郭正陽,陳香梅,魯鳳民
北京大學(xué)醫(yī)學(xué)部病原生物學(xué)系,北京100191
ONECUT(OC)蛋白作為轉(zhuǎn)錄因子,能廣泛調(diào)節(jié)與細胞增殖、遷移、黏附、分化以及細胞物質(zhì)代謝相關(guān)的蛋白表達,在哺乳動物的器官形成和胚胎發(fā)育過程中發(fā)揮著重要作用。近年來研究發(fā)現(xiàn)OC 蛋白不僅參與肝、胰的發(fā)育調(diào)控過程,還參與腫瘤、炎癥、組織再生等多個生理及病理過程的調(diào)控,因此研究OC 蛋白的功能和異常對理解消化系統(tǒng)的器官發(fā)育和疾病發(fā)生具有重要意義。
OC 轉(zhuǎn)錄因子家族含有3 個成員,分別是HNF-6、OC-2 和OC-3。哺乳動物肝細胞核因子6(Hepatocyte Nuclear Factor-6,HNF-6)也被稱為ONECUT-1(OC-1),于1996 年首次在大鼠中被克?。?]。HNF-6 作為轉(zhuǎn)錄因子能與DNA 結(jié)合形成蛋白-DNA 復(fù)合物,其DNA 結(jié)合結(jié)構(gòu)域包括一個cut 結(jié)構(gòu)域和一個非典型的同源結(jié)構(gòu)域,與其他同源結(jié)構(gòu)域蛋白不同,其非典型同源結(jié)構(gòu)域的48 位為苯丙氨酸,50 位為甲硫氨酸(F48M50)[2]。OC-2 與OC-3 的結(jié)構(gòu)特征與HNF-6 相同,氨基酸序列與HNF-6 具有較大的相似性。三種OC 轉(zhuǎn)錄因子的cut 結(jié)構(gòu)域和同源結(jié)構(gòu)域的序列保守性提示其可能結(jié)合相同的基因,而許多HNF-6 的DNA 結(jié)合位點也在OC-2 和OC-3 中被證實存在[3-4]。
三種OC 因子的表達具有組織特異性,但也有一定的重疊。在人體中,HNF-6 主要在肝胰島組織中表達,睪丸和皮膚表達相對較低。OC-2 在肝組織和皮膚呈高表達,在大腦枕葉皮質(zhì)和睪丸呈較低程度的表達[3]。OC-3 在小鼠大腦和胃腸中表達,在人體內(nèi)的表達分布尚不清楚[5]。OC 轉(zhuǎn)錄因子的功能涉及多個方面,三種OC 因子在功能上即有協(xié)同作用,也有各自的特點。
2.1 參與細胞周期和細胞增殖的調(diào)控 目前有關(guān)OC轉(zhuǎn)錄因子調(diào)控細胞增殖的研究主要集中在HNF-6。研究表明,HNF-6 能刺激肝再生時的細胞增殖,在小鼠肝再生過程中,HNF-6 高表達能使進入DNA 復(fù)制期(S期)的肝細胞數(shù)量顯著增多。相反,當(dāng)用siRNA 技術(shù)敲減Hepa1-6 小鼠肝癌細胞系HNF-6 的表達后,S 期細胞則減少了50%。
在機制方面,HNF-6 促肝細胞分裂增殖作用可能與其對腫瘤生長因子α(TGF-α)、細胞周期蛋白D1(Cyclin D1)和轉(zhuǎn)錄因子Foxm1 的表達上調(diào)作用相關(guān),已有研究證實TGF-α、Cyclin D1、Cdc25A、Cdk2 和E2F1 的基因啟動子區(qū)均存在HNF-6 蛋白的直接結(jié)合位點[6-7],提示HNF-6 可通過調(diào)控這些基因的表達來發(fā)揮其促細胞增殖作用。此外,HNF-6 也可以直接結(jié)合甲胎蛋白(AFP)基因增強子,或與維甲酸相關(guān)孤核受體α(RORα)發(fā)揮協(xié)同激活作用,上調(diào)AFP 表達[8]。AFP 是肝癌細胞特有的標志物,近年研究發(fā)現(xiàn)AFP 可結(jié)合和運輸多種配體,促進腫瘤和正常細胞的增殖,包括影響細胞分化、生長調(diào)控和腫瘤發(fā)生進程等[9-11]。
值得注意的是,HNF-6 對細胞增殖的調(diào)控作用具有一定的組織特異性,如在結(jié)腸腺癌細胞Caco-2 中過表達HNF-6 能抑制細胞周期進程[12];膽管結(jié)扎損傷后維持HNF-6 表達能使正常膽管上皮細胞在膽管堵塞后增殖減少[13]。
2.2 參與細胞分化和器官發(fā)育的調(diào)節(jié) 小鼠發(fā)育過程中,OC 因子在內(nèi)胚層按HNF-6、OC-2、OC-3 的時間順序開始表達,且HNF-6 能夠結(jié)合并刺激OC-3 基因表達[14]。在小鼠胚胎第9 天,HNF-6 在肝臟、原腸和神經(jīng)系統(tǒng)表達;在胚胎第10.5 天,HNF-6 在胰上皮細胞表達。OC-2 在發(fā)育中的神經(jīng)系統(tǒng)和腸內(nèi)胚層中表達,之后在肝和胰中表達,表現(xiàn)出組織局限性和階段特異性[15]。
OC 因子在小鼠肝臟發(fā)育中發(fā)揮了重要作用。HNF-6 和OC-2 在前腸內(nèi)胚層和肝母細胞中表達,HNF-6 參與了肝內(nèi)胚層向肝母細胞的增殖和分化[16],并控制基膜的適時降解。此外,HNF-6 與OC-2 還共同參與了肝母細胞分化的調(diào)控。研究表明,HNF-6 和OC-2 能協(xié)同調(diào)節(jié)TGF-β 二型受體(tbrⅡ)基因的表達,抑制肝實質(zhì)中的activin/TGF-β 信號,使肝細胞正常分化[17]。膽管細胞的分化也需要轉(zhuǎn)錄因子HNF-6和OC-2 參與。在人和斑馬魚的發(fā)育過程中,HNF-6能刺激hnf-1β 啟動子并控制HNF-6、HNF-1β 級聯(lián)反應(yīng),或者與Notch 信號通路相互作用調(diào)控下游分子的表達,參與肝臟內(nèi)外膽管系統(tǒng)的發(fā)育[18-19]。胚胎發(fā)育13 ~15 d,HNF-6 和OC-2 可調(diào)節(jié)早期肝膽細胞系的分離,并減弱未成熟的膽管上皮細胞的分化。因此缺失HNF-6、OC-2、HNF1β 的胎肝出現(xiàn)過大的膽囊,而不能形成適當(dāng)?shù)母蝺?nèi)膽管系統(tǒng)[17]。
OC 因子在胰腺發(fā)育中也發(fā)揮重要的調(diào)控作用。vHNF-1、HNF-6 和Pdx-1 順序性激活調(diào)控胰腺祖細胞的生成[20],其中HNF-6 能直接刺激Pdx-1 啟動子,促進其在腹側(cè)和背側(cè)內(nèi)胚層表達,以調(diào)控內(nèi)胚層細胞的胰腺特性[21];也能直接激活前內(nèi)分泌因子Ngn-3 表達,參與內(nèi)分泌細胞的分化[22]。在胰腺形態(tài)形成和內(nèi)分泌祖細胞分化中,OC-2 與HNF-6 發(fā)揮協(xié)同作用[23]。研究表明,在胰島生成過程中,HNF-6 的持續(xù)表達會干擾內(nèi)分泌細胞在胰島中的空間結(jié)構(gòu),使葡萄糖轉(zhuǎn)運體GLUT2 缺失或嚴重減少,破壞β 細胞的生理功能,導(dǎo)致糖尿病[24]。出生后HNF-6 的持續(xù)表達同樣導(dǎo)致β細胞功能不全[25]。因此,在β 細胞發(fā)育過程中,HNF-6的表達下調(diào)對β 細胞功能的成熟具有重要意義。
2.3 調(diào)節(jié)細胞遷移和細胞基質(zhì)黏附 肝臟發(fā)育時肝母細胞增殖并侵襲橫膈,然后才能分化為肝細胞或膽管細胞。HNF-6 和OC-2 通過調(diào)控某些蛋白的表達而影響這一過程中的細胞遷移和基質(zhì)黏附。在HNF-6、OC-2 雙敲除胚胎中,E-鈣黏素和Thbs-4 表達上調(diào),OPN 表達下調(diào)[26],肝母細胞能夠增殖,但是基底膜未能降解,細胞仍然陷在肝原基中而不發(fā)生遷移,引起小鼠胎肝發(fā)育不全。有研究表明E-鈣黏素在成年肝細胞中是HNF-6 的直接靶基因[27],表明至少一部分細胞遷移黏附相關(guān)的基因網(wǎng)絡(luò)受到OC 因子的直接調(diào)控。
體外實驗表明,HNF-6 的過表達能抑制結(jié)腸癌細胞系SW620 的侵襲、轉(zhuǎn)移能力[28]。受肝臟微環(huán)境的影響,HNF-6 在肝內(nèi)轉(zhuǎn)移的結(jié)腸癌細胞中被激活表達,但以非乙?;疕NF-6 為主,刺激DNA 轉(zhuǎn)錄的能力較弱。FoxA2 在結(jié)腸癌肝轉(zhuǎn)移中高表達,其與HNF-6 之間的蛋白相互作用能抑制后者DNA 結(jié)合能力??梢?,盡管HNF-6 在結(jié)腸癌肝轉(zhuǎn)移細胞中表達上調(diào),但其功能卻受到抑制[29]。HNF-6 因子是否影響結(jié)腸癌細胞的肝轉(zhuǎn)移仍需深入探究。
OC-2 可能與結(jié)直腸癌細胞的遷移、侵襲相關(guān)。通過上調(diào)mik-429 抑制OC-2 在SW620 和SW480 中的表達,可下調(diào)TGF-β1誘導(dǎo)的EMT 標志物的表達水平,并抑制細胞遷移、侵襲,提示OC-2 可能在結(jié)腸癌細胞EMT 的初始階段發(fā)揮促進作用[30]。
2.4 調(diào)節(jié)物質(zhì)代謝 OC 因子能夠通過調(diào)節(jié)代謝相關(guān)基因的轉(zhuǎn)錄,參與葡萄糖穩(wěn)態(tài)、膽固醇代謝、膽汁酸清除與轉(zhuǎn)運等代謝過程。
在糖代謝方面,HNF-6 能結(jié)合葡萄糖-6-磷酸酶(G6Pase)、葡萄糖激酶(glucokinase)等糖代謝酶以及葡萄糖轉(zhuǎn)運體2(Glut-2)的啟動子,并激活這些基因轉(zhuǎn)錄[31-33],促進糖異生、糖原合成與分解及葡萄糖轉(zhuǎn)運等過程。此外,HNF-6 能與糖皮質(zhì)激素受體相互作用,抑制受糖皮質(zhì)激素激活的肝臟糖代謝酶6-磷酸果糖-2激酶(6-phosphofructo-2 kinase)和磷酸烯醇丙酮酸羧激酶(phosphoenolpyruvate carboxykinase)基因的表達,通過間接作用抑制糖皮質(zhì)激素的基因轉(zhuǎn)錄刺激功能,調(diào)節(jié)糖酵解和糖異生等過程[34]。胰島β 細胞的Granuphilin/Slp4 是一個Rab GTP 酶效應(yīng)器,能夠?qū)σ葝u素釋放發(fā)揮抑制作用[35-36]。OC-2 能結(jié)合Granuphilin 基因啟動子并抑制其轉(zhuǎn)錄活性,當(dāng)OC-2 轉(zhuǎn)錄因子的表達被抑制后,Granuphilin/Slp4 的表達水平增加,使胰島素的細胞分泌減少,血糖升高[37]。
HNF-6 能調(diào)節(jié)肝細胞色素P450 酶超家族成員CYP7A1[38]和CYP3A4[39]的表達,參與膽固醇代謝以及多種生化反應(yīng)。此外,HNF-6 和OC-2 參與了包括HNF-4 和HNF-3β 等肝臟轉(zhuǎn)錄因子的調(diào)節(jié)網(wǎng)絡(luò)[3,40],而HNF-4 和HNF-3β 能夠協(xié)同刺激載脂蛋白AI(apoAI)的增強子活性[41],因此,HNF-6 可能間接調(diào)節(jié)apoAI 的表達。HNF-6 的過表達可上調(diào)有機陰離子轉(zhuǎn)運多肽1(Oatp1)的表達水平,并可能因此加強肝細胞對膽汁酸的攝取和清除,緩解膽汁淤積[42]。
HNF-6 可能與慢性炎癥的進展有關(guān)。在膽管結(jié)扎誘導(dǎo)的肝臟慢性炎癥中可觀察到HNF-6 表達減少[13]。而HNF-6 的表達能通過下調(diào)TGFb2R 的水平抑制慢性炎癥向肝纖維化進展[43],并且在HNF-6 缺失的小鼠胚胎肝臟中TGF-β 信號的增強和TGFb2R的表達上調(diào)[44],支持HNF-6 抑制TGFb2R 表達和調(diào)節(jié)慢性炎癥的可能。
HNF-6 在肝細胞癌中的異常低表達與肝癌細胞的低分化程度相關(guān)。在肝癌細胞中過表達HNF-6 可誘導(dǎo)分化相關(guān)標志物的表達,并抑制肝細胞癌的遷移、侵襲,而敲除HNF-6 則作用相反,提示HNF-6 可能是肝細胞癌中的抑癌基因[45]。
HNF-6 可能對胰腺導(dǎo)管腺癌(PDAC)的發(fā)生和發(fā)展發(fā)揮負調(diào)控作用。腺泡-導(dǎo)管化生(ADM)和胰腺上皮內(nèi)腫瘤(PanIN)是發(fā)生PDAC 的主要危險因素[46]。研究表明,胰腺內(nèi)HNF-6 失活的小鼠存活到成年后,表現(xiàn)出胰腺導(dǎo)管細胞增生、ADM、鱗狀細胞化生以及胰腺炎的特征[47],提示HNF-6 缺失小鼠更易發(fā)生PDAC。此外,在PanIN 中HNF-6 的表達下降,且其表達水平與PanIN 病變嚴重程度呈負相關(guān),HNF-6的低表達可能加快PanIN 向PDAC 的進展[49]。與上述結(jié)果一致的是,HNF-6 的表達水平在PDAC 組織中顯著低于正常胰腺組織。體外實驗進一步證實,將HNF-6 轉(zhuǎn)染入胰腺癌細胞后,胰腺癌細胞的轉(zhuǎn)移和侵襲力降低[48]。因此,HNF-6 可能是胰腺癌中的抑癌基因,其在胰腺的表達缺失可能會提高PDAC 的患病風(fēng)險。然而也有研究報道HNF-6 對于ADM 具有促進作用,如在人的ADM 腺泡細胞中過表達HNF-6 能抑制Mist1、Ptf1a 等腺泡標志物的表達,誘導(dǎo)Sox-9、CK19 和OPN 等導(dǎo)管標志物的表達,調(diào)控與ADM 相關(guān)的細胞極性變化[50]。
HNF-6 和OC-2 的作用機制主要有:(1)結(jié)合基因的啟動子直接調(diào)控基因的轉(zhuǎn)錄,如HNF-6 可直接激活HNF-1β 的啟動子和轉(zhuǎn)錄表達[18];(2)與其他轉(zhuǎn)錄因子協(xié)同發(fā)揮作用,如HNF-6 和HNF-3β 協(xié)同刺激Cyp2c12 的啟動子,轉(zhuǎn)錄激活明顯強于單獨作用[51];(3)作為輔助刺激因子間接刺激基因轉(zhuǎn)錄,如HNF-6能刺激FoxM1(HNF-3β)結(jié)合內(nèi)源的Cyclin D1 啟動子區(qū),HNF-6-FoxM1 復(fù)合物可刺激FoxM1 依賴的靶基因表達[6];(4)調(diào)節(jié)其他信號通路,如通過TGF-β 信號通路間接影響LETF 的表達[52]。這些轉(zhuǎn)錄因子在肝胰發(fā)育、代謝調(diào)節(jié)、疾病發(fā)生和進展等生理病理過程中相互影響,發(fā)揮轉(zhuǎn)錄調(diào)節(jié)功能[3,53-54]。
近年來的研究發(fā)現(xiàn),OC 因子參與了由轉(zhuǎn)錄因子和microRNA 組成的基因調(diào)控網(wǎng)絡(luò)[55-56]。如圖1 所示,在長激素(GH)的刺激下,肝細胞表達HNF-6[57],HNF-6 和OC-2 可轉(zhuǎn)錄激活miR-122,而miR-122 能直接或間接地刺激肝特異基因和大部分肝富含的轉(zhuǎn)錄因子(LETF)的表達,包括HNF-6[58],因此適宜水平的miR-122 利于肝細胞的分化進程。肝細胞癌中miR-122 表達水平較正常肝細胞顯著下降,提示增加miR-122 水平可能成為肝細胞癌的治療策略之一[59]。另有研究表明HNF-6 和OC-2 是miR-9、miR-495 和miR-218 的靶基因,其表達可被miR-9、miR-495 和miR-218抑制[36,60-61]。此 外,OC-2 能 促 進HNF-3β 表 達,而HNF-6 則可刺激HNF-3β 和HNF-4 的表達,并且可以直接或間接刺激HNF-1 的表達[3,18,40]。多種轉(zhuǎn)錄因子和microRNA 相互調(diào)節(jié),保障了細胞狀態(tài)和功能的穩(wěn)定性。
圖1 ONECUT 轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)Fig 5 Regulatory network of transcription factor of ONECUT
OC 因子在細胞周期調(diào)控和增殖、細胞遷移和黏附、細胞分化、物質(zhì)代謝、炎癥和化生等病理過程中發(fā)揮了重要的調(diào)節(jié)作用,但目前多數(shù)研究結(jié)果都是來自于HNF-6 的功能研究,OC-2 和OC-3 的功能研究尚處于起步階段。因此,未來的研究應(yīng)該深入探索不同OC因子發(fā)揮功能的分子機制及基因調(diào)控網(wǎng)絡(luò)。此外,OC因子的結(jié)構(gòu)和功能異常與臨床疾病的關(guān)系尚未闡明,特別是其與糖尿病、高膽固醇血癥、肝纖維化以及癌癥發(fā)生、發(fā)展的關(guān)系還需要更深入的研究。
[1] Lemaigre FP,Durviaux SM,Truong O,et al. Hepatocyte nuclear factor 6,a transcription factor that contains a novel of homeodomain and a single cut domain[J]. Proc Natl Acad Sci U S A,1996,93(18):9460-9464.
[2] Lannoy VJ,Bürglin TR,Rousseau GG,et al. Isoforms of hepatocyte nuclear factor-6 differ in DNA-binding properties,contain a bifunctional homeodomain,and define the new ONECUT class of homeodomain proteins[J]. J Biol Chem,1998,273(22):13552-13562.
[3] Jacquemin P,Lannoy VJ,Rousseau GG,et al. OC-2,a novel mammalian member of the ONECUT class of homeodomain transcription factors whose function in liver partially overlaps with that of hepatocyte nuclear factor-6[J]. J Biol Chem,1999,274(5):2665-2671.
[4] Vanhorenbeeck V,Jacquemin P,Lemaigre FP,et al. OC-3,a novel mammalian member of the ONECUT class of transcription factors[J].Biochem Biophys Res Commun,2002,292(4):848-854.
[5] Vaisse C,Kim J,Espinosa R 3rd,et al. Pancreatic islet expression studies and polymorphic DNA markers in the genes encoding hepatocyte nuclear factor-3alpha,-3beta,-3gamma,-4gamma,and -6[J]. Diabetes,1997,46(8):1364-1367.
[6] Tan Y,Yoshida Y,Hughes DE,et al. Increased expression of hepatocyte nuclear factor 6 stimulates hepatocyte proliferation during mouse liver regeneration[J]. Gastroenterology,2006,130(4):1283-1300.
[7] Odom DT,Zizlsperger N,Gordon DB,et al. Control of pancreas and liver gene expression by HNF transcription factors [J]. Science,2004,303(5662):1378-1381.
[8] Nacer-Cherif H,Bois-Joyeux B,Rousseau GG,et al. Hepatocyte nuclear factor-6 stimulates transcription of the alpha-fetoprotein gene and synergizes with the retinoic-acid-receptor-related orphan receptor alpha-4[J]. Biochem J,2003,369 (Pt 3):583-591
[9] Muehlemann M,Miller KD,Dauphinee M,et al. Review of growth inhibitory peptide as a biotherapeutic agent for tumor growth,adhesion,and metastasis[J]. Cancer Metastasis Rev,2005,24(3):441-467.
[10] Vakharia D,Mizejewski GJ. Human alpha-fetoprotein peptides bind estrogen receptor and estradiol,and suppress breast cancer [J].Breast Cancer Res Treat,2000,63(1):41-52.
[11] Wang S,Jiang W,Chen X,et al. Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma[J]. J Hepatol,2012,57(2):322-329.
[12] Lehner F,Kulik U,Klempnauer J,et al. Inhibition of the liver enriched protein FOXA2 recovers HNF6 activity in human colon carcinoma and liver hepatoma cells[J]. PLoS One,2010,5(10):e13344.
[13] Holterman AX,Tan Y,Kim W,et al. Diminished hepatic expression of the HNF-6 transcription factor during bile duct obstruction [J].Hepatology,2002,35(6):1392-1399.
[14] Pierreux CE,Vanhorenbeeck V,Jacquemin P,et al. The transcription factor hepatocyte nuclear factor-6/Onecut-1 controls the expression of its paralog Onecut-3 in developing mouse endoderm[J]. J Biol Chem,2004,279(49):51298-51304.
[15] Jacquemin P,Pierreux CE,F(xiàn)ierens S,et al. Cloning and embryonic expression pattern of the mouse Onecut transcription factor OC-2[J].Gene Expr Patterns,2003,3(5):639-644.
[16] Landry C,Clotman F,Hioki T,et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors[J]. Dev Biol,1997,192(2):247-257.
[17] Clotman F,Jacquemin P,Plumb-Rudewiez N,et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors [J]. Genes Dev,2005,19 (16):1849-1854.
[18] Clotman F,Lannoy VJ,Reber M,et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract[J].Development,2002,129(8):1819-1828.
[19] Vanderpool C,Sparks EE,Huppert KA,et al. Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo[J]. Hepatology,2012,55(1):233-243.
[20] Poll AV,Pierreux CE,Lokmane L,et al. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells [J]. Diabetes,2006,55(1):61-69.
[21] Jacquemin P,Lemaigre FP,Rousseau GG. The Onecut transcription factor HNF-6 (OC-1)is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade[J].Dev Biol,2003,258(1):105-116.
[22] Jacquemin P,Durviaux SM,Jensen J,et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3[J]. Mol Cell Biol,2000,20(12):4445-4454.
[23] Vanhorenbeeck V,Jenny M,Cornut JF,et al. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation[J]. Dev Biol,2007,305(2):685-694.
[24] Gannon M,Ray MK,Van Zee K,et al. Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function[J]. Development,2000,127(13):2883-2895.
[25] Tweedie E,Artner I,Crawford L,et al. Maintenance of hepatic nuclear factor 6 in postnatal islets impairs terminal differentiation and function of beta-cells[J]. Diabetes,2006,55(12):3264-3270.
[26] Margagliotti S,Clotman F,Pierreux CE,et al. The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration [J]. Dev Biol,2007,311(2):579-589.
[27] Odom DT,Dowell RD,Jacobsen ES,et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse[J].Nat Genet,2007,39(6):730-732.
[28] Geng H,Xiao Q,Xu D,et al. Effect of a recombinant lentiviral vector carrying hepatocyte nuclear factor 6 gene on migration and invasion abilities of SW620 cells[J]. Nan Fang Yi Ke Da Xue Xue Bao,2012,32(1):66-70.
[29] Lehner F,Kulik U,Klempnauer J,et al. The hepatocyte nuclear factor 6 (HNF6)and FOXA2 are key regulators in colorectal liver metastases[J]. FASEB J,2007,21(7):1445-1462.
[30] Sun Y,Shen S,Liu X,et al. MIR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting onecut2 in colorectal carcinoma [J]. Mol Cell Biochem,2014,390(1-2):19-30.
[31] Streeper RS,Hornbuckle LA,Svitek CA,et al. Protein kinase A phosphorylates hepatocyte nuclear factor-6 and stimulates glucose-6-phosphatase catalytic subunit gene transcription[J]. J Biol Chem,2001,276(22):19111-19118.
[32] Lannoy VJ,Decaux JF,Pierreux CE,et al. Liver glucokinase gene expression is controlled by the onecut transcription factor hepatocyte nuclear factor-6[J]. Diabetologia,2002,45(8):1136-1141.
[33] Tan Y,Adami G,Costa RH. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen[J]. Hepatology,2002,35(4):790-798.
[34] Pierreux CE,Stafford J,Demonte D,et al. Antiglucocorticoid activity of hepatocyte nuclear factor-6[J]. Proc Natl Acad Sci U S A,1999,96(16):8961-8966.
[35] Coppola T,F(xiàn)rantz C,Perret-Menoud V,et al. Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis[J].Mol Biol Cell,2002,13(6):1906-1915.
[36] Gomi H,Mizutani S,Kasai K,et al. Granuphilin molecularly docks insulin granules to the fusion machinery[J]. J Cell Biol,2005,171(1):99-109.
[37] Plaisance V,Abderrahmani A,Perret-Menoud V,et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells [J]. J Biol Chem,2006,281 (37):26932-26942.
[38] Wang M,Tan Y,Costa RH,et al. In vivo regulation of murine CYP7A1 by HNF-6:a novel mechanism for diminished CYP7A1 expression in biliary obstruction [J]. Hepatology,2004,40(3):600-608.
[39] Sasaki T,Takahashi S,Numata Y,et al. Hepatocyte nuclear factor 6 activates the transcription of CYP3A4 in hepatocyte-like cells differentiated from human induced pluripotent stem cells[J]. Drug Metab Pharmacokinet,2013,28(3):250-259.
[40] Landry C,Clotman F,Hioki T,et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to thecross-regulatory network of liver-enriched transcription factors[J]. Dev Biol,1997,192(2):247-257.
[41] Harnish DC,Malik S,Kilbourne E,et al. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4 [J]. J Biol Chem,1996,271 (23):13621-13628.
[42] Maher JM,Slitt AL,Callaghan TN,et al. Alterations in transporter expression in liver,kidney,and duodenum after targeted disruption of the transcription factor HNF1alpha[J]. Biochem Pharmacol,2006,72(4):512-522.
[43] Wang M,Chen M,Zheng G,et al. Transcriptional activation by growth hormone of HNF-6-regulated hepatic genes,a potential mechanism for improved liver repair during biliary injury in mice[J]. Am J Physiol Gastrointest Liver Physiol,2008,295(2):G357-G366.
[44] Plumb-Rudewiez N,Clotman F,Strick-Marchand H,et al. Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3alpha/Foxa1 gene by TGF-beta in mouse liver [J]. Hepatology,2004,40(6):1266-1274.
[45] Sun H,Tang H,Xie D,et al. Krüppel-like factor 4 blocks hepatocelluar carcinoma dedifferentiation and progression through activation of nepatocyte nuclear factor-6[J]. Clin Cancer Res,2015[Epub ahead of print].
[46] Lowenfels AB,Maisonneuve P,Whitcomb DC. Risk factors for cancer in hereditary pancreatitis. International Hereditary Pancreatitis Study Group[J]. Med Clin North Am,2000,84(3):565-573.
[47] Zhang H,Ables ET,Pope CF,et al. Multiple,temporal-specific roles for HNF 6 in pancreatic endocrine and ductal differentiation[J]. Mech Dev,2009,126(11-12):958-973.
[48] Jiang X,Zhang W,Kayed H,et al. Loss of ONECUT1 expression in human pancreatic cancer cells[J]. Oncol Rep,2008,19(1):157-163.
[49] Pekala KR,Ma X,Kropp PA,et al. Loss of HNF6 expression correlates with human pancreatic cancer progression [J]. Lab Invest,2014,94(5):517-527.
[50] Prévot PP,Simion A,Grimont A,et al. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia [J].Gut,2012,61(12):1723-1732.
[51] Delesque-Touchard N,Park SH,Waxman DJ. Synergistic action of hepatocyte nuclear factors 3 and 6 on CYP2C12 gene expression and suppression by growth hormone-activated STAT5b. Proposed model for female specific expression of CYP2C12 in adult rat liver[J]. J Biol Chem,2000,275(44):34173-34182.
[52] Plumb-Rudewiez N,Clotman F,Strick-Marchand H,et al. Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3alpha/Foxa1 gene by TGF-beta in mouse liver [J]. Hepatology,2004,40(6):1266-1274.
[53] Rausa F,Samadani U,Ye H,et al. The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3 beta in the developing murine liver and pancreas[J]. Dev Biol,1997,192(2):228-246.
[54] Briancon N,Bailly A,Clotman F,et al. Expression of the alpha7 isoform of hepatocyte nuclear factor (HNF)4 is activated by HNF6/OC-2 and HNF1 and repressed by HNF4alpha1 in the liver[J]. J Biol Chem,2004,279(32):33398-33408.
[55] Hayashi Y,Wang W,Ninomiya T,et al. Liver enriched transcription factors and differentiation of hepatocellular carcinoma [J]. Mol Pathol,1999,52(1):19-24.
[56] Wang K,Holterman AX. Pathophysiologic role of hepatocyte nuclear factor 6[J]. Cell Signal,2012,24(1):9-16.
[57] Lahuna O,F(xiàn)ernandez L,Karlsson H,et al. Expression of hepatocyte nuclear factor 6 in rat liver is sex-dependent and regulated by growth hormone [J]. Proc Natl Acad Sci U S A,1997,94 (23):12309-12313.
[58] Laudadio I,Manfroid I,Achouri Y,et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation [J]. Gastroenterology,2012,142(1):119-129.
[59] Nakao K,Miyaaki H,Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma[J]. J Gastroenterol,2014,49(4):589-593.
[60] Simion A,Laudadio I,Prévot PP,et al. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2[J]. Biochem Biophys Res Commun,2010,391(1):293-298
[61] Luxenhofer G,Helmbrecht MS,Langhoff J,et al. MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression[J]. Dev Biol,2014,386(2):358-370.