李 彬,程為彬*,李 杰,張春麗,田建軍
((1.西安石油大學電子工程學院,陜西 西安 710065;2.中國石油集團測井有限公司技術中心,陜西 西安 710077;3.中國石油集團測井有限公司吐哈事業(yè)部,新疆 吐魯番 838202)
電池是新能源領域的一個重要部分,被廣泛應用于生活和科研中。在使用過程中,電壓是不斷變化的,而仿真軟件中的直流源均是恒壓輸出的,僅相當于實際電池的滿電狀態(tài)。在電池作為供電電源的電路仿真實驗中,若需要考慮電壓變化、充放電時間等因素,則非常需要一種符合電池特性且滿足電路仿真要求的電池模型。
目前應用于仿真的電池等效模型有 Rint 模型、Thevenin 模型、PNGV 模型、GNL 模型和 CR 模型等[1],這些模型重點在于分析電池的充放電特性、自放電與過充電對電池的影響等方面。
文獻[2]從精度、結構、參數(shù)辨識度和影響因素這四個方面對目前的五種等效電路模型進行了比較,得出了 GNL 模型精度非常高的結論,文獻[3]通過這個結論提出了一種集合各模型優(yōu)點的改進模型,但這些模型都結構復雜且起始電壓為 0 V,無法保障有工作電壓要求的電路正常仿真。
圖1所示的是根據鉛酸蓄電池的充放電化學反應過程,建立的一種鉛酸蓄電池等效電路模型。該模型形象地描述了鉛酸蓄電池在充放電過程中電壓的動態(tài)變化。通過對電池進行不同倍率充放電實驗,獲得實驗數(shù)據來建立各模型參數(shù)與荷電狀態(tài)(SOC)之間的函數(shù)關系,再對 BP 神經網絡模型進行訓練以實現(xiàn) SOC 的精確估計,最后結合鉛酸蓄電池充放電模型和 BP 神經網絡模型,對鉛酸蓄電池充放電過程進行仿真,仿真與實際結果相一致,從而驗證了模型的正確性[4]。鉛酸蓄電池的等效電路模型符合電池單體特征,有利于對電池進行機理分析,但缺點是該模型作為仿真電路中的動力源時,起始電壓為 0 V,在仿真電路對工作電壓有要求時,電路的仿真將無法正常進行。為了解決上述問題,設計出帶電壓閾值的電池仿真模型。
圖1 鉛酸蓄電池的等效電路模型
電池的 SOC 描述電池的電荷剩余狀態(tài),用電池的 SOC 估計方法可確定電池數(shù)學模型。美國先進電池聯(lián)合會(USABC)在其《電動汽車電池使用手冊》中定義 SOC 為:
其中,QC為電池剩余電量,CI為電池在以恒定電流I放電時所具有的容量。
SOC 估計方法有很多種,其中電量累積法檢測SOC 較簡單,是測量裝置上應用最普遍的方法[5-8]。電量累積法是通過累積電池在充電或放電時的電量來估計電池的 SOC?;驹硎牵?/p>
其中:SOC0為初始狀態(tài),CN為額定容量,I為電流,η為充放電效率。
仿真實驗中,充放電為理想狀態(tài),充放電效率η為 100%,假定電池以恒定電流I放電時所具有的容量CI和額定容量CN相等,那么,利用電量累積法進行模型 SOC 估計,并結合公式(1)和公式(2)可推導出電池數(shù)學模型如公式(3)所示:
其中,Qt為電池動態(tài)電量,Q0為電池初始電量,Ib(t)為電池充放電電流,Ib(t)>0 時表示電池充電,Ib(t)<0 時表示電池放電。
在電路仿真實驗中,電路都有其正常工作的電壓范圍,若供電電源起始電壓低于正常工作最小電壓,那么電路將無法運行,因此在設計電池仿真模型時,應滿足電池的充放電特性,同時需要保證電池等效模型在任意時刻的輸出電壓均大于電路正常工作所需的電壓下限值。
根據電池內電極—電解質界面面積很大這一特性,可以將電池等效為一個大電容串聯(lián)一個小電阻的回路。研究表明:當電池的荷電態(tài)在 50%以上時,等效的串聯(lián)電阻 R 幾乎是不變的,只是在荷電態(tài)為 50%以下時才開始迅速增加[9]。因此當蓄電池模型設置的初始電荷量Q0在額定電量的 50%以上時,等效模型只需讓大電容串聯(lián)一個固定的小電阻。由此,建立帶電壓閾值的電池仿真模型如圖2所示。
該模型由理想電壓源 E、二極管 D、電池內阻R、儲能電容 C 組成,其中U為電池的端電壓,理想電壓源 E 為模型開路電壓并保證模型的最低電壓,二極管 D 用于在模型端電壓高于開路電壓時隔離電池 B 的反向電流。
圖2 電池的等效仿真模型
通過 SOC 估計方法、BP 神經網絡訓練以及MATLAB 仿真方法驗證了:鉛酸蓄電池等效電路模型的優(yōu)點在于準確地描述了電池充放電過程中電量的動態(tài)變化。對比鉛酸蓄電池等效電路模型和帶電壓閾值的電池仿真模型的充放電過程,分析電壓變化的時域曲線,若兩種模型在有效工作電壓范圍內充放電特性一致,那么可以判定帶電壓閾值的電池仿真模型符合電池的特性。
對以上兩種電池的等效電路模型進行同壓同流充電、同負載供電的仿真實驗,以額定電壓 12 V電池為例,閉合充電開關后兩種模型從開路切換至充電狀態(tài),電池的電壓變化時域曲線如圖3所示。由圖3可知,兩種模型的充電特性一致,那么可以說明該模型從開路狀態(tài)切換為充電狀態(tài)的充電特性符合電池特性。
圖3 兩種模型充電時電壓的時域曲線
當電壓充至上限,斷開充電開關,閉合供電開關,以上電池模型電壓變化的時域曲線如圖4所示,可看出:兩種模型從滿電狀態(tài)到電壓為 6.4 V的過程中放電特性一致,而帶電壓閾值的電池仿真模型設定的電壓下限為 6.4 V,所以該模型端電壓降到 6.4 V 后保持不變。
圖4 兩種模型放電時電壓的時域曲線
通過模型充放電的電壓時域曲線對比可知:在有效工作電壓范圍內,設計的電池仿真等效模型與鉛酸蓄電池等效電路模型的充放電特性一致。
本文所提出的電池等效模型的充放電特性與鉛酸蓄電池等效電路模型的充放電特性相一致,它既能描述電池在其有效工作電壓范圍內的充放電過程的電壓動態(tài)變化特性,又能保障仿真電路在其有效工作電壓內運行。
[1] 林成濤, 仇斌, 陳全世.電流輸入電動汽車電池等效電路模型的比較[J].機械工程學報, 2005,41(12): 76-81.
[2] 林成濤, 仇斌, 陳全世.電動汽車電池功率輸入等效電路模型的比較研究[J].汽車工程, 2006,28(3): 229-234.
[3] 賈玉健, 解大, 顧羽潔, 等.電動汽車電池等效電路模型的分類和特點[J].電力與能源, 2011,32(6): 516-521.
[4] 趙軒, 康留旺, 馬建, 等.鉛酸蓄電池模型研究及SOC 模糊估計[J].蓄電池, 2014, 51(1): 10-14.
[5] SUN Li, TAN Xinde, XIE Fuchun.The Battery management system for electric vehicle based on estimating battery's states[CD].Brussels Belgium:EVs15,1998.
[6] 麻友良, 陳全世, 齊占寧.電動汽車用電池 SOC定義與檢測方法[J].清華大學學報: 自然科學版,2001, 41(11): 95-97.
[7] 齊國光, 李建民, 張小平, 等.電動汽車電量計量技術的研究[J].清華大學學報: 自然科學版,1997, 37( 3) : 46-49.
[8] Shinpo T, Suzuki H.Development of battery management system for electric vehicle [CD] .Orlando USA : EVS14, 1997.
[9] 桂長清, 柳瑞華.蓄電池內阻與容量的關系[J].通信電源技術, 2011, 28(1): 32-34.
[10] 李蓓, 葉瑋瓊, 王耀南, 等.基于工作電壓的動力電池剩余容量動態(tài)估算[J].變流技術與電力牽引, 2008(4): 46-50.
[11] 錢立軍, 吳偉岸, 趙韓.基于 ADVISOR 軟件的電池模型仿真分析[J].計算機仿真, 2004, 21(8):166-168.