
[24]Kumpun S,Maria A,Crouzet S,et al.Ecdysteroids from Chenopodium quinoa Willd.,an ancient Andean crop of high nutritional value[J].Food Chemistry,2011,125(4):1226-1234
[25]Mastebroek H D,Limburg H,Gilles T.Occurrence of sapogenins in leaves and seeds of quinoa(Chenopodium quinoa Willd.)[J].Journal of the Sciences of Food and Agriculture,2000,80(1):152-156
[26]Gawlik-Dziki U,Micha?S′wieca,Su?kowski M,et al.Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts-In vitro study[J].Food and Chemical Toxicology,2013,57(6):154-160
[27]Nsimba R Y,Kikuzaki H,Konishi Y,et al.Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress[J].Journal of Biochemistry and Molecular Toxicology,2008,22(4):240-250
[28]Letelier M E,Rodríguez-Rojas C,Sánchez-JofréS,et al.Surfactant and antioxidant properties of an extract from Chenopodium quinoa Willd seed coats[J].Journal of Cereal Science,2011,53(2):239-243
[29]Wolter A,Hager A S,Zannini E,et al.In vitro starch digestibility and predicted glycaemic indexes of buckwheat,oat,quinoa,sorghum,teff and commercial gluten-free bread[J].Journal of Cereal Science,2013,58(3):431-436
[30]Oshodi A A,Ogungbenle H N,Oladimeji MO.Chemical composition,nutritionally valuable minerals and functional properties of benniseed(Sesamum radiatum),pearl millet(Pennisetum typhoides)and quinoa (Chenopodium quinoa)flours[J].International Journal of Food Sciences and Nutrition,1999,50(5):325-331
[31]Graf B L,Poulev A,Kuhn P,et al.Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties[J].Food Chemistry,2014,163(11):178-185
[32]Kizelsztein P,Govorko D,Komarnytsky S,et al.20-Hydroxyecdysone decreases weight and hyperglycemia in a dietinduced obesity mice model[J].American Journal of Physiology,Endocrinology and Metabolism,2009,296(3):433-43
[33]De Carvalho F G,Ovidio P P,Padovan G J,et al.Metabolic parameters of postmenopausal women after quinoa or corn flakes intake-a prospective and double-blind study[J].International Journal of Food Sciences And Nutrition,2014,65(3):380-385
[34]Estrada A,Li B,Laarveld B.Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice[J].Comparative Immunology Microbiology and Infectious Diseases,1998,21(3):225-236
[35]Stuardo M,San-Martín R.Antifungal properties of quinoa(Chenopodium quinoa Willd.)alkali treated saponins against Botrytis cinerea[J].Industrial Crops and Products,2008,27(3):296-302
[36]Verz Simone G Verz,Silveira F,Cibulski S,et al.Immunoadjuvant activity,toxicity assays and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa Seeds[J].Journal of Agricultural and Food Chemistry,2012,60(12):3113-3118
[37]Zevallos V F,Herencia L I,Chang F J,et al.Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.)in celiac patients[J].The American Journal of Gastroenterology,2014,109(2):270-278
[38]Diaz J M R,Kirjoranta S,Tenitz S,et al.Use of amaranth,quinoa and ka?iwa in extruded corn-based snacks[J].Journal of Cereal Science,2013,58(1):59-67
[39]Oshodi A,Ogungbenle H,Oladimeji M.Chemical composition,nutritionally valuable minerals and functional properties of benniseed,pearl millet and quinoa flours[J].International Journal of Food Science and Nutrition,1999,50(5):325-331
[40]Elgeti D,Nordlohne SD,F(xiàn)?ste M,et al.Volume and texture improvement of gluten-free bread using quinoa white flour[J].Journal of Cereal Science,2014,59(1):41-47
[41]Iglesias-Puig E,Monedero V,Haros M.Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability[J].LWT-Food Science and Technology,2015,60(1):71-77
[42]Coda R,Rizzello C G,Gobbetti M.Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched ofγ-aminobutyric acid (GABA)[J].International Journal of Food Microbiol-ogy,2010,137(2-3):236-245
[43]M?kinen O E,Uniacke-Lowe T,O’Mahony J A,et al.Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk[J].Food Chemistry,2015,168:630-638.
Nutritional Components,Health-promoting Effects of Quinoa(Chenopodium quinoa)and Its Application in the Food Industry
Shen Ruiling Zhang Wenjie Dong Jilin Xiang Qishen
(College of Food and Biological Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001)
Quinoa (Chenopodium quinoa),a pseudocereal with rich nutrition and various health benefits,is honored as“supercrop”.Quinoa has become the focus of researchers for its health-promoting effects.This paper reviews the nutritional value,health-promoting effects especially in antioxidant,anti-inflammatory and preventing diabetes,and application prospects of quinoa,with the purpose to provide scientific evidence for the comprehensive utilization,related products research and development of quinoa in future.
quinoa,nutritional value,health-promoting effects
TS201.4
A
1003-0174(2016)09-0150-06
國(guó)家自然科學(xué)基金(31271854)
2015-01-09
申瑞玲,女,1967年出生,教授,谷物營(yíng)養(yǎng)與加工